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Boltzmann equation description of flows at long mean free paths
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The flow of a gas around a rectangular object is simulated by solving the Boltzmann equation for the gas.
The Boltzmann equation is solved by means of a method of characteristics which we refer to as a convective
scheme(CS). This paper focuses, first, on two computational issues. We describe how the CS which is
presented here is implemented so as to handle reflecting boundary conditions very accurately. Next, a collision
operator for the self-collisions of the neutral gas has been developed which conserves momentum and energy
“exactly” and which also preserves higher moments of the distribution so as to correctly calculate quantities
such as viscosity. Finally, the method is illustrated briefly by calculating flow patterns and drag coefficients for
a low Mach-number flow around a rectangular obstacle, over a range of Knudsen numbers which spans the
transitional regime, and very accurate values of the drag coefficient are obtained across the whole range.
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I. INTRODUCTION sented in the appendices. The above remarks about particle

A variety of devices which operate at atmospheric presMethods and solution of the BE apply in that context also. A
sure, but which are microscopic in dimensitraving dimen- partlcle method dog; well in dESCI’Ib.Ing a narrow beam, since
sions of order micronsinvolve gas flows where the dimen- it resolves the position of the particles in the beam better
sions of the devicadenoted byL) are comparable to the than amesh based solution of the BE. On the other hand, the
mean free path of the gas[1-3]; the Knudsen numbet,, tail qf a dlstnbutmp of particles may contain a very _s_mall
=\/L is of order unity. In this work we shall examine flows fraction of the particles but those particles may be critically
whereK,, ranges from about 0.05 to about 10. Examples ofmportant(for instance, they may cause all the ionizatjdn.
such devices include microscopic pumps which are envisSuch a situation, the particle method may not be able to re-
aged in future, and microscopic aircraft—although full-sizeSolve the tail as well as solving the BE does. Similarly, even
aircraft which operate at very high altitude might also fall the very efficient IP method has some difficulty in avoiding
into this category. statistical fluctuations in density when it is applied to low

The conventional techniques for describing these flowdach number flows at values &, of order unity. The pur-
are what are referred to as “particle” simulations. In thisPose of this work, then, is to discuss an alternative to particle
paper we consider an alternative, which is to develop a sufiéthods, which may be useful in some circumstances where
ficiently accurate direct method of solution of the Boltzmannthey are less effective. In other situations particle methods

equation(BE) will be preferred.
The BE can be solved by finite difference approaches, in
of p- of +fa- it - (‘lf) (1) what is typically an Eulerian schenj&0,11]. Finite differ-
at ar v ) ences(FDs) are less accurate than a method of characteris-

tics, such as that employed here, because they are limited by
the Courant criteria to rather small time steps. The use of

) . . ! small time steps not only makes calculations slow, but it
acceleration vector field, ar@f/dt). is the collision opera- leads to significant numerical diffusioriln a steady state
tor [4]. Particle methods such as direct simulation Monte

. . : calculation similar difficulties arise for essentially the same
Carlo (DSMC) and the information preservingP) [5,6]

; reasony.In addition, FDs necessarily involve calculating de-
form of DSMC have somewhat different strengths and weaky, atives of the distribution, something that is best avoided

nesses as opposed to the solution of the BE. Broadly speagjce the gradients can be very large indeed, and again lead
ing, particle methods suffer from statistical noise, whereas g, inaccuracy in a FD approach.

solution of the BE will usually have some amount of inac- e g described here is a method of characteristics, and
curacy due to numerical diffusion. The method we presenfne rincipal difficulty associated with it is the handling of
here, which is a version of the method of characteristics,,ndary conditions, since the correct form of the propagator
which we call a “convective schemgCS), minimizes nu- s ot always clear at a boundary. A method of images can be
merical diffusion in a variety of wayg7—9] but cannot elimi-  caq__put again, this is difficult to set up at a complex
nate it entirely. The CS was originally developed for use iny,nqary. In what follows we show how simple boundaries
plasma simulation. A brief introduction to the CS is pre- may be handled very accurately. Complex boundaries have
been implemented in the CS previously, for an unstructured
(triangulay mesh[12,13. The methods used here extend
* Author to whom correspondence should be addressed. naturally to complex boundaries made up of small rectangu-
Email address: fengj@circe.engr.wisc.edu lar cells.

wheref is the particle distribution functiof(r,v,t), t is the
time, r andv are the coordinates for the state spaces the
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The collision operator used here assumes that the distri(a) y (o) Y
bution is relaxing to a Maxwellian, with the temperature of ' : '
the Maxwellian being determined to conserve the energy of
the scattered particles, according to a Krqok Bhatnagar- . .
Gross-Krook collision term. The essential point is not the f 5
exact form of the collision operator, however. Any form for
the collision integrals could be employed. The issue which'
causes difficulty, and which we address here, is that of how
to ensure that all appropriate conservation laws may be sat
isfied to numerical accuracy, for an arbitrary form of the
collision integral. To this end, we have chosen to allow the
distribution to be relaxing to a drifting Maxwellian, but the (© _ ,
procedure is equally applicable, whatever the form of the . FERN
collision operator. Ry

The CS was designed to minimize numerical diffusion by ..o % | 77
exploiting the long time steps available to a method of char- e
acteristics and by a variety of other methods. It focuses on
each initial cell on the mesh, and maps that cell back after ...~~~
one or multiple time stgg) in such a way as to conserve
particles, momentum and energy exactly and locally in phase
space. Usually the particles are considered to move in a
packet from their initial cell for a time step which is small  FiG. 1. Specular reflections and the mesh structure. When a
compared to a collision time, during which a fraction of themmoving cell hits an obstacle, the direction of reflection follows
suffer collisions and after which they all are mapped back tasnell's reflection law. Corners are treated as infinitesimal spheres,
the phase space mesh. A version of the CS where the phase the reflection direction will be opposite to the incident direction.
space is redundantly covered with a set of long-lived movingncident and reflection directions are thus arranged to coincide with
cells has been used to reduce numerical diffusion even fumgrid points in the velocity mesh to reduce numerical error.

ther. The point of this work was to allow the particles to

travel in their packets along the characteristics for manyicles in the cell will be scattereff—9. The handling of the

; - . “scattered particles will be discussed in the next section.
mean free paths. Allowing the packets to persist for multiple The design of the mesh is in general intended to minimize

time steps reduces numerical diffusion but it means that mul: . e : o
. S the numerical diffusion when moving the cells ballistically
tiple packets cover any point in phase space.

These issues have been discussed at length previous na/or during collisions. We choose, ., ¢) as the coordi-

, S . te system for the velocity space, wheris the speedy is
[9.14. In this work our focus in |_mplement|ng the method the cosine of the angle between the velocity and the positive
was twofold: (1) to handle reflecting boundaries extremely

! ; . : z axis, andg is the azimuthal angle of the velocity projection
accurately, in a sense which will be defined below, @)do o thexy plane. If a cell does not hit a boundary, then its

implement a collision operator which preserves the criticalvebcity does not change, since there is no external force
features of the flow—again, to very high accuracy. Thesgield. When it is re-mapped back to the mesh after ballistic
topics are the subjects of Secs. Il and Ill. Section IV will mation, the numerical diffusion will only involve spatial
briefly present results for the flow fields and drag coefficientsg|is: there is no numerical diffusion over velocity. Hence
for a test case, which consists of flow around a rectangulasyr velocity space variables can be chosen to minimize nu-
obstacle. Conclusions are given in Sec. V. merical diffusion during collisions. This is accomplished by
II. KINETIC MODEL OF THE SYSTEM using (v, u, ¢) as discussed in Ref15]. .
The obstacle to the flow is composed of horizontal and
The system under study is a neutral gas flow in Xige vertical planes. A cell coming in at the angler2 ¢ (or —¢)

plane with translational symmetry i To properly treat col-  will bounce back in thep direction if there is a horizontal
lisions three independent parameters are used in describigane in the path, as shown in Figal The case of a vertical
the particles’ velocity. The model is of two dimensions in plane is shown in Fig. (b). Care must be taken for cells
space and three dimensions in velocity. The effect of gravitywhich reflect at corner points. The incident plane is ill de-
is neglected, so the acceleration tearin the BE(1) will be  fined at corners; we assume the corner is a round surface, as
zero. In this section we first discuss the structure of the meslshown in Fig. 1c), such that the incoming cell will rebound
followed by a description of the handling of reflections off in the opposite direction. Corners are singular points, in
surfaces in the method of characteristics and the remappinmathematical terms they are(laebesgug measure zero set,
rules. so reflections off corners will be extremely rare. As a result
of the method used for reflection, ¢f corresponds to a grid

A. Mesh structure for t_hg conv_ectlve scheme point on the mesh, so dog: m—d, and 7+ shown in
and the ballistic motion Fig. 1(d)

()

For each time stept, each cell will move “ballistically” Fairly complex geometry objects can be constructed using
(i.e., collisionlessly first, then a fractiorvAt<1 of the par-  horizontal, vertical, and 45° oblique planes in two-
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FIG. 2. Re-mapping of a final cell to mesh celisB,C,D. The FIG. 3. Re-mapping of a final cell to mesh cells at a horizontal

fraction of particles mapped to a mesh cell is proportional to theboundary. The heavily shaded area marks the part of the final cell

overlapping area between the final cell and the mesh cell. Withouoverlapping the obstacle. Cells and C are reflected cells, which

an external force field, the velocity of the particles is constant, sovent into the shaded area. The position of the final cell which went

the velocity indices of the mesh cells are the same as those of thato the shaded area determines the fraction of the particles which is

final cell. reflected, according to Eq§2)«5). Mesh cellsA and B have the
same index in configuration space, but the velocity of éelis

dimensional cases. To generalize the previous observation, firrored vertically. The same situation applies to mesh célls
there are planes in the domain that are at 45° to the maif"dP-
axes, we can arrange the grid points of the azimuthal anglg;j pe “virtual” cells which lie behind the reflecting surface.
so as to match the rebound angles. As a result, ballistic MOrpe flux produced by the reflection, which acts as if it comes
tion will not produce any numerical diffusion in the velocity fom the virtual cells, should produce a flux such that a ho-
space. mogeneous isotropic gas above the surface is still homoge-
neous and isotropic after reflection. To do this the virtual
B. Reflection and re-mapping rules cells (if they are explicitly constructedmust simply extend
Once the mesh structure is defined, rules to map back iHige real mesh behind the surface without any discontinuities.
unscattered particles in the final cell back to each mesh cefPther strategies are possible, but this is a relatively simple
can be constructed. This has been discussed at length pre$?€- , , _ ,
ously [9]. If the final cell does not overlap any forbidden In specular reflection, When the final cell, with velocity
cells, the fraction of the particles that is mapped back to eacFP|kw““|€_' ¢|n1)’ overlaps horizontal boundary mesh cells as
mesh cell is proportional to the overlapped area. As shown i§hown in Fig. 3, Eqs(2)~(5) still apply. The portion of the
Fig. 2, the final cell atx,y) hasN particles with velocity final cell which overlgpped the shaded area is placed in the
(0l tles Bl We will map the particles to the mesh ces §haded area, according to E¢g®—(5), but is then ref_Iec_ted
B, C, andD) shown, with the same velocit§v|y, |¢, ¢l into cellsA andC. Mesh CQIISA andB have the same |n<_j|ces
according to the following rules: as each c_)thgr on the conf|gura_1t|on space nfejslyl;.1) with
different indices on the velocity space meshfi, ul¢, dlm)
_ X —X; y-Vl for B and its mirror velocity(v|y, ul¢, 7= ¢|m) for A. Like-
Na=N{1- AX 1- Ay )’ (2 \ise, mesh cellC and D have the same indices as each
other on the configuration space meéth,.1,ylj.1), with dif-
ferent indices on the velocity space mesh. Similar rules can
) , (3) be constructed for the vertical boundary case. If the final cell,
with velocity (v|y, ul¢, #lw), Overlaps a corner mesh cell as
shown in Fig. 4, Eqs(2)—(5) still apply, where mesh cellB
N = N(X_X|i><l _ y_y|j) @) andC have the same indices as each other on the configura-
c AX Ay /)’ tion space meskx|;,yl;.,) with different indices on the ve-
locity space mesh(v|y, ul¢, ¢ for B and theoppositeve-
x=x, \(y-Vl; locity (v|y,ul¢, dlm+ ) for C Since cells which overlap a
Np=N AR A (5) corner can come from all directions except for the direction
y from the obstacle, inverting the velocity of the particles in
whereAx andAy are the cell sizes in theandy directions, the part of MC which overlaps the obstacle is consistent with
respectively. what we described before in Fig(d). These rules for specu-
The CS describes particles which travel in groups, whichar reflection mean that a uniform gas with no flow velocity
we refer to as “moving cellstMCs). The MCs originate in  remains in that state when it reflects off an obstacle.
single cells of the mesh, with a particular range in spgaee, To simulate viscous flow in the vicinity of the boundary,
shape and discrete velocities; and they are launched at diseells can reflect from the boundadyffusely A nonslipcon-
crete times. On reflection, particles are moved from one MQition is usually assumed in fluid mechanics. The counterpart
into another. The reflected particles behave as if they cam kinetic theory consists of diffuse reflection. In the fully
from cells of the mesh, although some of the source cellgliffuse reflection case, as shown in Fig. 5 for a horizontal

_ _x—ﬂq<y—y+
NB_N<1 AX Ay
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A /'ﬁnal cell lIl. CONSERVATION LAWS
_I ______ {1, S I— . . . . . . .
B : D\ In this section we discuss the collision operator, which is
Y+t 1C o Y x| ! designed to exactly conserve various quantities, when imple-
S I RN mented on a discrete mesh.
I i I
1 o 1 . .
bt box | x ! A. Conservation laws for scattered particles
-E_A _____ i_ _____ E_ object Scattered particles are re-mapped in such a way that re-
: peated application of the collision operator will yield a drift-
5 v > Maxwellian distribution. The re-mapped particles have the

same averagéor drift) velocity and the same total kinetic
FIG. 4. Re-mapping of a final cell to mesh cells at a corner,energy, that the scattered particles had before they collided
when the moving cell overlaps a corner cell. The heavily shadedyith each other. The use of a drift-Maxwellian or a similar
area marks the part of the final cell overlapping the obstacle. Thejistribution is essential, since other approximate forms for
velocities in cellsA, B, andD are unchanged. Mesh ceBsandC  the distribution do not yield the correct values for off-
have the same index in configuration space, but their velocities argiagonal elements of the stref]. (At each time step, the
in opposite directigns(This is consistent with the rule described jistribution which is added back may not be a Maxwellian—
above for sphere-like cornejs. see Sec. |l B—but for simplicity in this section we will refer
to this distribution as a drift Maxwellian.
surface, a mirror cell is launched at the beginning of a time However, the discreteness of the mesh complicates mat-
step for each real cell which will reflect off the surface. Half ters. Even though we use the nominal values of the drift
of the particles are in the original cell, the other half arevelocity V,&+V,&, and the temperaturgin the Maxwellian
carried in the mirror cell. The mirror cell starts at the mirror expression for the distribution at each grid point in velocity
position with respect to the plane through the center of thepace, the actual values when summed over the entire distri-
mesh cell on the boundary in which the cell rebounds. Itfution of scattered particles are different from their corre-
velocity is the mirror velocity of the original cell. The cell sponding nominal values. For example, the nominal value
and its mirror cell rebound on the surface obeying the rulegor the x component of the drift velocity in a Maxwellian is
of specular reflection described above. Hence, the tangentidifferent from the numerical one
force is fully absorbed by the surface. The use of mirror cells 5
in this way ensures that, since specular reflection as imple- . NV, Ly - 2, vy exp(= m(v; = V)% 2KT}A;
mented here does not alter a homogeneous, isotropic gas, 'x~ x,num= 2
then neither does diffuse reflection. Tt?e ratio of the mfmbgrs N Ei exp=m(v; = V)*/2KTHA,
of Fhe particles in the_ initial cell apd in it; mirror cell can be \yhere the indesi runs over the grid points of the velocity
adjustgd, so that a different fraction of diffuse reflection Canspace mesh, is the differential volume in the velocity
be achieved. space for the Riemannian suknjs the Boltzmann constant,
andN is the nominal value for the density. Similarly, other
initial cell mirror cell physical quantities, namely thecomponent of the drift ve-
% . % locity V,, the temperaturd, and the particle density, will
SpmmeETciplane have different nominal values and corresponding numerical
4 values.
For the purpose of the numerical simulation of the five-
X dimensional systerftwo-dimensional in configuration space,
; three-dimensional in velocity spacenve have to conserve
the particle densityN, the totalx-momentumNV,, the total
y-momentumNV,, and the total kinetic energi{(v?) nu-
E merically for the scattered particles. In addition, the Max-
LT wellian form of the distribution will automatically give rea-
sonable values of higher moments of the distribution. Since
there are more than four grid points on the velocity space
. . . . o mesh, to conserve the above four quantities numerically is
time step, particles will be split evenly between the original cell and . - .
generally possible. Let the corresponding numerical values

a mirror cell, which is a mirror image with respect to a symmetry 5 =
plane located at the center of the boundary cell where the originali)e (N)2, (N, (NVy), and (N(u)),. Intuitively there are

cell reflects. This location of the mirror cell coincides with a real S€Veral possibilities to re-map scattered particles back to the

cell of the mesh. In a homogeneous, isotropic gas there will be ny€locity space mesh with the various quantities conserved

overall effect caused by the splitting since the mirror cell and thenumerically. We now discuss several such methods. _
initial cell would have equal numbers of particles. The original and ~ The first method we considered turned out to be insuffi-

its mirror cell will annihilate the total tangential momentum of the ciently robust. We began by scaling our first numeriesti-
particles. In this way, the properties of specular reflection are premateby a factorr, by matchingr(N), andN, so the errors
served, so an initially uniform static gas remains uniform and staticwill be

/."' final cell

ST
1
1
1
=
1

FIG. 5. Diffuse reflection. If a moving cell hits an obstacle in a
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(N)’=N-r(N);=0, (6)
(NV))" = NV, = r(NVyy, (7
(NVy)" =NV, - (NV,);, ®

(N@W?)" =N(®?) = r(N@w?));. (9)

Conditions onr are derived in the appendices. The schem
was iterated until the error was small; however, the conve
gence was pootr.

A more robust scheme begins by scaling the discrete drift

Maxwellian distribution, based on the nominal valués,
(V. (Vy), andN(v?), in order to match\, the nominal num-

ber of scattered particles. With a reasonable velocity mesh
the error compared to the nominal drift Maxwellian is usu-
ally within 0.1%. Then we adjust the distribution to conserve
the total kinetic energy. If the total kinetic energy is less thanC
the nominal value, we move the particles from the cells in

the lowest energy level to the cells in the highest energy Ieve?

keeping the directionfu|,, #|,,) unchanged(We stress that

the required adjustments are very small but they are, never-

theless, important since conservation must be enforced |
cally and to high accuraoylf all the particles in the lowest

energy level are moved to the highest level and the total
kinetic energy is still less than the nominal value, we can
S

move the particles of the cells in the next lowest level. Thi

procedure can be continued until the numerical kinetic en

ergy matches the nominal valgand in reverse, if the total
kinetic energy is more than the nominal value

Finally, one can rearrange the particles within the sam

energy level to conserve momentum. Based on the design
the velocity space, ifh particles are moved from the cell at
(v,u,¢) to the cell at(v,u, 7—¢), the numerical value of

thex component of the momentum for the scattered particles

will be changed by —@w\1-u?)cos¢ while keeping they
component unchanged. Similarly, if particles are moved
from the cell at(v, u, ¢) to the cell at(lv, u,—¢), the numeri-

PHYSICAL REVIEW E 70, 036704(2004

(v, u,m= ). If NV,<(NV,);, we find the ratio

( (NVx)l - NVx)
P+ '

This fraction of the scattered particles in the dell «, ¢),
where v\1-u?cos¢ is positive, is moved to the cell
(v,p, ™= ¢). A similar procedure can be applied to the ad-
é'ustment of they component of velocity. The adjustments in

x andy are performed in alternate order as time advances, so
there is no preference for either direction. In this way, the
total particle number, the drift velocity, and the total kinetic
energy of the scattered particles can be conserved very accu-
rately in a drift-Maxwellian distribution. Experience shows
this second scheme is more robust.

' Another possibility is to construct a Maxwellian for each
of a discrete set of nominal valuesfV,, V,, andT, and to
store these in a table. Then the needed distribution can be
onstructed from a linear combination of the Maxwellians

tored in the table. This will be examined in future work.

1

2

r

B. Collision operator

o- For theBGK collision operator in thé&Krook model[17]

|

the collision frequency is a constant obtained by averaging
over the Maxwellian distribution of the background particles.
If the collision frequencyv is not a constant, but a function
of the incident particle velocityvy=Nov, where N is the
%fackground particle number density,is the collision cross
ection, and is the particle velocity, then the scattered par-
ticles will be re-mapped back to the velocity mesh, with the

following distribution:
312
o |

of

)

—v(f = froad

-m(v - V)?
2kT

Atf, = AN
A max ”v(zwkT

cal value of they component of the momentum for the scat- Since this is the distribution of scattered particles which al-

tered particles will be changed by ¢®1-u?)sin ¢ while
keeping thex component unchanged. The adjustmentsxfor

andy directions are thus decoupled. To make the adjustmen

evenly distributed among cells in velocity space, momenta i
positive and negative directions are obtained first,

P = > Ni(wV1 - u?cosg);,

iEx+

Pe= 2 MVl -u?cose),
iex—

wherei € x+ is the index running over the cells with a posi-
tive x component of velocity, and= x— with the negative. If
NV, > (NV,)4, we find the ratio
_ g((vi)l— vi>
2 Py '
This fraction of the scattered particles in the dell u, ¢),
where vV1-u?cos¢ is negative, is moved to the cell

lows f to relax towardsf,,, as is implied by the Krook
model. This nominal distribution for scattered particles is
Rdjusted to conserve the particle number, momenta, and ki-
fetic energy, as we described above.

IV. SIMULATION RESULTS AND DISCUSSION

The proper dimensionless number to specify the numeri-
cal experiments is the Knudsen numisgt Since the transi-
tion regime is investigated in this paper, some dimensionless
numbers considered in fluid dynamics become important
when we approach the fluid dynamic regime. Following the
canonical procedure in fluid dynamics with the characteristic
lengthL and time 7, the BE with the Krook model can be
cast into anondimensionalizeébrm

of
ar*

of
a

* .

of
+v a* - — =K * [f = fra VT,

(9v*

wheret*=t/7, r*=r/L, v*=v7/L, anda*=ar/L. For a
large K,,, the right hand side can be neglected, and the dy-
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FIG. 6. Microflow system. A uniform argon gas with velociy
parallel to the plate at the center surrounds the simulation domain.
The far-field flow velocityV is set to 40 m/s.

(b)

namics of the distribution are dominated by Wasov equa- 002657

tion, which corresponds to the free molecular flow regime. 0.026
On the other hand, iK,, is small, the distribution is expected

to resemble a drift Maxwellian, in the fluid dynamics regime.
Besides\ (or 1/No, since =1/N{ov)) and L, the flow 0.025+
speedV, the collision cross section, and the gas tempera-
tureT, also play roles in experiments. Using tRackingham

7 method[18], it can be shown that the Euler number, the 002 e
Reynolds number, and the Mach number are important sys- a0

tem characteristics. The effects of these dimensionless pa- e 8o 0
rameters have been studied extensively in the literature on

fluid dynamics. ©

0.0255

T (eV)

0.0245
80

A. System description

As shown in Fig. 6, argon gas is flowing in tRelirection
at room temperatur€T is set to 0.025 eV, which is about =~ e
289 K). A thin plate with aspect ratio 10 is located in the SRR TR e ket i
middle of the simulation domain and parallel to thexis.

The system dimension parallel to the far-field flow is cho-
sen to be the characteristic length=10 um. The argon
atomic weight is about 40, so we set the collision cross sec-
tion o to be of the order of 1§, wherer, is the Bohr radius.

To make the mean free path the samé &sr theK,=1 case,
the number density is set abou4.0?* m™3. If we use the FIG. 7. Argon gas flow aV/=40 m/s,K,=1, T=0.25 eV: (a)

'QM?’ equation for the argon gas, ther! the Sounq_Spe@ﬂensity profile.(b) Temperature Profile—the temperature fluctuates

\VykT/mis of the order of 30@m/s), wherey is the specific by about 2%. The friction around the obstacle generates the heat,

heat ratio 5/3, and the characteristic timeis about 3  which is carried to the downstream end of the plate by the fio.

X 108 s. The argon viscosity. is about 2.4<10* N's/n?,  Flow pattern—at low Reynolds number, there is no turbulence.

so the Reynolds number Re¥L/ w is about 1100 for a flow

velocity V=40 m/s, wherg is the argon mass density. The 5| yejocity from the domain are not able to cross the buffer

Mach numbeiM is about 0.12. To resolve the collision pro- zone in one time step

cess, the spatial cell size is set to less than 1/3 of the mean-

free path, whose minimum is &,=0.05. The collision fre- Lg = Umaddt.

quency depends on the velocity, since we assume hard-

sphere collisions. The maximal collision frequency will Cells in the buffer zone are described using a “O-

occur for particles with maximal velocity on the mesh. Thedimensional” model, in that particles which leave the buffer

time step of the simulation is set to be less than 0.2 of theone and enter the main zone or which leave it on the outside

minimal collision time. The velocity resolutiofv/v is setto  are also reinjected into the buffer zone. The buffer zone is

0.119]. thus subject to periodic boundary conditions, while the
For this external flow problem, in addition to the diffuse buffer zone also injects particles into the main zone. In other

reflection boundary conditiomonslip condition on the ob-  words, the distribution in the buffer zone will be the same

stacle, a buffer zone surrounds the simulation domain, so thieefore and after ballistic motion; only the collision operator

distribution of particles which enter the simulation domain iswill change the buffer zone distribution. We assume hard-

fixed. The width of the buffer zonkg is determined by the sphere collisions between neutral argon particles. The den-

range of the velocity space mesh, such that cells with maxisity, the flow velocity, and the temperature in the buffer zone
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FIG. 8. Contours for density and velocity profiles: Far-field flow velocity i€4®m&, (m/s) (a) The contours represent intervals of
6.4X 1072 (m™2), from the maximum of 3.5% 10?° (m~3) on the boundary(b) The contours represent intervals of ¥.10?2 (m™3), from the
maximum of 3.5% 10?* (m~3) on the boundary(c) The contours represent intervals of 06/s), (d) The contours represent intervals of
0.40(m/s). (e) The contours represent intervals of 0@8/s), from the maximum of 5.38m/s) on the left end of the plate to the minimum
of =5.62(m/s) on the right end of the plat€f) The contours represent intervals of 0@8/s), from the maximum of 5.84m/s) on the left
end of the plate to the minimum of —6.%i/s) on the right end of the plate.

are kept constant throughout the run to set up the far-field B. Density and velocity profiles
boundary condition. o o

Since computer resources are limited, we also tested the As shown in Fig. 7a), where the flow velocity is 40 m/s,
effects on the simulation results of the resolution, i.e., theandK,=1, density builds up at the upstream end of the plate,
size of the numerical mesh. In most simulation runs, theand is depleted at the downstream end. Around the plate
simulation domain is a uniformly spaced mesh with 100 gridthere is a roughly 2% fluctuation in temperature. All these
points in thex direction,N,=100, and 100 grid points in the flows have low Reynolds numbers, as shown in Fig);the
y direction,N,=100. For each spatial cell point, there are 32flow pattern is laminar, there is no turbulence. Since the
grid points inv, N,=32, 8 inu, N,=8, and 32 in¢, N,  simulation results are symmetric with respect to xhaxis,
=32. (Smaller numbers gave results which were not con-only half of the domain is shown on the figures in the fol-
verged with respect to the mesh sjz&ach cell has two lowing discussion.
variables(one for the current time step, the other for next The contour plots of the density, thecomponent of the
time step, and each double precision variable takes 8 bytesflow velocity, andy component of the flow velocity, foK,
Hence, for this size of mesh there are about 400 megabytesl andK,=10, are shown in Fig. 8. The far-field flow ve-
of computer memory used in each simulation run. locity is 408,+08&, (m/s) for both cases. Both density pro-

036704-7



J. FENG AND W. N. G. HITCHON PHYSICAL REVIEW E0, 036704(2004

10t TABLE I. The drag coefficienCy. The flow velocityV of the
£ argon gas is 40 m/s.
=
BY
Kn Cs IP DSMC
Cq Cq Cq
. . 0.05 1.50 1.45 1.52
20 40
x(um) 0.2 3.36 3.00 3.04
0.8 3.87 4.62 4.25
FIG. 9. Contour plot of the magnitude of the strain rate. 1.2 412 481 4.76
10 4.88

files have a peak at the upstredeft) end of the plate. Since
the plate surface is a discontinuity, the peak of the density

should be infinitesimally close to the plate, but not on the Comparison of the drag coefficient with data from particle
plate surface. The density drops gradually to a minimal valugijmulations[16] is shown in Fig. 10. The results from the
at the downstreartright) end of the plate. Due to the nonslip information preserving(IP) and direct simulation Monte
condition, thex component of the flow velocity on the sur- Carlo (DSMC) methods are based on a nonuniform mesh.
face of the plate is actually zero. Since the Mach number ishe flow velocity is the same for all methods. The methods
less than 0.12 in this Study, the argon gas can be ConSider%pear to give reasonable agreement as to the drag coeffi-
as incompressible in the fluid dynamic regime. Based on thgjent, which is a rather sensitive test and probably shows
conservation of mass, the flow velocity above the plate cagjifferences more than most other comparisons. The major
be greater than the far-field flow velocity. This phenomenonyiscrepancy we observe is that the particle simulations go to
is also observed in the free-molecular flow regikie=1, as  the free molecular flow limit soon afté¢, =1, whereas the
shown in Figs. &) and &d). In the upper half region thg  CS simulation is a little slower to reach the asymptote. All
component of the flow velocity has a positive maximum neakhe methods show rather different flow pattern&at1 as
the upstream end of the plate, and a negative minimum negompared tokK,==, so we might expect some difference
the downstream end. The results qualitatively agree welpetweenC, in the two cases. The particle methods appear to
with other simulationg16]. differ from each other by as much as 20%, suggesting that
The profiles are more symmetric in thedirection asK,  this is the error associated with the calculations. The CS

becomes larger, since the characteristic length of the flow igesults also agree with the particle methods, to within this
the mean-free-path. As A approaches, the plate degener- grror.

ates to adoubletpoint, if we keep the aspect ratio of the plate
constant.

The region where the plate starts to affect the flow can be V. CONCLUSIONS
revealed by the contour plot of the following function which
describes the magnitude of the strain rate

The CS is an alternative to particle methods for solving
the Boltzmann equation, which does not suffer from statisti-

V. | 2 V. |2 cal noise, and which is suitable for the transition regime,
Ny Ny , : : .
_ay + x| K,=0.05 to K,=10. With a suitable design of the velocity

mesh, flow around complicated geometric objects can be
A contour plot of the strain rate fd€,=1 is shown in Fig. 9.  studied using the CS. Numerical diffusion in velocity space
For a Newtonian fluid, the stress is linearly proportional tois largely avoided; numerical diffusion in physical space is

the strain rate. minimized by the long time steps which are permissible in
C. Drag coefficient 5 Ty,
The CS enforces the conservation of momentum pre- 45 - j .
cisely. This feature is very important in calculating the drag 4+ o C J
and the lift of an object against a flow. The drag force par- 35 | ]
allel to the far-field flow is usually studied in terms of the - ) B
drag coefficient. The definition of the drag coefficient in our o 3r * ]
calculation is 25+ -
o FdA 2r I
d— pV2/2’ 15 F B -
1 MR | el P E T
whereF,/A is the averaged shear stress parallel to the free 0.01 01 1 10

flow, p is the gas mass density, ands the free flow veloc-

ity. Normal force due to the pressure on the plate is not FIG. 10. Drag coefficien€y vs K,. Uniform meshes are used
included in the calculation. As shown in Table I, the changefor the CS(). IP (xX) and DSMC(+) data are based on a nonuni-
of the drag coefficient mostly takes place #~0.2. form mesh. The far-field flow velocity is 40n/s).
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the CS. Conservation of particles, conservation of momentities, such as the particle number and the total energy. Scat-
tum, and conservation of energy, which are crucial both irtered particles are put back to the mesh cells with the same
fluid dynamics and rarefied gas dynamics, are implementedpatial index but different velocity index according to the
exactly, numerically in the CS. We presented schemes toollision operator, which can account for elastic or inelastic
handle reflections and collisions very precisely. Comparisorcollisions. The particle number for scattered particles can
to particle simulations was briefly presented. It was showralso be changed if source or sink terms are present in the
that the convective scheme gives results in agreement witbollision operator.

earlier work[16] with regard to the drag coefficient, which is

a somewhat sensitive test of the collision operator. APPENDIX B: ALTERNATIVE IMPLEMENTATION

OF CONSERVATION LAWS
Using the scaling of Eq9), (N(v?))’ could be negative,

APPENDIX A: INTRODUCTION TO THE CONVECTIVE which is undesirable in this scheme, where we will add ad-
SCHEME (CS) ditional particles back to correct for errors—negative density
Based on using the propagator method, the CS solves {Hfy energy would be unphysical. Therefore, we set an inequal-

Boltzmann equation for théone-particle distribution func- ' for

tion. In contrast to tracing super particles in particle methods N N(v?)
[19,20Q, the distribution function is treated as a phase-space r<min (N) ' (N(v?)

fluid by the CS. For each particle species the formal solution 1 1
of the Boltzmann equation for short time steps can be writterThe temperature for the particles & =m[(N(@?))’(N)’

(B1)

as =(NVy)'?=(NV,)"2]/(3KN’?). Since a negative temperature
[22] is not possible for this system, we obtain another in-

f(x,v,t) :f f Px,0,t;x v (X", v t)dx'dv’, t>t' equality forr from T’ = 0. Furthermore, although theecom-
ponent of the flow velocity is zero, if there is no grid points

(A1) on the velocity space mesh with=0, then<v2>>0 Let the
maximal projection of the veIocny grid points on the

. o plane bevn.p, Where p=y1- ,umm, Mmin 1S the minimal
prolpaga,ltor fqr a particle at tr|1e ph{:\se—space.pos{uow .) value of u=cos# on the grid points, and is the angle of the
attimet’” moving to(x,v) at a later time.. Certain properties q|qcity with respect to the axis. The following inequality

and conservation laws related to this propagator in the Cg;i| guarantee the error can be described by a group of par-
were noted by Adams and Hitchd@1]. Instead of finding  ticles with a drift-Maxwellian distribution:

the explicit form of the propagator in a 14-dimensional

where the kernel of the integralR(x,v,t;x’",v’,t’), is the

space, the CS propagator is broken into two parts—one for (N@?)’ 2 ((NVX)')2+ ((NVX)')z
the ballistic motion and one for collisions. In the ballistic (N)’ . (N)’ (N)’
motion collisions are neglected, and the Boltzmann equation o ) ]
is reduced to th&/lasov equation The original nominal values (or any numerical
drift-Maxwellian distributior) also satisfy the above inequal-
df _df . ot af _ ity. After some algebraic steps, the above inequality
dt ot Y ax ta- o =0. (A2) for r can be written as Ar?+Br+C=0, where
A=p*(N)1(N(®?))1~ (NV,)T= (NV,)3, B=2{NV,(NVy);

Deceptively in this linear form, the Vlasov equation is actu- NV, (NV,) 1}~ PPN (N); +N(N@w?),}, and C=p?NN(w?)

?Ily an mtigrodlfferentlgll equgtflon since thﬁ electromagnetic_ (NV) _(va)z_ As mentioned above. we know that 0

orces in the terna are derived from Maxwell’s equations as : !

integrals of the charge and current densities, which depen?&i??a%eatﬂi tSF;em(zq\lljgloili?n holds only when all the par-

on the distribution functions of charged particles. In the CS, Another possibility is to tr)é.at the error as a group of par-

the Vlasov equation is numerically integrated alongahar- ;o'\t the same velocity, which should fall within the

acteristic curveswhich are determined by the equations of oo i space mesh. Then we have two more inequalities

step is complete for all particle speciéds adjusted accord- 2 (N<v2>)’

ing to the collision processes described by the collision op- Umin = (N)’ vmax'

eratorsC(f) as well as chemical reactions. Usually the Krook

collision operator or the Coulomb collision operafd7] and ~ Wherevma andvpy, are the maximal and minimal velocities

some other collision processes, like ionization and excitationn the velocity space mesh, respectively. The original nomi-

are incorporated into the collision operators. Recombinatioal values(or any numerical drift-Maxwellian distribution

in weakly ionized plasmas can be incorporated likewise. also satisfy the above two inequalities. After some algebraic
Since particles in a cell are uniformly distributed over thesSteps, they can be written as

space with the same velocity, rules similar to E@—5) are N(v?) - Nv2, No2 -~ N(u?)

used to map unscattered particles in the final cell to the mesh  r < min 5 L o 5

cells. Mesh cells may have different potential energy levels, (N@)1 = (N)1inin (N)107max= (NCw?)1

so care must be taken to conserve the relative physical quan- (B2)
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and the final error values will bdl, NV,, NV,, and N(v?).
Sometimes, we can find a linear combination of these four
estimates that will match all the original nominal valubk:
=31 Ci(N)i, NV,=SL,Ci(NVy);, NV, ==1,Ci(NVy);, and
N2 =% Ci(N(v?));. Unknown coefficient<; are required
to be non-negative. Otherwise, we have to remap the final
error back to the velocity space. Note tis e™*N usually,
so it is a small perturbation of the linear combination of the
drift Maxwellians.

To map back the group of particles with the nominal val-

uesN, NV, NV, and N(v?), we assume they have the same

FIG. 11. Conservation of momentum. The range of the perpen- . e NN Y SN N ~:7:2 IN
dicular velocity of particles with a fixed energy level is a polygon. velocity. We defineVy=NVy/N, Vy=NVy/N, V=N >~/N’

If the average velocity of the scattered particles is in the area @nd find the two grid points; andv, between whichv is

between 2 polygons based on andv,, it can be expressed as a located. There is a numberr,<1 such thaf/zzrevf+(1
linear combination of velocities & andB which are linear com- _re)vg_ Similarly, as shown in Fig. 11, the velociyy=V,&,

binations of grid points atp; and ¢,. If the average velocity is A . L . .
gnd p 1 and &, g y j-éa/yey is a linear combination of point andB which can be

within the inner polygon, it is possible to conserve momentum an h . i . . ith azi hal ari
energy at the same time for the scattered particles when remappi !t up by using differeng g.”d points wit az'm“t al grid
oints ¢»; and ¢, on the velocity space mesh. Sin¢eshould
back to the mesh cell. . - . o
be located in the polygon area, thevalue in the inequalities
_ Ar?+Br+C=0 can incorporate the factor accounting for the
We can use the error values as a new set of nomingliscreteness of the azimuthal angbes V1 -, COSAB/2),
values for a group of drift-Maxwellian particles, and let the where A¢ is the space between twé grid points. More
second szet of numerical estimates B8, (NVi)z, (NVy)2,  gophisticated schemes fprcan be implemented to alleviate
and (N(v4)),. By .choosmg anr that satisfies inequalities tne constraint. Once the projections on theand ¢, direc-
(B1)«B2), we will get a new set of error valuesN)”,  tions are found, we can adjust the numbers of particles
(NV)", (NV,)", and(N(v?)". This procedure can be contin- amongu cells to match the projection in each direction. In
ued, if we make the error in the particle density less t8dn  principle the momentum and the kinetic energy cannot al-
of the nominal value, i.e., choosings such thatNe*=N’,  ways be conserved at the same time. In that case, we choose
N’e*=N", and so on. Generally we can get four estimatego conserve the momentum.
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