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Statistics of polarization and Stokes parameters of stochastic waves
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Several theories now exist to describe the probability distribution functipé-9 for the electric field
strength, intensity, and power of signals. In this work, a model is developed for the PDFs of the polarization
properties of the superposition of multiple transverse wave populations. The polarization of each transverse
wave population is described by a polarization ellipse with fixed axial ratio and polarization angle, and PDFs
for the field strength and phase. Wave populations are vectorially added, and expressions found for the Stokes
parameters, U, Q, andV, as well as the degrees of linear and circular polarization, and integral expressions
for their statistics. In this work, lognormal distributions are chosen for the electric field, corresponding to
stochastic growth, and polarization PDFs are numerically calculated for the superposition of orthonormal mode
populations, which might represent the natural modes emitted by a source. Examples are provided of the
superposition of linear, circular, and elliptically polarized wave populations in cases where the component field
strength PDFs are the same, and where one field strength PDF is dominant.
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[. INTRODUCTION scribe the statistics of unpolariz¢d] and partially and fully
polarized light[8-1Q in that the PDFs of the component
A range of theories now exist to describe wave field sta-€lectric fields are arbitrarghere, only results for a lognormal
tistics in inhomogeneous plasmas, including self organizedlistribution are presentgdand that each wave population
criticality (SOQ [1], scattering[2], turbulencef3], and sto- ~ can be decomposed into an orthonormal pair of modes with
chastic growth theorySGT) [4]. Physically, the various fixed polarization angles and axial ratios. _
theories are differentiated by varying degrees of interaction Many phenomenological applications of the theory exist,
between the waves, particles, and background plasma. Thellk Which the polarization of wave emission is either mea-
have the common feature of predicting probability distripy-Sured or measurable. Examples include waves in the Earth’s
tion functions(PDF9 for the electric field strength. In this foreshock[11-13, polar cap[14], and magnetosheaftis],

- Il solar radio burstfl6], and thermal noise in the solar
work a stochastic model for the measurable Stokes paran%y.pe : .
etersl, U, Q, andV is produced from the vector addition of wind [12], all of which can be described by SGT. Anather

multiple wave populations. Each wave is assumed to bé)ossmlhty is the analysis and interpretation of polarity-

transverse with the same angular frequeacgnd wave vec- esolved pulsar datee.g., Vela[17]). Non-SGT examples

) include solar flare intensities, which obey a power-law dis-
tor k [5,6], but random phases and amplitudes. The Stokegiytion, consistent with self-organized criticalifg8], and

parameterl describes the intensity,=(VU?+Q?/1 is the cyclotron maser emission in th@ and X modes on auroral
degree of linear polarization, ang=V/1 is the degree of field lines, leading to polarized auroral kilometric radiation
circular polarization. Together, the deUJ, Q, V, (or I, U, r;,  [19]. Possible analogs also exist in laboratory plasmas,
v) fully describes the polarization of transverse waves. Thavhere SOC has been invoked to describe properties of Lang-
motivations for developing such a model are to extend stomuir probe measurements of plasma edge electrostatic fluc-
chastic theories beyond electric field intensity predictionstuations[20].
and to obtain predictions for the PDFs of the measurable This paper is organized as follows. In Sec. Il, theories for
Stokes parameters for a model of superposed waves frostochastic growth are briefly described, a stochastic descrip-
multiple sources. tion for the Stokes parameters is developed, and differences
The problem is formulated in terms of the superpositionbetween this model and those of earlier stochastic models for
of an arbitrary number of wave populations. Analytic expres-the Stokes parameters explained in detail. Section Il ana-
sions are then developed for the superposition of two modekyzes the superposition of two wave populations. Integral
with fixed but arbitrary axial ratios and polarization angles,expressions for the PDFs of the Stokes parameters are de-
and probability distribution functions for the field strength rived, analyzed, and the numerical integration technique ex-
and phase. We focus on predictions for the superposition gflained. In Sec. IV predictions for the PDFs are computed
two orthonormal modes, which is also a conveni¢amd for a range of polarizations and field strength distributions.
natura) basis for treating emission from a source, such as &inally, Sec. V outlines future work and contains concluding
plasma. Here, we do not address the physics of the plasni@marks.
source, nor do we consider mode conversion and propagation
effects. Rather, we answer the more fundamental question of
how to determine the polarization statistics of the superposi-
tion of two or more specified wave populations. This work  Each of the theories mentioned in Sec. | predicts different
differs from the body of literature that has developed to dePDFs for the wave electric fielH. Self-organized criticality

Il. STOCHASTIC ANALYSIS OF POLARIZATION
PARAMETERS
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[1], in which the wave-plasma system is driven away from A
dynamical equilibrium by input of free energy, but relaxes y a
back via cascades triggered by the local onset of a instability

at some threshold, predicts power-law distributigi24]. —d
Scattering by density irregularities yields Gaussian intensity

distributions[2], with intensity | < E?. Power-law distribu- t E
tions are expected in strong turbulence; they become Gauss- /)
ian in very strong turbulenci2?2]. Finally, stochastic growth
theory[4], which we use as an example in Sec. IV, predicts
lognormal statistics, with

1 (nE- M)?)
\,%ex;( T oy ) 1)

whereE:E/EO is a normalized electric field strengthg is
the reference field, angd and o are the mean and standard FIG. 1. The rotation of an arbitrary transverse wave vector

o~ . . through anglep can always be written as a polarization ellipse with
deviation in InE, where In is the natural logarithm. F9r no- c e peak field strength, anBl the phase. The wave propagates in

tational SImp'ICIty we hereafter seh=1 V/m, such thak is the k:eXXey:eIXQa direction, into the page. The mode drawn
a dimensionless quantity with value taking the magnitude ohere rotates in a clockwise direction, and has a negative phase.
the electric fieldmeasured in /iy and drop the tilde on all
normalized quantities.

A

P(INE) =

The Stokes parameters can be defined 2}

A. Vector superposition model for polarization statistics I =(E E+E E*) (4)
xx T Eyy/o

Our analysis of the polarization statistics of the vector
superposition of two or more wave populations builds on Q=(EE.-EFE) (5)
earlier work by Cairngt al.[23], in which a vector addition X Yy
model was developed for the intensity. In their work two
populations of transverse electric field vectors with random U= <EXE; + E;Ey>, (6)
strengthsE; and E, and with random phase angle between
them were convolved to describe the superposition of two
signals. We generalize their analysis to consider the polariza-
tion of the superposition of multiple wave populations, eac
written in the axial formulation.

In the axial-ratio formulation an arbitrary transverse elec-
tric field vector can always be written

V=i(EE, - EE), (7)

r\Nhere the angular brackets denote a time average over
many cycles of the wave.
The Stokes parameters satisfy

eV 2= Q7+ U%+ V2, (8)
E:,,——éz()’ex+ %), (2
VP Using the electric field representation of Eg), the Stokes

where y and & are arbitrary complex coefficients, ande, ~ Parameters are

are orthonormal coordinated, is a phase, and=¢, X e, is L

the direction of wave propagation. It can be shojshthat I'=E%, 9)
the unit vectors(e,,e,) can always be rotated through an

angle ¢, such that the electric field can be rewritten T2-1
_ Q=FE? —— |cos 2, (10
Ee@eb ( @ T?+1
E=—=(Te +ie,), 3
o Tatie) 2
T°-1
in terms of new unit vectorgs,, e,), where the axial ratid is U= E2<_|_2 n 1)sin 240, (11

real. As time advances, the real projections of &).trace

out an ellipse with axes alorgy ande, and phaseb. Figure

1 shows the coordinate geometry and the trajectory of the o 2T

electric field vector tip for a wave witii >0, and negative V=E T+1) (12
phase. As time advances the wave propagates into the page,

while the wave vector rotates in a clockwise direction, and is For a single wave population with intensity distribution
said to be right-han¢RH) elliptically polarized. In this work ~ P(E?) the PDF of the Stokes parameters can be immediately
we suppose that théth wave population has fixed axial ratio computed by a change of variable, giving

T, and polarization anglep;, but random field strengthi;

and phasep; with PDFsP(E;) and P(®;), respectively. P(1) = P(E?), (13
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) aQ modes, being a natural and convenient basis. For transverse
P(Q) =P(E%) = (14 modes the orthonormality conditigs]
., E2(@,K) ey (0,k) =0 (22
=P(E?) (Tg ~ 1>sec Zb‘ , (15  must be satisfied, wherg,; andey, are the wave vectors of
the modes of polarization. Using the axial ratio formulation
[Eq.(3)] to represent the wave vectag, (w,k)=E;/E; and
P(U) = p(E2)/ &_QZ (16) ewz(w,k)=E,/E,, Eq. (22) is equivalent toT;T,=-1 with
JE ¢$=0 or T;=-T,=%1. Here, we develop predictions for
, {P(I),P(U),P(Q),P(V)} in terms of waves im pairs of or-
T°+1 i ion i i
—P(E?) 2 csc 2|, (17) th(_)norm_al modes: Th_eth wave po_pulat|on is described by
T2-1 axial ratioT;, polarization anglep,, field strength PDRP(E;),
and phase PDIP(®;).
N T2+1
— 2 7 2
P(V)=P(E )/ g2~ P(E9) oT ‘ : (18) B. Earlier models of polarization statistics

The PDF of the Stokes parameters of the sum of two or It is almost 60 years since HurwifZ] first described the
more wave populations of the same frequency, each Witﬁtatistics of unpolarized light: showing that the combination
fixed and independent axial ratif and polarization angle of E, and E, componen't wave populations W'th |d§ntlcal
¢, but random field strength and phase differences wit €ro-mean Gaussian dlstnbuuons_ for _the fields y|e_lds a
PBFS P(E?) and P(®,-®)), respectively, can found by a Gamma distribution for the total intensity, and a uniform
change ofl variable f(l)||OV\]/e,d by integrati’on over the Comloo_distribution for the total degree of circular polarization. Since
nent field strength distributions and all but one of the phas

differences. Usings as a label foi, U, Q, or V we have

hat time research into the statistical properties of polarized
ight and the Stokes parameters has steadily advafegd
see[25] and references therginSalient research includes
PS®;- Dy, ... Dy— Dy, EZ ... ED) that of Baraka{8,9], who extended the analysis of Hurwitz
2 5 to study the statistics of partially polarized light, and more
ISPy~ Py, ... Py= Py - En) recently that of Eliyahy10], who showed that the analytic
A Dy= Dy, ... Dy— Dy, E2 ... EY) expressions could be written more compactly by normalizing
- _ _ 2 2 to the intensity.
=P @y =@y Dy = Py B B (19 Eliyahu represented the electric field in terms&glndE,
n component wave populations, with a joint PDF
T P(®. — P "P(E?), 20 P(E/.|E/, Py, Py) which is nonseparable in the field
g (® 1)j1:[1 (&) (20 strengthsE,| and|E,|. Using a change of variables, integra-

] tion over the real part o, and the conditional probability
where independence of all-®, andE; has been assumed. p(j|u,Q,V)=4(1-UZ+Q?+V?), an expression for the joint

Hence PDF P(1,U,Q,V) of the Stokes parameters was obtained.
n Finally, integration over the Stokes parameters yields expres-
P(S) :f P(®, - d)[] P(@ - ®)]]"P(E? sions forP(S) in terms ofSand its first-order moments. This
i=3 =1 approach can sometimes yield simpler boundaries of integra-
d(; —q)l)dE,-Z tion as compared to the integration over the electric fields

5 5T - and phase differences performed here, but with the disadvan-
AS Py =Py, ... Py = Py,Ey, - B tage that the properties of the predicted distribution function
NDy— Dy, ... , D, — Dy, Ef, ,Eﬁ) cannot be simply related to those of the components. A com-
(22) parison between approaches is outside the scope of this
work. Importantly, however, if the plasma modes are linearly
The addition of any number of same frequency, copropapolarized then th&, andE, components in Eliyahu are sim-
gating, transverse electric fields can always be written in th@ly related to those of the plasma. In this case, and providing
form of Eq.(2). As such, using the transformation of E8)  the average value of is zero, the joint PDF is separable in
to Eq. (3) the superposed electric field vector will always the field strengths, and the analyses match.
trace out an ellipse, and so the set of PDFs In summary, the analyses of HurwifZ], Barakat[8,9],
{P(T),P(®),P(E?)} of the superposed waves provides anand Eliyahu[10] differ from this work in two fundamental
equivalent and alternate stochastic description of the Stokegspects. First, the representation of the electric field by su-
parametergP(l),P(U),P(Q),P(V)}. In this work, we solve  perposingE, and E, fields with different field strength dis-
for PDFs of the Stokes parameters, as this provides diredtibutions has, in general, no simple interpretation in terms of
comparison to measured quantities. the component modes of the plasma. The exception is for the
Finally, while the analysis in this section is applicable to superposition of linearly polarized modes in which the aver-
arbitrary polarization, we predict the Stokes PDFs for theage value o is zero. In this instance, Eliyahu's analysis is
superposition of wave populations in pairs of orthonormala special case of our more general treatment. Second, Hur-
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witz, Barakat, and Eliyahu used a Gaussian PDF with zero
mean for each field strength. While only examples of the
combination of lognormal field distributions are presented
later, in the present work our method is not restricted to a
particular field strength distribution.

Ill. STOKES PARAMETERS FOR THE SUPERPOSITION

PHYSICAL REVIEW E7Q, 036619(2004)

_ 2ET) N 2E5T, YEE, (T +D(T,+ 1)
e S A L2 =
P AT A I ST
(T, -D(T,-1)

XCOS ¢p+ By — By) - P =
PP MM+

XCOE(¢_(D1+(I)2)‘| . (28)
OF TWO STOCHASTIC WAVE POPULATIONS

Thus, each Stokes paramefecan be written

S= ag(T1, P)E; + BT B)ES + ¥s(T1, T2, b Y)ELE,

While in this work we compute predictions only for the (29)
Stokes parameters resulting from the vector superposition of
orthonormal mode pairs, it is nonetheless useful to retain thwith ag(Ty), Bs(Ty), andys(Ty, T,, ¢, ) representing the co-
formalism for the superposition of arbitrarily polarized pairs. efficients of E2, E2, andE;E, in Egs.(25)<28), and where
The advantage is that this generalization provides an analytig=®,—®, is the difference in phases. For simplicity, t8e
description of the superposition of two pairs of orthonormalsubscript is omitted where not needed below. Using the
modes in which each mode pair has a dominant componenmethod described in Sec. Il, integral forms for the Stokes
Without loss of generality, thée,,e,) coordinate axis can be PDFs for two sources can be written
rotated such that the electric field of one wave may be writ-

A. Integral expressions for the PDFs
of the polarization parameters

2 2 2 12
ten in the axial-ratio formulatiofEq. (3)]. The second wave P(S) :J P()P(EDP(E)dEdE, (30)
vector can then be written in the frame of the first. In matrix J(S, Ez,Eg)
notation, A, E2, Eg)
E,€/( @1V [ & 2 2 42 =2
El:—/_ T1 |) , (23) _ P('ﬁ)P(El)P(Ez)dEldEz
V1+TS Y = . ; (31
1 2(9¢
E € (P27ed [ cos¢ sin
Ezzz—/—2 , i)l ¢ ¢ (8 . (24)  where
V1+T5 —sing cos¢/\g
The Stok ters for th ition of the two| 4(S EZ,E3) Sy SE S P
e Stokes parameters for the superposition of the two TE) | | . 22 2 2| dy
modes can then be computed, yielding JHEED| dEY oy JEYIGEY JEL/IE; | = ElEZO.h//
2 0B oy JEYIER JE3IER
T, +)(To+1
| =E2+E5+ ElEz{ %cos@s +®, - D, (32
V(T +)(T5+ 1)

has been used. For giveé$) E;, andE, there are two solu-

(T, -D(T,-1) tions for . hencedyl/ 9y takes both positive and negative
* V(T2 +1)(T2+1) coddp =Py + D)) |, (29 values. When integrating over the field strengths, care must
. 2 be taken to include both solutions. For the degree of circular
5 , polarization,
Ti-1 T5-1
0= B-2) ey T feos s o= [ PUPERERERIEE
' ’ |(EAEo/D) (Onlap=vonlap)|

T Codp+ D~ D))

Finally, as the component wave populations are fully polar-
Va+THa+T) Y o o v

ized, it follows that the superposed wave population will also
be fully polarized(i.e., have an interpretation in terms of the
Poincaré sphejeThat is, the degree of linear polarization is
related to the degree of circular polarization through @g.
recast as

+a&[ﬂrDﬂﬁD

' VA +T?)(1 +T§)COE(¢ q)l“pz)}v (26)

2 _
2 r|2+1;2:1_ (39

U:EZ(T )sin 2p+ By 2= D2t D
(T + (M- 1)

Xsin(¢ + @y - D)) +
P MM

The PDF of the degree of linear polarizatigs \U?+Q?/I
can thus be computed directly from the PDF of the degree of
circular polarizationP(v) through a change of variable

P(r) = P(v)/

an
e (35

><Sin(¢—‘1’1+‘bz)1, (27)
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JE—
V1 -0?

=[P(v) + P(-v)] (36)

B. Properties of the distribution functions g
~N
<

P
-
-
------

With expressions foP(S) andP(v) determined, itis con- ~ © e
venient to introduce a new subscript notation for the PDF
[e.g., Ps for P(9)], used hereafter to distinguish the PDF
from its argument. Prior to computation &%, it is worth
noting that certain properties of the distribution function do o E 1
not require quantitative calculation of the PDF. The qualita- !
tive behavior ofPg at very small and very largi§ values FIG. 2. Schematic plot cA%E2, with A given by Eq.(43). The
can be probed by studying the rangesadl), B(To), and  solid curves show?-4aB> 0 (thick) and y2—4a8<0 (thin) for
YT, T2, ¢, ) in Eq. (29). These terms satisfy the inequali- 455>0, the dashed curves show?—4aB>0 (thick) and 12
ties|a|<1,|8=<1, and|y|<2. Hence, for giverE; andE,,  -4eB<0 (thin) for 48S< 0. Unphysical solutions lie in the shaded
Slies in the interval region.

(a-1E2+(B-1)E3+ (E; - E)? < S< (E, + E))%.

(37) Calculation of the PDFs through integration O\Eirand
For I, @=B=1, and so inequality37) reduces tdE;-E,)? Eg first requires the boundaries of integration in E¢&1)
<|<(E,+E,)2. This reveals a possible difference in behav-and(33) to be established. For simplicity, we hereafter refer
ior of P, between low and large values. Forl values ap- 0 the parameter space definediyandE, asE space. For
proaching(E; -E,)?, P, samplesPe, and Pe, across a wide a given E;, we note that each Stokes equatifags.
range of field strengths. In contrast, fovalues approaching (_25)_(28)] is a quadratic irE, with only one “”k”OW!""/’
(E,+E,)? P, samples Pe, and Pg, chiefly at high field =®,-d,. In general, each Stokes equation of form given by

strengths. Similar behavior is expected Ry, Po, andPy, at Eq. (29) can thus be solved fd#;, giving

C. Boundaries of integration

small and largeS values. For small§ there exisfT;, T, é, (= AT, Tah) £ AELS)
and ¢ values such thaPs samplesPg and Pz over a wide Ex=E (42)
) 1 . 2B(T»)

range of field strengths. In contrast, at hign Ps samples
Pe, and Pe, chiefly at high field strengths. Physical solutions foE, require the discriminant

If the phases are random with a uniform distribution ] 3 5 5
Psy(#)=1/2m, the mean of the Stokes parameters for two AELS) = VHT0, T )" - 4B(T) [ Ty)E - SIE;
wave populations can be computed as follows: (43

to be real and positive, which yields constraintsEn That
(9= f f f S(E1, Ep, ) P<(Ey, Ep, ) dE dExdy (38) s, A(E;,S)°ES is a quadratic irE;, with possible loci shown
in Fig. 2. Unphysical solutions lie in the shaded region. The
j,(z)"d curves correspond t¢?—4a3>0 (thick curve and
_ 2 2 —4aB<0 (thin curve for 43S> 0, in which case eitheE,;
_J J f LBy + BBz + NYBSE,] is unbounded oE; <E,.. The dashed curves correspond to
Y>=4aB>0 (thick) and ¥*-4aB<0 (thin) for 48S<0, in

X Psg, (E1)Ps,(Ey)Ps(¢)dE dE,dys (39 Which case eitheE, > E,. or the boundary vanishése., E;
cannot take any valyeThe corresponding cutoff is
=(S) +(S, (40)

o Excy) = \/ 45T (44)
where the integraf y(1)Ps,()d=0 becausey(y) is trigo- e Aa(T) B(Ty) = YTy, Toth)? |
nometric. Here, the PDP4E,,E,, ) is the joint probability , ) ,
of E;, E,, and . Extrema inE;.(#) lie at ¢ solutions ofdy/d=0. The solu-

Generalization of Eq(40) to the result tion y=0 does not correspond to a maximumEkg,.
For fixedE,, S, T4, T,, and ¢ upper and lower bounds of
n E, can be found by locating solutions dE,/d¢=0; these
(9=2(s) (41  occur at
i
dE2 &’y
for multiple random phase sources is straightforward. The d_w=—ElEz(9—w (2BE;+Ey1y) =0. (45)

result doesot extend to expectation values for the degrees
of circular and linear polarization, because the integrals oNeglecting the special casds =0, E,=0, or 28E,+E y
the cross field termée.g.,E E,) in Eq. (38) are not zero. =0, solutions for Eq(45) lie at
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tany, = - <1T T:_—I_)ta ne, (46)
tanyy = (TTllT ; _T21>cot¢, (47)
tan g = ('I-'r;l'; _Tll )tan ¢, (48)
tanzjxvz—(%)tanq‘). (49

Finally, we note that the functions tahand tary are 7 pe-
riodic, so there are two solutions withm<< =< 7 for which
dyl dy=0, corresponding to four solutions fd,. Two of

PHYSICAL REVIEW E7Q, 036619(2004)

that the polarization angle and axial ratio of the two modes
are identical =0 andT,=T,, respectively, our analysis for
P, reduces to that of Cairnst al. [23].
By locating zeros ofiy// JE,, the boundaries iy can be
similarly studied. For constang;, ¢, T;, T,, and S
Al JE,=119E,/ 9y, and so from Eq(45) zeros ofdiy! JE, lie
at y=—-2BE,/E;. Using Eq.(42) for E, we find that the zeros
of dy//dE, correspond to real solutions of

VaB - BYEZ. (57)

g |
Immediately, we note that eithd; =S/« for g>0 for E?
< S/a for <0 must also be satisfied for a zerodg/dE,
to exist. As the functiony(#) represents a superposition of
sine and/or cosine functions of the same periodicity, it can
always be represented as a single sine or cosine function of

these solutions are negative, and can therefore be discardegh appropriately shifteq. Given thaty(¢) is a local mini-

To remove the degeneracy ¢f over a 2r interval, we ar-
bitrarily label the solution lying aty<<O as =5 with y~
=y(iys), and label the solution lying ay>0 as =iyt 7
with y"=y(st 7). The remaining physical solutions f&,
yield the constraints

~ _ 2 —_
1= _EB>04%<) _[yl+A o
2Bl E: 2/
2 —_
“IY+A _BA(B>04%>) _ |7|+A, (51)
2Bl E: 2/
Iy 2 *
Y1+A _E(B<0A*>¥) _[y]+A (52
2Bl E: 2/
Y |-A ExB<0A?<y) |y|+A
< = 53
24 3 28 - %

For a givenk,, «, B, andSthe upper and lower solutions to
E, therefore satisfy/=. and =i .+ , respectively.

In summary, bothE; and E, integration boundaries can
hence be parametrized by solutions @f/ 9¢=0; i.e., E;
= Eqc(4e) or Ey<Eqe(4c), and

I(Ela lﬂc) = E2 fu(Eli wc) (54)

wheref|(Eq, ), fu(E1, ¢) are the uppef+) and lower(-)
physical solutions to Eq42). The angley; is that which
maximizes the domain of integration in b andE,. For
instance, if¢=0, theny; =0, for |, corresponding to vector
parallel and antiparallel addition. T, =T,, thenE; (i) =,
and

(E2>1}, E,-\I <E,<E +1], (55)

{Ef <1}, (56)

These were the boundary conditions used by Ca@nal.

-E;+ \I sE,=<E+ \'I

[23] in their investigation of the intensity statistics of two
vectorially superposed wave populations where the bound-
ariesE,=E; =+ correspond to antiparallel vector addition,
andE,=\1-E; to parallel vector addition. Indeed, provided

mum at =i, we concludey(y/ =¢— g will be an even
function of ¢'. Finally, using Eqs(25)—(28) to substitute for
v, EQ. (57) can be solved fory and hence)/'.

Boundaries ifE;,E,) and can similarily be established
for the degree of circular polarizatian=V/1. For brevity, we
list only salient differences to th® boundaries. For a given
E,, T4, T1, and ¢, the equationn=V/I can be rearranged as a
quadratic inE, with only one unknownz/'. That is,

E3B(1') + ELE1Y () + E3aly) = 0,

where a(y/)=ay—v(¥)a, B()=By-v()B;, and ')
=w(¢')—v()y (). Equation(58) is homogeneous in the
field strengths, and so two conclusions folld#y: boundaries
are straight lines through the origin, and zeroslgf dE, lie

aty=- 2(,8/|,8|)\/;3 similar to Eq.(57) with a < @, B 3,
and S« 0.

(58)

D. Limiting properties of the integrand

The PDFsP(y), P(E ), and P(E ) are all finite, whereas
the JacobiarE; Eyd, / a¢| for P(S) has zeros aty=y, E;=0
andE,=0. In this work, the behavior of the Jacobian is ex-
amined by an expansion E’é anddy/ d¢r about the boundary
Y=.. This yields a limiting form for the Jacobian along an
E, interval of fixed E; local to the ¢y=¢, boundary. The
limiting behavior along ark; interval with fixedE, is then
obtained by interchanging th®, andE, labels. We also note
that the value€;=0 andE,=0 correspond to points along
the boundaryy= ¢, and are hence implicitly included in a
=1, expansion.

Noting that the boundary = is defined by solutions to
dyl d=0, expansions oE§ and dy/ 9y about =i, (where
JE,l dy=0) to second order iny— i, can be written

2p2
E§=E§c+{‘;—w§}¢(¢— AL (59
_r2 JE; 3?’) N2
_E20+{2E2 (/l( 9y a0 }%W ) (60)
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2 9B, & _ —aB?-BE2  (Ty+1)(Ts+1)
=E; __2_7} E3(y - c 2 61 = 1 21 S 1-
2 ’ { E2 (97 (9'7[,2 /8 Z(w w ) ( ) E1E2 \/(Ti + 1)(T§ + 1)( U)COS((f) * l/,)
and _ (Ti=1)(T3-1) 1 ~ 67
\’m( +v)cog ¢ - ¢) (67)

d &
= {—y} (= o). (62)  as a quadratic in cog, solving for ¢, and summing the in-
ap | v,

tegrand of Eq(33) over the twoys solutions.
Rearranging Eq(61) we find,
) ) IV. ILLUSTRATIONS FOR THE VECTOR SUPERPOSITION
Ty 2= (9 Py OF ORTHONORMAL MODES
(=)= , (63
s Ve iy s e

to O(y—i)?, since dyldy is itself of O(4—1). Conse-
quently, Eq.(61) can be rewritten as

In this section we compute PDFs for the polarization
properties of the superposition of two orthonormal modes.
For ¢=0 and T;T,=-1 the Stokes parameterfEgs.
(25)<28)] reduce to

208, | & ay\? =E2+ E2
E2=E2 + {——Z/J} E§(—”> . (64 I =Ei+E, (68)
E,dy /[ a?), “\oy
s oo Ti-1 T, [ 2Ty
Near the boundaries of integration, we find that the integrand Q= (E1 ~E) 241/ ZElEzm 12,108
1 1 1
of Eq. (31) thus obeys
(69
 PWPEDPE) . PYPEDP(E)
||m r————— O 1 10 ﬁ ( ) T
=t |ExE20VI0 vy [EqV|EZ- 5| U= 2E1E2ﬁsin W, (70)
Therefore, we conclude that for fixed; the integrand !
contains a square-root singularity at the boundafy E3.. T T (T
Interchanging the labels in the above analysis, we find that = (Ei_ Eg)( 12) + 2E1E2—l<;—>cos¢.
for fixed E,, the integrand also contains a square-root singu- 1+T% [T\ T{+1
larity at Eiz Eic. Limiting properties of the Jacobian f&(v) (72)
can be similarly studied, also yielding a square-root singular- . ) .
ity as ¢— i, at theE, andE, boundaries. Immedlately_, we note that_the PD_F for the intenditis
reduced to a simple convolution of field strengths:
E. Numerical integration 2 o 1D
. o _ P = | Pe(l - By Pg(Er)dES. (72)
Equationg31) and(33) contain integrals with square-root

§|ngular|t|es at the boundapeEiC and Esc. To compute the When the modes are have identical axial ratios and the same
integrals, a Romberf23,2q integration procedure was used olarization anglgnot orthonormal P, is not given by the

together with a change of variables at the singularities. Ti onvolution in Eq.(72). Instead, the detailed analysis of
ensure convergence, eaéhandE, interval was subdivided Cairnset al. [23] follows

into log, Enax/ Emin intervals, and a change of variable used For orthonormal mode€T,T,=-1) the expressions fov

at the overall lower and upper boundaries. For the result L S :
presented in this worky=10 was used. %mdQ are related by the field interchange mapping

To computePg for each value ofS, the integrand of Eq. E_1<—> E,, (73)
(31 must be evaluated for evety; and E,: this requires
solutior)s fory to Eq.(2$_9) to be found. Solutions fog were gﬂ_) = (74)
determined by calculating from
- aE2 - BE3 T2-1 2T
= S-aE] ,BEZ’ 66 =1 2h (75)
E.E, 2T, Ti-1

equating to thee;E, coefficient fory in Egs.(25)—28), re- —

arranging as a quadratic in cgsand solving for cogs and T R T

. Two solutions to cog are obtained, and thus four solu- T Ty’

tions to ¢ over a 2r interval. Finally, when computing the _

contribution toP(S) in Eq. (31), the two physical solutions to  under whichQ«V and soPg« Py..

Sare selected and the integrand summed over both solutions. In this work, various combinations of the orthonormal
For P, the procedure involves rearranging the equation wave populations in Table | are superposed for illustrative

(76)
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TABLE |I. lllustrative lognormal wave population field charac- [W—-wy|
teristics, and polarizations. The two components in cé&desiii ),
and(v) have equal field strength distributions, with mean and stan- 10
dard deviationua=1.2In 10,af\=0.2 In 10, while the two compo-
nents in case6i), (iv), and(vi) have unequal field strengths, where
the second component is dominant withg=2.11n 10, aé
=0.1In 10. w

Elliptic Circular Linear

() (i) (iii ) (iv) v) (vi)
T, 0.5 0.5 1 1 % %
T, -2 -2 -1 -1 0 0

v -wyl

purposes. While the theory is developed for an arbitrary

choice of distribution function, for illustrative purposes, we FIG. 3. (a) Contour plot of the integration boundariesBrspace

have chosen lognormal field strength distributions functionfor V=5 for the elliptically polarized modes of casé3 and (ii).

for E; andE,. The six cases correspond to calculations forThe horizontal gray scale denotes the valug/of=|4— /|, and the

the different polarization stateglliptical, circular, and lin-  solid thick line shows the analytic boundaries of integration. The

eal performed for two pairs of wave populations. One wavehatched regions i) and(c) describe the integrable range |gf |

pair has a dominaniimore intensgpopulation and a weaker as functions off; andE,, respectively.

population, whereas the other case has two identical wave

populations. The field strength distributions have been choeyer, solutions foiE; of Eq. (71) can be found for anyy

sen to allow direct comparison with earlier vector Convolu-_¢</|<7-,_

tion CalCUlatiOﬂE[ZB]. The case of circular mode polarization |nspection of |nequa||ty(50) shows that the Stationary

is particularly relevant for the propagation of electromag-points of y, are located aty=0, 7 with ¢,=0 the solution

netic modes in free space, which propagate as oppositeffat minimizesy,. For E;<\V/a, the lower and uppeE,

circularly polarized waves with the same refractive infl&lx  poundaries lie on théy/|== contour [see Eq.(53)]. For

E,= VV/a the lower and uppeE, boundaries lie on the

A. Boundaries of integration |¢/'|=0 and|y/'|= contours[see Eq.(52)]. This explains

why the || domain in Fig. 8b) for E;< /(V/a) is local to

Prior to calculation of?;, Py, Pg, Py, andP, the bound- - . NS —
aries of integration irE space must be computed using the|_l’ll| g FI@”y’ under the field interchange mappiig-— Ep,

analytic procedures described in Sec. Ill. For orthonormaF2<— E1 Ti=Ta, To Ty, with ' ¢/ +m, we obtainV

modes,P, reduces to a line integral itE; ,E,) space, with =~V» SO the boundary fov=-5 is a reflection of th&/=5

E;=\I-E3. For Py, Pg, Py, andP, we illustrate the bound- Poundary througlk, =E,. The domain for)' as a function of
aries for a few selected values from the orthonormal modeb: is identical to that in Fig. @), with ¢y,=m. Similarly, the
of Table I. Importantly, the boundaries b space are inde- domain fory’ as a function ofg; is identical to that in Fig.
pendent of the choice of field strength and phase differencg(c).

distributions. Some properties of the boundaries are also fur- Due to the field interchange mapping of E¢g3)—(76),

ther described in Sec. IV B when describing features of thg,nder whichQ=V, the boundaries fo® are related to those

distribution functions. of V: the boundary foQ=-5 is similar to that ol/=+5, and
o _ the boundary foQ=5 a reflection 0fQ=-5. Finally, forU,
1. Elliptically polarized modes the coefficientsy,=8,=0, and so the boundary of integra-
For casegi) and(ii) ay>0, By<0, so the boundaries for tion is described by the hyperbold|=2E,E,.
Py are described analytically by the intervét?) and (53). For the degree of circular polarization, K&7) simplifies

Figure 3a) plots the boundaries of integration {it,,E,) to

space forP(V=5) in caseqi) and(ii). For convenience, we 2

i L T, (T-1
hereafter drop the value assignment within the brackets, so y=2—\= cosi. (77)
that P4(5) is shorthand folPg(S=5). In Fig. 3a) contours of T\ T1+1

equal|y'|=|y~yx| are drawn. The gray scale at the top of giationary points of lie at =0, m, with 4, = the solution
Fig. 3a) identifies the value ofy—y] in (a), and the solid ¢ minimizes Eq(77). For casesi) and (i) with v=0.85,
lines define the analytic boundary. In FiggbBand 3c) the —~<0andB<0. so the boundaries fd. are described ana-
correspondindy’| domain is plotted againdf; andE,, re- ¢ B=0, 2

spectively. In Fig. 8) with E;=2.4, for instance, solutions Iytically by the interval(53), with B B, y—y, andA="y
for E, of Eq.(72) can only be found providingy— | liesin ~ —4apB. Figure 4a) plots the boundaries of integration for
the range 1.9% |- | < 7. In Fig. 3c) with E,=2.4, how-  P,(0.85 for cases(i) and ii). In these instances the lower
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FIG. 4. Similar to Fig. 3 but showing the integration boundaries
in E space forw=0.85, together with the ranges |of | as functions
of E; andE,.

and upper boundaries are both described bythe0 con-
tour, and soy’ solutions are degenerate overmainterval.
Physically, the two different solutions at commgh andE;
values in Fig. 4a) trace polarization ellipses with the same
T, but different intensity and polarization angle. Analytically,
this degeneracy will occur whenevarf <572, given by the
upper and lower boundary intervals (80) and (53), with

BB, v+, andA < A. For orthonormal modes, the use of
A%2<52 yields v?>v(vy+v,)—vw,=0v3, where v, and v,

PHYSICAL REVIEW E 70, 036619(2004)

-----
ey

10
10°

FIG. 5. Pgz, P, for orthonormal modes in Table I. Thick and thin
dashed curves correspond to the field P[PEisand PEg, while the
thick and thin solid curves correspond Ry for the convolution of
PE% with PEf [caseqi), (iii), and(Vv) in Table I] and PEf with PEg
[caseqii), (iv), and(vi) in Table 1], respectively.

related: Q(T;=1) =—V(T;=»)=-2E,E,cos/, and Q(T,;=x)
=V(T,=1)=E2-E3. The boundaries of integration for
Po(T1=1) andP(T, =) are thus identical to the boundaries
for U, but with a change offs. Finally, the PDFsP,(T;
=1) and Pg(T;=>) reduce to line integrals, withE,
=\JE2-V andE,=E2-Q, respectively.

B. Distribution functions for the Stokes parameters and the
degrees of polarization

Figure 5 shows the distributiorBEi, ng, andP, for the

=-yp, are the degrees of circular polarization of the two com-cases shown in Table I. The field strength convolution calcu-
ponent waves. That igy’ solutions will be degenerate over a lations agree with those of Caires al. [23] for two similar
w interval whenever the magnitude of the total degree oflistributions(Fig. 6 in that wor. The dominance of the
polarization is larger than the magnitude of the degree ofesultant PDF ofl =EZ+E5 by one field population is_ex-
circular polarization of either mode. A similar fourfoldg  pected given the distributions used, for whit) <(E3),
degeneracy can occur for local regionsHrspace folV and ~ and sol = E2.
Q, where A(E;)?< ¥ [e.g., theE;<\V/a region in Fig. Figure 6 shows for all cases in Table I. For orthonor-
3(a)]. ExceptingS=0, however, it is only fow that the de- mal modes, the expression fdris independent offT|, so the
generacy extends over dlspace, where thE; dependence PDF is independent of the mode polarization. The two weak
of A vanishes. peaks in the PDHabeled makP) in the figurg correspond
The |¢'| domain, shown versug, and E, in Figs. 4b) to the lower singular boundary sweeping through statistically

and 4c), respectively, can be quantitatively determined bysignificant regions oE space, as sh_qwn in Fig. 7. Physicallyz
equating the solutions ofdy/dE,=0 [given by ¥ this corresponds to the superposition of wave packets with

=-2p/ BV ap], to Eq.(77), and solving fory’. For casesi)
and (i) this yields ¢/ <arcco§\aB(T?+1)/(T2-1)]= /3.
More generally, for the degree of circular polarization of
arbitrary orthonormal modes, the discriminatt reduces to

A?=4(v2-1) at the boundarieg)’' =0, ). At these locations,
[v|=1, and so the expression By, reduces to a line integral

overE,=E;y/(28).

\

10

107°

2. Circularly and linearly polarized modes

~15

10
10°

2 4 6

Expressions for the Stokes parametérand U arising
from the superposition of circular and linear polarization
waves[caseqiii )(vi) in Table || are identical to the preced- FIG. 6. Py for orthonormal moded;=0.5, T,=-2. Solid and
ing results for elliptical polarization. For circularly and lin- dashed curves descrilig,(U>0) and P,,(U<0), respectively, for
early polarized waves, expressions fgrandV are simply  case(i) (thick) and cassii) (thin) of Table I.

10 10 10

u
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10'5 I Q> (a)
107 \\
107" X N

10

R (b)
n.°1 o' max(P.)
10—15

10
10°
107 <Q§‘~“
~15 N \
1075
10 100 o 10

FIG. 9. Pq for orthonormal modes ofa) elliptic, (b) circular,
and(c) linear polarizations. Thick and thin curves describe the su-
perposition of two modes with equal field strength distributions
[casedii), (iv), and(vi) of Table I}, and two modes where one mode
has a dominant field strength distributifgasegii), (iv), and(vi) of
Table 1], respectively. Solid and dashed curves descRg&Q>0)
E,=(Ey), E;=(E,) with phase differencer/2. The nonzero and Po(Q<0), respectively. The dash-dotted lines show positions
limit for Py(0) occurs because the region of integration,of peakPq,.

JdE2dES converges to a fixed nonzero valuelds- 0.

Figure 8 showsP, for the three different wave polariza- Figure 9 showsP,. The features for the three different
tions [Fig. &a) is elliptic, Fig. §b) circular, and Fig. &)  polarization cases can be understood by noting that the ex-
linear for the two different field strength PDF combinations. pressions fol andQ are related by the interchange mapping
For cases in which the component field strength PDFs aref Eq.(76). For casdi), theV <0 andQ>0 PDFs are quali-
equal and/or the polarization lined®,, is symmetric about tatively identical, with the slight shift ifQ) accounted for
V=0. In Figs. 8a) and 8b), the peak folV<O0 lies near the by the change ifT; in the mapping of Eq(76). For linearly
mean of the superposed wave populatiOis=(V,)+(V,), as  and circularly polarized modes the relationship betw€en
denoted by the markers. In Fig(c3, which corresponds to andV is transparent through the mappi@fT;=1)=-V(T,
linear polarization, the peaks &f lie near but not avV=0. =%);Q(T;=%)=V(T;=1). This explains why Figs. ®),

For linearly polarized modes, the expressionYois related  9(c), 8(c), and 3b) are identical.

to U throughU/V=tany, so the boundaries fov are the Figures 10, 12, and 13 plot the PDFs for the degree of
same as those faJ, but with a phase shift ige. The peaks in  circular and linear polarization for the three different types of
V thus correspond to the lower singular boundarigs wave polarizations. For cagg of Table |, shown in Fig. 10,
=/2) sweeping through statistically significant regions€eof the degree of circular polarization is dominated by the stron-
space, as in Fig. 7. Finally, in all examples, the nonzero limiger field, with mearfv)=-0.8. There is also, however, a split
for P\(0) occurs for the same reason Bg(0)=0: conver- in the peak of the PDF, with peaks slightly below the mean
gence of the boundaries Espace to enclose a fixed nonzero (v=-0.85 and above itfv=-0.75). Analytically, these oc-
region. cur because the upper singular boundary of integration
sweeps through statistically significant regionEEcdpace as

v is perturbed from the mean of the dominant mdde)

FIG. 7. Log-log contour plot of the produ®Z,PZ, for wave
modes with a dominant field distributiogsolid) and equal field
strength distributiongdashegl Overlaid are the lower singular
boundaries of integration fdPy at the peaks irP,.

10 T, (@
10710 > =-0.8. Physically, the two peaks correspond to the superpo-
107 \ sition of initially [at t=0, where all phases in E¢3) have
1¢° 10° 1¢* 10°
0 \__\"~ ®) al o ]
n.w_m <V> \“ E | (a)
1078 ) ) \ XS o 1
10° 10° 10° 10° il i ]
10° —— ~ © o
107" max(P,) \ 5 -ols\ 0 05 1
107 o 2 3 ] 10 — g
10 100 10 10 gl
FIG. 8. Py for orthonormal modes ofa) elliptic, (b) circular, n-“_i,
and(c) linear polarizations. Thick and thin curves describe the su- ol
perposition of two modes with equal field strength distributions . -
[casedii), (iv), and(vi) of Table I, and two modes where one mode 0 0.2 04 4 06 08 1
has a dominant field strength distributiprasesii), (iv), and(vi) of
Table 1], respectively. Solid and dashed curves desciEpe/>0) FIG. 10. Plot of(a) P, and (b) Pr for elliptically polarized
and P,(V<0), respectively. The dash-dotted lines show the posi-modesT;=0.5,T,=-2. Thick and thin solid lines describe PDFs for
tions of peakP,. caseqi) and(ii) of Table I, respectively.
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FIG. 11. Log-log contour plot oPZ,PZ,. Overlaid are the sin-
gular boundaries of integration fer=-0.8 (solid), v=-0.75 (dot-
ted), andv=-0.85(dashegl The upper boundary far=-0.8 is at
infinity.

FIG. 13. Plot of(a) P, and(b) Pr, for linearly polarized modes
T,=%, T,=0. Thick and thin solid lines describe PDFs for caggs
and(vi) of Table I, respectively.

been accounted fpparallel and antiparallel vectors near the yields P, symmetric aboub=0 and with peak ab=0, cor-

mean field strengths of each wave population. This is showfESPoNding to a peak iR, atr,=1. , o
in Fig. 11, where the boundaries of integration are overplot- Finally, Fig. 13 plots the degrees of circular polarization
ted on a contour plot of the numerator of the integrand/or linearly polarized modes. As for cagh, shown in Fig.
PélPéz. Forv=-0.85 the upper boundary is &=0, corre- ltO, the Pf[')II: dothr?etcentral Eealftﬁto '.Z dvtz;rfnolnatedltbfy the
sponding to the addition of two initially parallel vectors, SONGEr fi€id. The two peaks erther sideveiU result from
while the upper boundary fop=—0.75 is aty=rr, corre- the same phenomenon described for elliptically polarized

sponding to the addition of two initially antiparallel vectors. modes.
In both cases the upper boundaries pass near the peak in the

distribution functions. A =-0.8 (where3=0), correspond-
ing to the circular polarization of the dominant mode, the In this work we have described the polarization statistics
lower and upper boundaries lie @ =0 andE,=-E;a/ 7. of the superposition of multiple wave populations. Each
The two peaks in the PDF for the degree of linear polarwave population was considered to be a coherent mode with
ization in Fig. 1@b) correspond to the two peaks in the PDF fixed axial ratio and polarization angle, and the electric field
for the degree of circular polarization Fig. (8 For the strength and phase were taken to be random variables with
superposition of modes with equal field strength POREsis ~ arbitrary distributions. Our analysis builds upon the treat-
symmetric about =0, with a peak ab=0. This corresponds ment of Cairnset al. [23], in which two wave vectors with
to a PDF biased toward=1. fixed polarization angle but random phase difference were
In Fig. 12 PDFs for the degree of circular and linear po-superposed. Using this representation, integral expressions
larization are shown for circularly polarized wave modes.were developed for the PDA%; of the Stokes paramete&
When combining wave populations of unequal field strengtha label forl, U, Q, andV), as well as the degrees of linear
[case(iii) of Table I}, the PDF for the degrees of polarization and circular polarization of the superposed wave popula-
are skewed toward the dominant field, thus explaining theions. For two wave populations, it was shown that the inte-
peak in P, nearv=-1. The superposition of orthonormal gral for each Stokes PDPg contains a square-root singular-
circularly polarized waves of equal field strength PDFsity in electric field space. Finally, predictions for the Stokes
parameters and degrees of polarization were computed for

V. CONCLUSIONS

15 04 three different component wave polarizatigediptic, circu-
.10 @ o> lar, and lineay, and two different lognormal field strength
- 0.2 PDFs(a dominant mode and equal field strength PDFs
s The present work differs from earlier treatmentsg.,
9 =5 s o5 0 Hurwitz [7], Barakat[8,9], and Eliyahu[10]), which super-
6 v poseE, andE, correlated Gaussian fields, where each field
®) has a random but uniformly distributed phase. Their analysis
ot is equivalent to our treatment in the special case that the
2 . plasma modes are linearly polarized, the phases are uni-
formly distributed, the electric fields have a Gaussian distri-
0 02 04 ; 06 08 1 bution, and the average value \¢fis zero for the superposed
waves.

FIG. 12. Plot ofa) P, and(b) P, for circularly polarized modes The main results of the present work can be summarized
T,=1, T,=-1. Thick and thin solid lines describe PDFs for casesas follows.
(ii ) and(iv) of Table I, respectively. The vertical scale for the thick (1) The superposition of two orthonormal modes leads to
curve in(a) is on the right-hand vertical axis. the superposition of individual intensities for the total inten-
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sity | =E2+E3, and therefore a convolution @fEi andPEg for ~ correspond to the superposition of vectors near peak field

P, strength, and initiallyz/2 out of phase.
(2) For orthonormal mode pairs, a simple mapping was (7) The degree of circular polarization of the superposed
found to relate the expressions forandV. mode can exceed in magnitude the degree of circular polar-

(3) For orthonormal modes, 4$ Q, andV approach zero ization of either component mode. In this case, there exist
the PDFsPy, Po, andP, converge to nonzero values, corre- four sets of orthonormal mode pairs, each with the same

sponding to convergence of the boundaries of integration jphase difference and one common field strength, Wh'.Ch su-
E space to enclose a nonzero region. perpose to form a wave with the same degree of circular

) X ; . . olarization.
(4) For wave populations in which there is a dominantP . -
field, the PDF for the Stokes parameters in statistically sig—Iin (8) Comparison between the predictions for the degree of

nificant regions is dominated by the dominant wave popula- ear an_d circular p_olarlzano(e.g., Figs. 10 and 33nd the
tion. The mear(S) is confirmed to be equal to the sum of the polarization properties of the component waves suggests that
' the interpretation of polarity resolved dage.g., from pul-

mean of the Stokes parameters of théndividual wave sarg is not trivial. In part, the reason is that the multiple

populations. That is(S)=(S)+{S,)+--- +(S,). » peaks predicted are not at the same locations as for the com-
(5) Except for circularly polarized light, the addition of & ,hant distributions. Even when the field strength of one

weaker field leads to a double peak of the PDF of the degreg, e js fixed, however, there are multiple ways to combine

of circular polarization. Physically, the two peaks correspondy,qqe pairs with the same phase difference to obtain the same
to the superposition of initially parallel and antiparalle_l VEC- gegree of circular polarization. That is, the problem is degen-
tors near the peak field strength of each wave population. FQ{rate in the phase difference and fixed field strength of one
circularly polarized light, the effect of the weaker population yoge  |nvestigating such subtle effects in real data is there-
is to shift the PDF peak foP, away from|v[=1, and move  fore challenging, and of considerable interest.
the PDF peak foP, away from|r,|=0. ’
(6) The superposition of wave vectors with equal field
strength PDFs gives rise to PDFs fdr Q, andV symmetric
aboutU=0, Q=0, andV=0, with expectation values of zero,  This work was supported by the Australian Research
but peaks at nonzerd, Q, andV. Physically, these peaks Council and a University of Sydney Sesqui Grant.
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