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Assortative model for social networks
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In this Brief Report we present a version of a network growth model, generalized in order to describe the
behavior of social networks. The case of study considered is the preprint archive at cul.arxiv.org. Each node
corresponds to a scientist, and a link is present whenever two authors wrote a paper together. This graph is a
nice example of degree-assortative network, that is, to say a network where sites with similar degree are
connected to each other. The model presented is one of the few able to reproduce such behavior, giving some
insight on the microscopic dynamics at the basis of the graph structure.
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Networks[1,2] are present in different phenomena. Theis k. K, increases if nodes are correlated by deggssor-
Internet[3,4] is a graph composed by different computers,tative networks It decreases if they are anticorrelatlis-
connected by cables; the WWYV8,6] is a graph composed assortative networkslt is flat if they are uncorrelate@or
by HTML documents connected by hyperlinks; even socialexample, in the Bohm-AharonoiBA) model [16]). K, in
structureq7,8] can be described as graphs. In the latter caséhe data has an increasing trend, consistent with our expec-
the nodes are individuals connected by different relationtation for an assortative network. A power law seems to be
ships. Even if the degree probability distributi®tk) (i.e.,  an appropriate fit in the region of growky,,(k) = k? where¢
the frequency to find a numbérof links per nodgis very is about 0.2(See diamonds in Fig.)2Another measure of
often scale freqi.e., P(k)=<k™?), other quantities allow to assortativity we considered is the assortativity coefficient
distinguish between the various cases. For such purpose, oAecomplete definition of this quantity can be found in Ref.
of the most interesting is the assortativity by degree. Assorf17], here we can say that it is proportional to the connected
tativity can be defined as the tendency for nodes in a sociglegree-degree correlation function. In this Brief Report we
network to form connections preferentially to others similarfind that bothr and ¢ have the same behavior by varying the
to them[9]. This mechanism has been proposed as the keparameters of the model. We therefore focus our analysis
ingredient for the formation of communities in networks only on thee.

[10,17). Using this quantity, it is possible to distinguish the  Clustering coefficient; for every sitei gives the probabil-
technological networks, where instead, the behavior is rathdfy that two nearest neighbors of vertexare also neighbors
degree disassortative, so that vertices tend to be linked teach otherC(k), is the average clustering coefficient for
others different from them. Despite the relative simplicity of sites whose degree ks and it measures the tendency to form
such behavior few modelgl2-14 of network growth are cliques where each nearest neighbor of a n@déh degree
able to reproduce the formation of communities and no oné) is connected to each other. In real networks this usually
explains the difference between social and technological netlecreases with a power la@(k) <k? (=-0.8 for the data
works. we analyzeglbecause hubs tend to play the role of connec-

Here we analyze a specific case of social networktions between separate clusters in the graph, i.e., clusters that
namely, the ArXiv:cond-mat repository of preprints at cu- have few other interconnections than the ones passing
l.arxiv.gov collected by Mark Newmafi7]. The nodes are through the hub. Then the high-degree node tends to have
the authors of the various papers and a link is present bdew-clustering coefficient.
tween them whenever they wrote at least one paper together. The betweenneds of a vertexi gives the probability that
We are able to reproduce most of the features of such nethe sitei is in the path between two other vertices in the
work by a suitable modification of a model presented in Refgraph. Therefore it might be interpreted as the amount of the
[15]. The quantities we measured in the real data and in theole played by the vertex in social relation between two
model are thelegreeprobability distribution, thelegree cor-  persong andk. This quantity behaves as a power law both
relation between neighbor sites, tldustering and thesite  in its distributionP(b) «b™"(%=2.2) and in dependence upon
betweennesprobability distribution. A summary of the re- k. Analogously to the clustering case we defined the average
sults is reported in Table I. betweennesbk(k) for vertices whose degree ks From Fig. 3

The degree is the number of links per node. As expectedye find b(k) «<k® with £=1.81.
the degree probability distribution of the cond-mat data show The model we defined in order to reproduce the data is
a power law behavior of the kinB(k) <k™ with y=3 (see  inspired to the preferential attachment of@. The main
diamonds in Fig. L variation consists in allowing growth by addition of new

We then measure the degree correlation between nodeinks between old nodes. More particularly, at every step of
This is done by introducing the quanti,,(k), giving the  growth we have the following.
average degree of the site neighbors of one site whose degree(1) With probability p a new node is wired to an existing
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TABLE |. Results of numerical simulation of the model: exponents of the distributions and assortativity
coefficient for the inversénv.) and exponentialexp.) case. Last rovic-m) refers to cond-mat coauthorship
network. The exponent of the site betweenness distribution is not reported since its fluctuations around the
average value of 2.0 are negligible. For cond-mat it is @22 +p/2—-p and u=|e—y-1/7—1| The error on
the figures is always less than 5%.

p P Yinv Yexp Dinv ¢exp Uinv ’;bexp €inv Eexp Minv Mexp

0.1 2.05 2.05 1.73 0.23 0.90 0.58 2.31 1.71 0.94 0.62 0.21
0.2 2.11 2.27 1.83 0.24 0.87 0.61 2.47 1.65 1.09 0.38 0.26
0.3 2.18 2.33 2.18 0.25 0.88 0.65 2.69 1.63 1.16 0.30 0.02
0.4 2.25 2.52 2.33 0.25 0.89 0.73 2.78 1.64 1.27 0.12 0.06
0.5 2.33 2.61 2.45 0.25 0.90 0.67 2.97 1.66 1.34 0.11
0.6 2.43 2.78 2.59 0.23 0.85 0.81 2.90 1.70 1.50

0.7 2.54 2.87 2.71 0.23 0.84 0.74 3.10 1.73 1.61

0.8 2.67 2.92 2.83 0.21 0.76 3.50 1.77 1.71

0.9 2.82 2.96 2.94 0.16 0.67 1.84 1.88

1.0 3.00 3.01 3.09 0 0 2.06 1.99

c-m 2.99 0.14-0.35 -0.80 1.81 0.41

one; the choice of the destination node is left to Barabésitial attachment. The functional form &%(k,|k;) can be cho-
Albert preferential attachment ru{éich gets richer). Thus  sen so as to favor links between similar or different degree.
the probability of adding a new node and connecting it to arln this way, the probability of adding a new edge and con-

old nodei is necting two old nonlinked nodes is
ki
P - (1)
DN

j=INTY ki

|
(2) With probability (1-p) a new edge is addedf ab- . _p)z _P2(k2|k1)' (2)
j=aN

seny between two existing nodes. These are chosen on the

basis of their degree. In other words, tr~1e probability of add- | the limit of p=1 the model reduces to a traditional BA
ing an edge between node 1 and node (i ,k,). This can  tree. In order to reproduce the assortative behavior we have
be written asP; (k) P,(ky|k,), the second factor being a con- explored two different functional forms: an inverse depen-
ditioned probability.P,(k;) is the rule for choosing the first dence

of the two nodes, and again it is determined by the preferen-
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FIG. 1. Degree distribution in the inverse case. The slope in- FIG. 2. Average nearest neighbor degree of the nodes of degree
creases monotonically gsgrows from 0.1 to 1.0. The distribution kin the inversdinv.) and exponentialexp.) case, and for cond-mat
for cond-mat(c-m) is reported for comparison. In the inset, degree (c-m). In the exponential case a structure at high visible for low
distribution in the exponential case. Asbecomes smaller than 0.5 p. For cond-mat distribution, a maximal and a minimal slope can be
a peaked structure at high degrees appears. defined.
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grees are sharply distributed around a high value. Thus a
strong assortativity can break up the self-similar structure of
the graph, superimposing a distribution with a typical scale
on the scale-free one. This highlights the typical aspect of an
assortative network, where the hulghighly connected
nodes connect with other hubs, generating a core-periphery
structure. This structure is emphasized in the exponential
case, where assortativity becomes so large to induce a phase
transition from a scale-free graph to a network with a char-
acteristic scale for high degrees.

The slope ofK,,(k) grows as the assortativity is in-

P'(b)

&8 p=0.1, inv.
m-m p=0.1, exp.

©-0 p=1.0 creased, moving from the inverse to the exponential form,
¢ c-m . . R . .
— . N L and reducing the value gb. The slight inversion in the
10 100 growth of the exponent visible at smalican be explained as
b/N a finite size effect, highlighted by the intense assortativity for

very low values of the parametpr The BA limit is visible as
FIG. 3. Integrated site betweenness distribution in the inversgyg||, being the distribution roughly flat fqp=1.0. By mea-
(inv.) and exponentialexp) case, and for cond-mdt-m). AS P suring ¢ andr we note that their trends, as the parameters
tends to 1.0 the branching in the graphs increases. Given a bran ange, are analogous. Reasonably enough, we can conclude
of n nodes, b, starting from the leaves is proportional W  ynat 4t Jeast for our model, the exponent and the coefficient
-1),2(N-2),4(N-3), ..., 2" Y(N-n). Consequently, in a treelike carry the same information
structure the site betweenness is quantized. This appears in the dis- The clusterin Coeﬁicieﬁt distribution versus the degree
tribution as a succession of power law distributed spiletsirs in . 9 g
: R e o fails to reproduce the real trends. These are usually decreas-
the integrated distributionFor smallp, a bump is visible, signaling . ith law: th del. instead tes i
a characteristic scale. In the insbtys k in the inverse and expo- !ng wi da p\(l)vwefr_ a;/]v, € _rr;]o €l, InS ela ' ge_r;]era e_s_ increas-
nential case, and for cond-mat. In the exponential case a structure 09 trends. We it 1 e”.‘ wit "?‘ ppwer aw Wlt positive ex-
high k is visible for low p. ponent. We can explqln qualitatively _such incongruence by
taking into account high-degree vertices. In real networks
hubs tend to play the role of connections between separate
3) clusters in the graph, with few links between each other
lky —ko| +1° (apart from the ones attached to the huBherefore this
nodes tend to have low-clustering coefficient. In our model,
6h the other hand, all the hubs are aggregated together. Thus,
even producing an assortative network it cannot reproduce a
P, (k| Ky ) oc ekakel, (4) network WithCC(k) decreasjng witlk. We comment that such
. ] ) behavior in the real data is due to the different areas of ex-
Results of simulations for the various valuespadre sum-  pertise of various authors, such that the most productive sci-
marized in Table |, where the fitted exponents of the distri-entists in one discipline do not collaborate with the top sci-
butions and the global quantities describing the n_etworks argntists of other disciplines within cond-mat. Imposing such
reported. Asp grows from 0.1 to 1.0 the change in the sta- separation on the hubs produced by the model reproduces the
tistical properties is consistent with the rough estimate foizgrrect behavior of datéor rather analyzing the data by di-

Pz(k2|k1) o

and an exponential dependence, which clearly has a strong
effect

the degree distribution exponent given in Ref9], viding the papers according to the fields
P As regards the betweennebgk) is an increasing function
yp) =2+ 2_—p (5)  of k(hubs are crucial in the exchange of informajia@n the

other hand its slope decreasespais reduced. In a tree like

As p tends to 1.0, the exponent approaches the value 3 gitructure(p=1.0), hubs are to play the role of bottlenecks for
the BA model. A radically different behavior appears in thethe flow of information between separate parts of the net-
exponential case. While for high we still have scale-free works. Therefore, they have very high site betweenness. Ap-
distribution, asp decreases a structure knemerges. Two proaching to a core-periphery structure, each node of the
regimes become visible: a power-law distribution for lew core becomes approximately as good as the others in per-

and a peaked distribution for high forming this job. Therefore the site betweenness of high-
Similar behavior is evident for all the quantities depend-degree nodes decreases.
ing onk. The transition happens aroupg0.5. This behav- The site betweenness distributi®b) or is plotted after

ior can be explained as follows. Edges are added mainlyntegration in Fig. 3. We obtain a power law with an expo-
between high-degree nodes because of the “preferential atent not depending significantly gn Its averaged value is
tachment option” adopted in the choice of the first vertex.2.0, which is equal to the measured value for a BA {i3.
Moreover, the strong assortativity deriving from the expo-It is interesting to notice that also here a characteristic scale
nential form imposes a high degree to the second node appears at high values of the site betweenness. This is visible
well. Therefore, when the “wiring component” of the growth in the bump that distorts the scale-free nature of the inte-
prevails(p below 0.5, a cluster of hubs appears. Their de- grated distribution. Notice that we would see a similar dis-
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torted trend if we integrated the degree distribution. networks fall in the second class. Therefore, if the hypothesis
In Ref.[19] the following scaling relation is demonstrated of Ref. [18] were confirmed, our model would fail guess the
for the BA model correct universality class for the networks that it is thought to
represent. However, this would be reasonable, since the
b oc Ky DIr D), (6)  model can be reduced to a BA tree, which falls in the first

. . class.
Tr;uf";hte ?::ponen.t of th[e S'ts bt(:]tweennﬁtss plotted véisus In conclusion, we have studied a generalized graph
related to the previous two by the equaiity growth model, where by tuning a parameggiit is possible
e=(y-Dl(n-1) ) to weight the role of growingaddition of new nodesand
' mixing (addition of new edgesn the microscopical behav-

This relation stands for disassortative and not assortative neier of the network. The assortativity can be controlled as well
works, while deviations are shown for assortative ones irby fixing a functional form for the wiring probability. Mac-
Ref.[20]. By computing this difference we noticed a slightly roscopic characteristics of the network, i.e., statistical distri-
growing trend, ap is decreased, giving further evidence thatPutions, have been derived by simulations in the assortative
assortativity breaks the scaling relation. case. The results reveal the effects of assortativity on the

The qualitative agreement between the distribution of thé®P0logy of a network that can be as dramatical as a phase
real data and the simulation shows that our model is able tgansition. Moreover, the simulation succeed in reproducing

catch the basic aspects of the real graph, with the only aboy@ost of the features of real assortative networks. Future work
mentioned exception of the clustering coefficient velsus Cgrrg/dinfgiﬁo Oendgrgzn%s?jggc(t;:or:]iwirr:o:rzse rc%ulr(]i a\[jg 2d§§d
quantitative comparison suggests that the exponential form r%raph rather than a BA tree in the=1.0 limit; the rate of

too strong to descr|t_>e.eX|st|ng networks. In fact, the appeal addition of new nodes and of new links could be measured
ance of a characteristic-scale structure such as the one fo&-

. del h b b dqi t th r real networks to have a fine tuning of the parameter
seen in our model has not been observed in any of the regy, e general functional forms for the wiring could be inves-

ass”or';]atlvei\_ fLetV(\;F#‘kS studied ;]mt'l now. One rfnust nqtlc% Afigated, and even the preferential attachment choice could be
well the slight ditterence n the exponents of the site De-;janaed in order to have a significant wiring also for low

tweenness_distributioi2.0 for the simulation and 2.2 for degree nodes. Further extensions are possible because of the
cond-ma}. Following Ref.[18], networks should be divided {icﬁ flexibility (')f the model. P

in two classes of universality according to the exponent o
their site betweenness distribution. In fact this seems to as- We thank the FET Open Project No. IST-2001-33555
sume always one of the two values 2.0 and 2.2. CoauthorshigOSIN.
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