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The flow of a gas around a rectangular object is simulated by solving the Boltzmann equation for the gas.
The Boltzmann equation is solved by means of a method of characteristics which we refer to as a convective
scheme(CS). This paper focuses, first, on two computational issues. We describe how the CS which is
presented here is implemented so as to handle reflecting boundary conditions very accurately. Next, a collision
operator for the self-collisions of the neutral gas has been developed which conserves momentum and energy
“exactly” and which also preserves higher moments of the distribution so as to correctly calculate quantities
such as viscosity. Finally, the method is illustrated briefly by calculating flow patterns and drag coefficients for
a low Mach-number flow around a rectangular obstacle, over a range of Knudsen numbers which spans the
transitional regime, and very accurate values of the drag coefficient are obtained across the whole range.
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I. INTRODUCTION

A variety of devices which operate at atmospheric pres-
sure, but which are microscopic in dimension(having dimen-
sions of order microns) involve gas flows where the dimen-
sions of the device(denoted byL) are comparable to the
mean free path of the gasl [1–3]; the Knudsen numberKn
=l /L is of order unity. In this work we shall examine flows
whereKn ranges from about 0.05 to about 10. Examples of
such devices include microscopic pumps which are envis-
aged in future, and microscopic aircraft—although full-size
aircraft which operate at very high altitude might also fall
into this category.

The conventional techniques for describing these flows
are what are referred to as “particle” simulations. In this
paper we consider an alternative, which is to develop a suf-
ficiently accurate direct method of solution of the Boltzmann
equation(BE)
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where f is the particle distribution functionfsr ,v ,td, t is the
time, r andv are the coordinates for the state space,a is the
acceleration vector field, ands]f /]tdc is the collision opera-
tor [4]. Particle methods such as direct simulation Monte
Carlo (DSMC) and the information preserving(IP) [5,6]
form of DSMC have somewhat different strengths and weak-
nesses as opposed to the solution of the BE. Broadly speak-
ing, particle methods suffer from statistical noise, whereas a
solution of the BE will usually have some amount of inac-
curacy due to numerical diffusion. The method we present
here, which is a version of the method of characteristics
which we call a “convective scheme”(CS), minimizes nu-
merical diffusion in a variety of ways[7–9] but cannot elimi-
nate it entirely. The CS was originally developed for use in
plasma simulation. A brief introduction to the CS is pre-

sented in the appendices. The above remarks about particle
methods and solution of the BE apply in that context also. A
particle method does well in describing a narrow beam, since
it resolves the position of the particles in the beam better
than a mesh based solution of the BE. On the other hand, the
tail of a distribution of particles may contain a very small
fraction of the particles but those particles may be critically
important(for instance, they may cause all the ionization.) In
such a situation, the particle method may not be able to re-
solve the tail as well as solving the BE does. Similarly, even
the very efficient IP method has some difficulty in avoiding
statistical fluctuations in density when it is applied to low
Mach number flows at values ofKn of order unity. The pur-
pose of this work, then, is to discuss an alternative to particle
methods, which may be useful in some circumstances where
they are less effective. In other situations particle methods
will be preferred.

The BE can be solved by finite difference approaches, in
what is typically an Eulerian scheme[10,11]. Finite differ-
ences(FDs) are less accurate than a method of characteris-
tics, such as that employed here, because they are limited by
the Courant criteria to rather small time steps. The use of
small time steps not only makes calculations slow, but it
leads to significant numerical diffusion.(In a steady state
calculation similar difficulties arise for essentially the same
reasons.) In addition, FDs necessarily involve calculating de-
rivatives of the distribution, something that is best avoided
since the gradients can be very large indeed, and again lead
to inaccuracy in a FD approach.

The CS described here is a method of characteristics, and
the principal difficulty associated with it is the handling of
boundary conditions, since the correct form of the propagator
is not always clear at a boundary. A method of images can be
used—but again, this is difficult to set up at a complex
boundary. In what follows we show how simple boundaries
may be handled very accurately. Complex boundaries have
been implemented in the CS previously, for an unstructured
(triangular) mesh [12,13]. The methods used here extend
naturally to complex boundaries made up of small rectangu-
lar cells.
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The collision operator used here assumes that the distri-
bution is relaxing to a Maxwellian, with the temperature of
the Maxwellian being determined to conserve the energy of
the scattered particles, according to a Krook(or Bhatnagar-
Gross-Krook) collision term. The essential point is not the
exact form of the collision operator, however. Any form for
the collision integrals could be employed. The issue which
causes difficulty, and which we address here, is that of how
to ensure that all appropriate conservation laws may be sat-
isfied to numerical accuracy, for an arbitrary form of the
collision integral. To this end, we have chosen to allow the
distribution to be relaxing to a drifting Maxwellian, but the
procedure is equally applicable, whatever the form of the
collision operator.

The CS was designed to minimize numerical diffusion by
exploiting the long time steps available to a method of char-
acteristics and by a variety of other methods. It focuses on
each initial cell on the mesh, and maps that cell back after
one or multiple time step(s) in such a way as to conserve
particles, momentum and energy exactly and locally in phase
space. Usually the particles are considered to move in a
packet from their initial cell for a time step which is small
compared to a collision time, during which a fraction of them
suffer collisions and after which they all are mapped back to
the phase space mesh. A version of the CS where the phase
space is redundantly covered with a set of long-lived moving
cells has been used to reduce numerical diffusion even fur-
ther. The point of this work was to allow the particles to
travel in their packets along the characteristics for many
mean free paths. Allowing the packets to persist for multiple
time steps reduces numerical diffusion but it means that mul-
tiple packets cover any point in phase space.

These issues have been discussed at length previously
[9,14]. In this work our focus in implementing the method
was twofold: (1) to handle reflecting boundaries extremely
accurately, in a sense which will be defined below, and(2) to
implement a collision operator which preserves the critical
features of the flow—again, to very high accuracy. These
topics are the subjects of Secs. II and III. Section IV will
briefly present results for the flow fields and drag coefficients
for a test case, which consists of flow around a rectangular
obstacle. Conclusions are given in Sec. V.

II. KINETIC MODEL OF THE SYSTEM

The system under study is a neutral gas flow in thexy
plane with translational symmetry inz. To properly treat col-
lisions three independent parameters are used in describing
the particles’ velocity. The model is of two dimensions in
space and three dimensions in velocity. The effect of gravity
is neglected, so the acceleration terma in the BE(1) will be
zero. In this section we first discuss the structure of the mesh,
followed by a description of the handling of reflections off
surfaces in the method of characteristics and the remapping
rules.

A. Mesh structure for the convective scheme
and the ballistic motion

For each time stepDt, each cell will move “ballistically”
(i.e., collisionlessly) first, then a fractionnDt!1 of the par-

ticles in the cell will be scattered[7–9]. The handling of the
scattered particles will be discussed in the next section.

The design of the mesh is in general intended to minimize
the numerical diffusion when moving the cells ballistically
and/or during collisions. We choosesv ,m ,fd as the coordi-
nate system for the velocity space, wherev is the speed,m is
the cosine of the angle between the velocity and the positive
z axis, andf is the azimuthal angle of the velocity projection
on thexy plane. If a cell does not hit a boundary, then its
velocity does not change, since there is no external force
field. When it is re-mapped back to the mesh after ballistic
motion, the numerical diffusion will only involve spatial
cells; there is no numerical diffusion over velocity. Hence
our velocity space variables can be chosen to minimize nu-
merical diffusion during collisions. This is accomplished by
using sv ,m ,fd as discussed in Ref.[15].

The obstacle to the flow is composed of horizontal and
vertical planes. A cell coming in at the angle 2p−f (or −f)
will bounce back in thef direction if there is a horizontal
plane in the path, as shown in Fig. 1(a). The case of a vertical
plane is shown in Fig. 1(b). Care must be taken for cells
which reflect at corner points. The incident plane is ill de-
fined at corners; we assume the corner is a round surface, as
shown in Fig. 1(c), such that the incoming cell will rebound
in the opposite direction. Corners are singular points, in
mathematical terms they are a(Lebesgue) measure zero set,
so reflections off corners will be extremely rare. As a result
of the method used for reflection, iff corresponds to a grid
point on the mesh, so do −f, p−f, and p+f shown in
Fig. 1(d).

Fairly complex geometry objects can be constructed using
horizontal, vertical, and 45° oblique planes in two-

FIG. 1. Specular reflections and the mesh structure. When a
moving cell hits an obstacle, the direction of reflection follows
Snell’s reflection law. Corners are treated as infinitesimal spheres,
so the reflection direction will be opposite to the incident direction.
Incident and reflection directions are thus arranged to coincide with
grid points in the velocity mesh to reduce numerical error.
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dimensional cases. To generalize the previous observation, if
there are planes in the domain that are at 45° to the main
axes, we can arrange the grid points of the azimuthal angle
so as to match the rebound angles. As a result, ballistic mo-
tion will not produce any numerical diffusion in the velocity
space.

B. Reflection and re-mapping rules

Once the mesh structure is defined, rules to map back the
unscattered particles in the final cell back to each mesh cell
can be constructed. This has been discussed at length previ-
ously [9]. If the final cell does not overlap any forbidden
cells, the fraction of the particles that is mapped back to each
mesh cell is proportional to the overlapped area. As shown in
Fig. 2, the final cell atsx,yd hasN particles with velocity
svuk,mu, ,fumd. We will map the particles to the mesh cells(A,
B, C, andD) shown, with the same velocitysvuk,mu, ,fumd,
according to the following rules:

NA = NS1 −
x − xui

Dx
DS1 −

y − yu j
Dy

D , s2d

NB = NS1 −
x − xui

Dx
DSy − yu j

Dy
D , s3d

NC = NSx − xui
Dx

DS1 −
y − yu j

Dy
D , s4d

ND = NSx − xui
Dx

DSy − yu j
Dy

D , s5d

whereDx andDy are the cell sizes in thex andy directions,
respectively.

The CS describes particles which travel in groups, which
we refer to as “moving cells”(MCs). The MCs originate in
single cells of the mesh, with a particular range in space(i.e.,
shape) and discrete velocities; and they are launched at dis-
crete times. On reflection, particles are moved from one MC
into another. The reflected particles behave as if they came
from cells of the mesh, although some of the source cells

will be “virtual” cells which lie behind the reflecting surface.
The flux produced by the reflection, which acts as if it comes
from the virtual cells, should produce a flux such that a ho-
mogeneous isotropic gas above the surface is still homoge-
neous and isotropic after reflection. To do this the virtual
cells (if they are explicitly constructed) must simply extend
the real mesh behind the surface without any discontinuities.
Other strategies are possible, but this is a relatively simple
one.

In specular reflection, when the final cell, with velocity
svuk,mu, ,fumd, overlaps horizontal boundary mesh cells as
shown in Fig. 3, Eqs.(2)–(5) still apply. The portion of the
final cell which overlapped the shaded area is placed in the
shaded area, according to Eqs.(2)–(5), but is then reflected
into cellsA andC. Mesh cellsA andB have the same indices
as each other on the configuration space meshsxui ,yu j+1d with
different indices on the velocity space mesh:svuk,mu, ,fumd
for B and its mirror velocitysvuk,mu, ,p−fumd for A. Like-
wise, mesh cellsC and D have the same indices as each
other on the configuration space mesh,sxui+1,yu j+1d, with dif-
ferent indices on the velocity space mesh. Similar rules can
be constructed for the vertical boundary case. If the final cell,
with velocity svuk,mu, ,fumd, overlaps a corner mesh cell as
shown in Fig. 4, Eqs.(2)–(5) still apply, where mesh cellsB
andC have the same indices as each other on the configura-
tion space meshsxui ,yu j+1d with different indices on the ve-
locity space mesh:svuk,mu, ,fumd for B and theoppositeve-
locity svuk,mu, ,fum+pd for C Since cells which overlap a
corner can come from all directions except for the direction
from the obstacle, inverting the velocity of the particles in
the part of MC which overlaps the obstacle is consistent with
what we described before in Fig. 1(d). These rules for specu-
lar reflection mean that a uniform gas with no flow velocity
remains in that state when it reflects off an obstacle.

To simulate viscous flow in the vicinity of the boundary,
cells can reflect from the boundarydiffusely. A nonslipcon-
dition is usually assumed in fluid mechanics. The counterpart
in kinetic theory consists of diffuse reflection. In the fully
diffuse reflection case, as shown in Fig. 5 for a horizontal

FIG. 2. Re-mapping of a final cell to mesh cellsA,B,C,D. The
fraction of particles mapped to a mesh cell is proportional to the
overlapping area between the final cell and the mesh cell. Without
an external force field, the velocity of the particles is constant, so
the velocity indices of the mesh cells are the same as those of the
final cell.

FIG. 3. Re-mapping of a final cell to mesh cells at a horizontal
boundary. The heavily shaded area marks the part of the final cell
overlapping the obstacle. CellsA and C are reflected cells, which
went into the shaded area. The position of the final cell which went
into the shaded area determines the fraction of the particles which is
reflected, according to Eqs.(2)–(5). Mesh cellsA and B have the
same index in configuration space, but the velocity of cellA is
mirrored vertically. The same situation applies to mesh cellsC
andD.
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surface, a mirror cell is launched at the beginning of a time
step for each real cell which will reflect off the surface. Half
of the particles are in the original cell, the other half are
carried in the mirror cell. The mirror cell starts at the mirror
position with respect to the plane through the center of the
mesh cell on the boundary in which the cell rebounds. Its
velocity is the mirror velocity of the original cell. The cell
and its mirror cell rebound on the surface obeying the rules
of specular reflection described above. Hence, the tangential
force is fully absorbed by the surface. The use of mirror cells
in this way ensures that, since specular reflection as imple-
mented here does not alter a homogeneous, isotropic gas,
then neither does diffuse reflection. The ratio of the numbers
of the particles in the initial cell and in its mirror cell can be
adjusted, so that a different fraction of diffuse reflection can
be achieved.

III. CONSERVATION LAWS

In this section we discuss the collision operator, which is
designed to exactly conserve various quantities, when imple-
mented on a discrete mesh.

A. Conservation laws for scattered particles

Scattered particles are re-mapped in such a way that re-
peated application of the collision operator will yield a drift-
Maxwellian distribution. The re-mapped particles have the
same average(or drift) velocity and the same total kinetic
energy, that the scattered particles had before they collided
with each other. The use of a drift-Maxwellian or a similar
distribution is essential, since other approximate forms for
the distribution do not yield the correct values for off-
diagonal elements of the stress[16]. (At each time step, the
distribution which is added back may not be a Maxwellian—
see Sec. III B—but for simplicity in this section we will refer
to this distribution as a drift Maxwellian.)

However, the discreteness of the mesh complicates mat-
ters. Even though we use the nominal values of the drift
velocity Vxêx+Vyêy and the temperatureT in the Maxwellian
expression for the distribution at each grid point in velocity
space, the actual values when summed over the entire distri-
bution of scattered particles are different from their corre-
sponding nominal values. For example, the nominal value
for the x component of the drift velocity in a Maxwellian is
different from the numerical one

Vx =
NVx

N
Þ Vx,num=

oi
vxui exph− msvi − Vd2/2kTjDi

oi
exph− msvi − Vd2/2kTjDi

,

where the indexi runs over the grid points of the velocity
space mesh,Di is the differential volume in the velocity
space for the Riemannian sum,k is the Boltzmann constant,
and N is the nominal value for the density. Similarly, other
physical quantities, namely they component of the drift ve-
locity Vy, the temperatureT, and the particle densityN, will
have different nominal values and corresponding numerical
values.

For the purpose of the numerical simulation of the five-
dimensional system(two-dimensional in configuration space,
three-dimensional in velocity space), we have to conserve
the particle densityN, the totalx-momentumNVx, the total
y-momentumNVy, and the total kinetic energyNkv2l nu-
merically for the scattered particles. In addition, the Max-
wellian form of the distribution will automatically give rea-
sonable values of higher moments of the distribution. Since
there are more than four grid points on the velocity space
mesh, to conserve the above four quantities numerically is
generally possible. Let the corresponding numerical values
be sNd1, sNVxd1, sNVyd1, and sNkv2ld1. Intuitively there are
several possibilities to re-map scattered particles back to the
velocity space mesh with the various quantities conserved
numerically. We now discuss several such methods.

The first method we considered turned out to be insuffi-
ciently robust. We began by scaling our first numericalesti-
mateby a factorr, by matchingrsNd1 and N, so the errors
will be

FIG. 4. Re-mapping of a final cell to mesh cells at a corner,
when the moving cell overlaps a corner cell. The heavily shaded
area marks the part of the final cell overlapping the obstacle. The
velocities in cellsA, B, andD are unchanged. Mesh cellsB andC
have the same index in configuration space, but their velocities are
in opposite directions.(This is consistent with the rule described
above for sphere-like corners.)

FIG. 5. Diffuse reflection. If a moving cell hits an obstacle in a
time step, particles will be split evenly between the original cell and
a mirror cell, which is a mirror image with respect to a symmetry
plane located at the center of the boundary cell where the original
cell reflects. This location of the mirror cell coincides with a real
cell of the mesh. In a homogeneous, isotropic gas there will be no
overall effect caused by the splitting since the mirror cell and the
initial cell would have equal numbers of particles. The original and
its mirror cell will annihilate the total tangential momentum of the
particles. In this way, the properties of specular reflection are pre-
served, so an initially uniform static gas remains uniform and static.
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sNd8 = N − rsNd1 = 0, s6d

sNVxd8 = NVx − rsNVxd1, s7d

sNVyd8 = NVy − rsNVyd1, s8d

sNkv2ld8 = Nkv2l − rsNkv2ld1. s9d

Conditions onr are derived in the appendices. The scheme
was iterated until the error was small; however, the conver-
gence was poor.

A more robust scheme begins by scaling the discrete drift-
Maxwellian distribution, based on the nominal values,N,
kVxl, kVyl, andNkv2l, in order to matchN, the nominal num-
ber of scattered particles. With a reasonable velocity mesh,
the error compared to the nominal drift Maxwellian is usu-
ally within 0.1%. Then we adjust the distribution to conserve
the total kinetic energy. If the total kinetic energy is less than
the nominal value, we move the particles from the cells in
the lowest energy level to the cells in the highest energy level
keeping the directionsmu, ,fumd unchanged.(We stress that
the required adjustments are very small but they are, never-
theless, important since conservation must be enforced lo-
cally and to high accuracy.) If all the particles in the lowest
energy level are moved to the highest level and the total
kinetic energy is still less than the nominal value, we can
move the particles of the cells in the next lowest level. This
procedure can be continued until the numerical kinetic en-
ergy matches the nominal value(and in reverse, if the total
kinetic energy is more than the nominal value).

Finally, one can rearrange the particles within the same
energy level to conserve momentum. Based on the design of
the velocity space, ifn particles are moved from the cell at
sv ,m ,fd to the cell atsv ,m ,p−fd, the numerical value of
thex component of the momentum for the scattered particles
will be changed by −2snvÎ1−m2dcosf while keeping they
component unchanged. Similarly, ifn particles are moved
from the cell atsv ,m ,fd to the cell atsv ,m ,−fd, the numeri-
cal value of they component of the momentum for the scat-
tered particles will be changed by −2snvÎ1−m2dsinf while
keeping thex component unchanged. The adjustments forx
andy directions are thus decoupled. To make the adjustments
evenly distributed among cells in velocity space, momenta in
positive and negative directions are obtained first,

px+ = o
i[x+

nisvÎ1 − m2 cosfdi ,

px− = o
i[x−

nisvÎ1 − m2 cosfdi ,

wherei [x+ is the index running over the cells with a posi-
tive x component of velocity, andi [x− with the negative. If
NVx. sNVxd1, we find the ratio

r =
1

2
S sNVxd1 − NVx

px−
D .

This fraction of the scattered particles in the cellsv ,m ,fd,
where vÎ1−m2 cosf is negative, is moved to the cell

sv ,m ,p−fd. If NVx, sNVxd1, we find the ratio

r =
1

2
S sNVxd1 − NVx

px+
D .

This fraction of the scattered particles in the cellsv ,m ,fd,
where vÎ1−m2 cosf is positive, is moved to the cell
sv ,m ,p−fd. A similar procedure can be applied to the ad-
justment of they component of velocity. The adjustments in
x andy are performed in alternate order as time advances, so
there is no preference for either direction. In this way, the
total particle number, the drift velocity, and the total kinetic
energy of the scattered particles can be conserved very accu-
rately in a drift-Maxwellian distribution. Experience shows
this second scheme is more robust.

Another possibility is to construct a Maxwellian for each
of a discrete set of nominal values ofN, Vx, Vy, andT, and to
store these in a table. Then the needed distribution can be
constructed from a linear combination of the Maxwellians
stored in the table. This will be examined in future work.

B. Collision operator

For theBGK collision operator in theKrook model [17]

S ]f

]t
D

c
= − nsf − fmaxd

the collision frequencyn is a constant obtained by averaging
over the Maxwellian distribution of the background particles.
If the collision frequencyn is not a constant, but a function
of the incident particle velocityn=Nsv, where N is the
background particle number density,s is the collision cross
section, andv is the particle velocity, then the scattered par-
ticles will be re-mapped back to the velocity mesh, with the
following distribution:

nDtfmax= DtNsvS m

2pkT
D3/2

expH− msv − Vd2

2kT
J ,

since this is the distribution of scattered particles which al-
lows f to relax towardsfmax, as is implied by the Krook
model. This nominal distribution for scattered particles is
adjusted to conserve the particle number, momenta, and ki-
netic energy, as we described above.

IV. SIMULATION RESULTS AND DISCUSSION

The proper dimensionless number to specify the numeri-
cal experiments is the Knudsen numberKn. Since the transi-
tion regime is investigated in this paper, some dimensionless
numbers considered in fluid dynamics become important
when we approach the fluid dynamic regime. Following the
canonical procedure in fluid dynamics with the characteristic
length L and timet, the BE with the Krook model can be
cast into anondimensionalizedform

]f

]t*
+ v * ·

]f

]r *
+ a * ·

]f

]v*
= Kn

−1v * ff − fmaxsV,Tdg,

where t* = t /t, r * = r /L, v* = vt /L, and a* = at /L. For a
large Kn, the right hand side can be neglected, and the dy-
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namics of the distribution are dominated by theVlasov equa-
tion, which corresponds to the free molecular flow regime.
On the other hand, ifKn is small, the distribution is expected
to resemble a drift Maxwellian, in the fluid dynamics regime.
Besidesl (or 1/Ns, since t=1/Nksvl) and L, the flow
speedV, the collision cross sections, and the gas tempera-
tureT, also play roles in experiments. Using theBuckingham
p method[18], it can be shown that the Euler number, the
Reynolds number, and the Mach number are important sys-
tem characteristics. The effects of these dimensionless pa-
rameters have been studied extensively in the literature on
fluid dynamics.

A. System description

As shown in Fig. 6, argon gas is flowing in thex direction
at room temperature(T is set to 0.025 eV, which is about
289 K). A thin plate with aspect ratio 10 is located in the
middle of the simulation domain and parallel to thex axis.

The system dimension parallel to the far-field flow is cho-
sen to be the characteristic length,L=10 mm. The argon
atomic weight is about 40, so we set the collision cross sec-
tion s to be of the order of 10r0

2, wherer0 is the Bohr radius.
To make the mean free path the same asL for theKn=1 case,
the number density is set about 431024 m−3. If we use the
ideal gas equation for the argon gas, then the sound speed
ÎgkT/m is of the order of 300sm/sd, whereg is the specific
heat ratio 5/3, and the characteristic timet is about 3
310−8 s. The argon viscositym is about 2.4310−4 N s/m2,
so the Reynolds number Re=rVL/m is about 1100 for a flow
velocity V=40 m/s, wherer is the argon mass density. The
Mach numberM is about 0.12. To resolve the collision pro-
cess, the spatial cell size is set to less than 1/3 of the mean-
free path, whose minimum is atKn=0.05. The collision fre-
quency depends on the velocity, since we assume hard-
sphere collisions. The maximal collision frequency will
occur for particles with maximal velocity on the mesh. The
time step of the simulation is set to be less than 0.2 of the
minimal collision time. The velocity resolutionDv /v is set to
0.1 [9].

For this external flow problem, in addition to the diffuse
reflection boundary condition(nonslip condition) on the ob-
stacle, a buffer zone surrounds the simulation domain, so the
distribution of particles which enter the simulation domain is
fixed. The width of the buffer zoneLB is determined by the
range of the velocity space mesh, such that cells with maxi-

mal velocity from the domain are not able to cross the buffer
zone in one time step

LB ù vmaxDt.

Cells in the buffer zone are described using a “0-
dimensional” model, in that particles which leave the buffer
zone and enter the main zone or which leave it on the outside
are also reinjected into the buffer zone. The buffer zone is
thus subject to periodic boundary conditions, while the
buffer zone also injects particles into the main zone. In other
words, the distribution in the buffer zone will be the same
before and after ballistic motion; only the collision operator
will change the buffer zone distribution. We assume hard-
sphere collisions between neutral argon particles. The den-
sity, the flow velocity, and the temperature in the buffer zone

FIG. 7. Argon gas flow atV=40 m/s,Kn=1, T=0.25 eV: (a)
Density profile.(b) Temperature Profile—the temperature fluctuates
by about 2%. The friction around the obstacle generates the heat,
which is carried to the downstream end of the plate by the flow.(c)
Flow pattern—at low Reynolds number, there is no turbulence.

FIG. 6. Microflow system. A uniform argon gas with velocityV
parallel to the plate at the center surrounds the simulation domain.
The far-field flow velocityV is set to 40 m/s.
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are kept constant throughout the run to set up the far-field
boundary condition.

Since computer resources are limited, we also tested the
effects on the simulation results of the resolution, i.e., the
size of the numerical mesh. In most simulation runs, the
simulation domain is a uniformly spaced mesh with 100 grid
points in thex direction,Nx=100, and 100 grid points in the
y direction,Ny=100. For each spatial cell point, there are 32
grid points in v, Nv=32, 8 in m, Nm=8, and 32 inf, Nf

=32. (Smaller numbers gave results which were not con-
verged with respect to the mesh size.) Each cell has two
variables(one for the current time step, the other for next
time step), and each double precision variable takes 8 bytes.
Hence, for this size of mesh there are about 400 megabytes
of computer memory used in each simulation run.

B. Density and velocity profiles

As shown in Fig. 7(a), where the flow velocity is 40 m/s,
andKn=1, density builds up at the upstream end of the plate,
and is depleted at the downstream end. Around the plate
there is a roughly 2% fluctuation in temperature. All these
flows have low Reynolds numbers, as shown in Fig. 7(c); the
flow pattern is laminar, there is no turbulence. Since the
simulation results are symmetric with respect to thex axis,
only half of the domain is shown on the figures in the fol-
lowing discussion.

The contour plots of the density, thex component of the
flow velocity, andy component of the flow velocity, forKn
=1 andKn=10, are shown in Fig. 8. The far-field flow ve-
locity is 40êx+0êy sm/sd for both cases. Both density pro-

FIG. 8. Contours for density and velocity profiles: Far-field flow velocity is 40êx+0êy sm/sd (a) The contours represent intervals of
6.431022 sm−3d, from the maximum of 3.5731025 sm−3d on the boundary.(b) The contours represent intervals of 1.131022 sm−3d, from the
maximum of 3.5731024 sm−3d on the boundary.(c) The contours represent intervals of 0.56sm/sd, (d) The contours represent intervals of
0.40 sm/sd. (e) The contours represent intervals of 0.28sm/sd, from the maximum of 5.38sm/sd on the left end of the plate to the minimum
of −5.62sm/sd on the right end of the plate.(f) The contours represent intervals of 0.28sm/sd, from the maximum of 5.84sm/sd on the left
end of the plate to the minimum of −6.57sm/sd on the right end of the plate.
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files have a peak at the upstream(left) end of the plate. Since
the plate surface is a discontinuity, the peak of the density
should be infinitesimally close to the plate, but not on the
plate surface. The density drops gradually to a minimal value
at the downstream(right) end of the plate. Due to the nonslip
condition, thex component of the flow velocity on the sur-
face of the plate is actually zero. Since the Mach number is
less than 0.12 in this study, the argon gas can be considered
as incompressible in the fluid dynamic regime. Based on the
conservation of mass, the flow velocity above the plate can
be greater than the far-field flow velocity. This phenomenon
is also observed in the free-molecular flow regimeKnù1, as
shown in Figs. 8(c) and 8(d). In the upper half region they
component of the flow velocity has a positive maximum near
the upstream end of the plate, and a negative minimum near
the downstream end. The results qualitatively agree well
with other simulations[16].

The profiles are more symmetric in thex direction asKn
becomes larger, since the characteristic length of the flow is
the mean-free-pathl. As l approaches̀ , the plate degener-
ates to adoubletpoint, if we keep the aspect ratio of the plate
constant.

The region where the plate starts to affect the flow can be
revealed by the contour plot of the following function which
describes the magnitude of the strain rate

ÎU ]Vx

]y
U2

+ U ]Vy

]x
U2

.

A contour plot of the strain rate forKn=1 is shown in Fig. 9.
For a Newtonian fluid, the stress is linearly proportional to
the strain rate.

C. Drag coefficient

The CS enforces the conservation of momentum pre-
cisely. This feature is very important in calculating the drag
and the lift of an object against a flow. The drag force par-
allel to the far-field flow is usually studied in terms of the
drag coefficient. The definition of the drag coefficient in our
calculation is

Cd =
Fx/A

rV2/2
,

whereFx/A is the averaged shear stress parallel to the free
flow, r is the gas mass density, andV is the free flow veloc-
ity. Normal force due to the pressure on the plate is not
included in the calculation. As shown in Table I, the change
of the drag coefficient mostly takes place forKn<0.2.

Comparison of the drag coefficient with data from particle
simulations[16] is shown in Fig. 10. The results from the
information preserving(IP) and direct simulation Monte
Carlo (DSMC) methods are based on a nonuniform mesh.
The flow velocity is the same for all methods. The methods
appear to give reasonable agreement as to the drag coeffi-
cient, which is a rather sensitive test and probably shows
differences more than most other comparisons. The major
discrepancy we observe is that the particle simulations go to
the free molecular flow limit soon afterKn=1, whereas the
CS simulation is a little slower to reach the asymptote. All
the methods show rather different flow patterns atKn=1 as
compared toKn=`, so we might expect some difference
betweenCd in the two cases. The particle methods appear to
differ from each other by as much as 20%, suggesting that
this is the error associated with the calculations. The CS
results also agree with the particle methods, to within this
error.

V. CONCLUSIONS

The CS is an alternative to particle methods for solving
the Boltzmann equation, which does not suffer from statisti-
cal noise, and which is suitable for the transition regime,
Kn=0.05 to Kn=10. With a suitable design of the velocity
mesh, flow around complicated geometric objects can be
studied using the CS. Numerical diffusion in velocity space
is largely avoided; numerical diffusion in physical space is
minimized by the long time steps which are permissible in

FIG. 9. Contour plot of the magnitude of the strain rate.

TABLE I. The drag coefficientCd. The flow velocityV of the
argon gas is 40 m/s.

Kn CS
Cd

IP
Cd

DSMC
Cd

0.05 1.50 1.45 1.52

0.2 3.36 3.00 3.04

0.8 3.87 4.62 4.25

1.2 4.12 4.81 4.76

10 4.88

FIG. 10. Drag coefficientCd vs Kn. Uniform meshes are used
for the CS(h). IP (3) and DSMC(1) data are based on a nonuni-
form mesh. The far-field flow velocity is 40sm/sd.
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the CS. Conservation of particles, conservation of momen-
tum, and conservation of energy, which are crucial both in
fluid dynamics and rarefied gas dynamics, are implemented
exactly, numerically in the CS. We presented schemes to
handle reflections and collisions very precisely. Comparison
to particle simulations was briefly presented. It was shown
that the convective scheme gives results in agreement with
earlier work[16] with regard to the drag coefficient, which is
a somewhat sensitive test of the collision operator.

APPENDIX A: INTRODUCTION TO THE CONVECTIVE
SCHEME (CS)

Based on using the propagator method, the CS solves the
Boltzmann equation for the(one-particle) distribution func-
tion. In contrast to tracing super particles in particle methods
[19,20], the distribution function is treated as a phase-space
fluid by the CS. For each particle species the formal solution
of the Boltzmann equation for short time steps can be written
as

fsx,v,td =E E Psx,v,t;x8,v8,t8dfsx8,v8,t8ddx8dv8, t . t8

sA1d

where the kernel of the integral,Psx ,v ,t ;x8 ,v8 ,t8d, is the
propagator for a particle at the phase-space positionsx8 ,v8d
at timet8 moving tosx ,vd at a later timet. Certain properties
and conservation laws related to this propagator in the CS
were noted by Adams and Hitchon[21]. Instead of finding
the explicit form of the propagator in a 14-dimensional
space, the CS propagator is broken into two parts—one for
the ballistic motion and one for collisions. In the ballistic
motion collisions are neglected, and the Boltzmann equation
is reduced to theVlasov equation

df

dt
=

]f

]t
+ v ·

]f

]x
+ a ·

]f

]v
= 0. sA2d

Deceptively in this linear form, the Vlasov equation is actu-
ally an integrodifferential equation, since the electromagnetic
forces in the terma are derived from Maxwell’s equations as
integrals of the charge and current densities, which depend
on the distribution functions of charged particles. In the CS,
the Vlasov equation is numerically integrated along thechar-
acteristic curves, which are determined by the equations of
motion: dx /dt=v and dv /dt=a. After this ballistic motion
step is complete for all particle species,f is adjusted accord-
ing to the collision processes described by the collision op-
eratorsCsfd as well as chemical reactions. Usually the Krook
collision operator or the Coulomb collision operator[17] and
some other collision processes, like ionization and excitation,
are incorporated into the collision operators. Recombination
in weakly ionized plasmas can be incorporated likewise.

Since particles in a cell are uniformly distributed over the
space with the same velocity, rules similar to Eqs.(2)–(5) are
used to map unscattered particles in the final cell to the mesh
cells. Mesh cells may have different potential energy levels,
so care must be taken to conserve the relative physical quan-

tities, such as the particle number and the total energy. Scat-
tered particles are put back to the mesh cells with the same
spatial index but different velocity index according to the
collision operator, which can account for elastic or inelastic
collisions. The particle number for scattered particles can
also be changed if source or sink terms are present in the
collision operator.

APPENDIX B: ALTERNATIVE IMPLEMENTATION
OF CONSERVATION LAWS

Using the scaling of Eq.(9), sNkv2ld8 could be negative,
which is undesirable in this scheme, where we will add ad-
ditional particles back to correct for errors—negative density
or energy would be unphysical. Therefore, we set an inequal-
ity for r

r ø minH N

sNd1
,

Nkv2l
sNkv2ld1

J . sB1d

The temperature for the particles isT8=mfsNkv2ld8sNd8
−sNVxd82−sNVyd82g / s3KN82d. Since a negative temperature
[22] is not possible for this system, we obtain another in-
equality forr from T8ù0. Furthermore, although thez com-
ponent of the flow velocity is zero, if there is no grid points
on the velocity space mesh withvz=0, thenkvz

2l.0. Let the
maximal projection of the velocity grid points on thexy
plane bevmaxp, where p=Î1−mmin

2 , mmin is the minimal
value ofm=cosu on the grid points, andu is the angle of the
velocity with respect to thez axis. The following inequality
will guarantee the error can be described by a group of par-
ticles with a drift-Maxwellian distribution:

sNkv2ld8
sNd8

p2 ù S sNVxd8
sNd8

D2

+ S sNVxd8
sNd8

D2

.

The original nominal values (or any numerical
drift-Maxwellian distribution) also satisfy the above inequal-
ity. After some algebraic steps, the above inequality
for r can be written as Ar2+Br+Cù0, where
A=p2sNd1sNkv2ld1−sNVxd1

2−sNVyd1
2, B=2hNVxsNVxd1

+NVysNVyd1j−p2hNkv2lsNd1+NsNkv2ld1j, and C=p2NNkv2l
−sNVxd2−sNVyd2. As mentioned above, we know thatAù0
and Bù0, and the equal sign holds only when all the par-
ticles have the same velocity.

Another possibility is to treat the error as a group of par-
ticles with the same velocity, which should fall within the
velocity space mesh. Then we have two more inequalities

vmin
2 ø

sNkv2ld8
sNd8

ø vmax
2 ,

wherevmax andvmin are the maximal and minimal velocities
in the velocity space mesh, respectively. The original nomi-
nal values(or any numerical drift-Maxwellian distribution)
also satisfy the above two inequalities. After some algebraic
steps, they can be written as

r ø minH Nkv2l − Nvmin
2

sNkv2ld1 − sNd1vmin
2 ,

Nvmax
2 − Nkv2l

sNd1vmax
2 − sNkv2ld1

J
sB2d
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We can use the error values as a new set of nominal
values for a group of drift-Maxwellian particles, and let the
second set of numerical estimates besNd2, sNVxd2, sNVyd2,
and sNkv2ld2. By choosing anr that satisfies inequalities
(B1)–(B2), we will get a new set of error values:sNd9,
sNVxd9, sNVyd9, andsNkv2ld9. This procedure can be contin-
ued, if we make the error in the particle density less thane−1

of the nominal value, i.e., choosingr ’s such thatNe−1ùN8,
N8e−1ùN9, and so on. Generally we can get four estimates

and the final error values will beÑ, NVx̃, NVỹ, and Nkv2l˜ .
Sometimes, we can find a linear combination of these four
estimates that will match all the original nominal values:N
=oi=1

4 CisNdi, NVx=oi=1
4 CisNVxdi, NVy=oi=1

4 CisNVydi, and
Nkv2l=oi=1

4 CisNkv2ldi. Unknown coefficientsCi are required
to be non-negative. Otherwise, we have to remap the final
error back to the velocity space. Note thatÑøe−4N usually,
so it is a small perturbation of the linear combination of the
drift Maxwellians.

To map back the group of particles with the nominal val-
uesÑ, NVx̃, NVỹ, andNkv2l̃, we assume they have the same

velocity. We defineṼx=NVx̃/ Ñ, Ṽy=NVỹ/ Ñ, Ṽ=ÎNkv2l̃ / Ñ,

and find the two grid pointsv1 and v2 between whichṼ is
located. There is a number 0ø reø1 such thatṼ2=rev1

2+s1
−redv2

2. Similarly, as shown in Fig. 11, the velocityV=Ṽxêx

+Ṽyêy is a linear combination of pointsA andB which can be
built up by using differentm grid points with azimuthal grid
pointsf1 andf2 on the velocity space mesh. SinceV should
be located in the polygon area, thep value in the inequalities
Ar2+Br+Cù0 can incorporate the factor accounting for the
discreteness of the azimuthal angle:p=Î1−mmin cossDf /2d,
where Df is the space between twof grid points. More
sophisticated schemes forp can be implemented to alleviate
the constraint. Once the projections on thef1 andf2 direc-
tions are found, we can adjust the numbers of particles
amongm cells to match the projection in each direction. In
principle the momentum and the kinetic energy cannot al-
ways be conserved at the same time. In that case, we choose
to conserve the momentum.
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FIG. 11. Conservation of momentum. The range of the perpen-
dicular velocity of particles with a fixed energy level is a polygon.
If the average velocityV of the scattered particles is in the area
between 2 polygons based onv1 and v2, it can be expressed as a
linear combination of velocities atA andB which are linear com-
binations of grid points atf1 and f2. If the average velocity is
within the inner polygon, it is possible to conserve momentum and
energy at the same time for the scattered particles when remapping
back to the mesh cell.
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