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We have observed, in numerical simulations, strongly asymmetric soliton explosions in dissipative systems
modeled by the one-dimensional complex cubic-quintic Ginzburg-Landau equation. The explosions occur at
one side of the soliton, in spite of the fact that the initial conditions and the equation itself are symmetric. From
one explosion to the next, the side of the soliton where it occurs alternates, so that the left- and right-hand sides
of the soliton explode successively. We give explanations for this effect based on a linear stability analysis of
the unstable soliton. We also describe the transition from the stationary soliton into the exploding one as a
three-stage process of soliton cooling.
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I. INTRODUCTION

Dissipative solitons are basic localized modes defining
the dynamics of many systems far from equilibrium. Their
properties are unique and quite different from those of soli-
tons in conservative systems. Several models of dissipative
systems have been studied, including those described by the
complex Ginzburg-Landau(CGLE) and the complex Swift-
Hohenberg equations. These equations apply to a wide range
of dissipative phenomena in physics, such as binary fluid
convection[1], electroconvection in nematic liquid crystals
[2], patterns near electrodes in gas discharges[3], and oscil-
latory chemical reactions[4]. The cubic CGLE was derived
for supercritical bifurcations. Its cubic-quintic extension
serves as a generic equation describing systems near subcriti-
cal bifurcations[5,6]. This equation contains the basic terms
describing the most important physical phenomena occurring
in passively mode-locked lasers[7].

In contrast to conservative solitons, solitons in systems far
from equilibrium are dynamical objects that have nontrivial
internal energy flows. Since they are produced by a dissipa-
tive system, they depend strongly on an energy supply from
an external source. In spite of being a stationary object, a
dissipative soliton continuously redistributes energy between
its parts. A soliton that periodically changes its shape in time
(pulsating soliton[8]) can be considered as another object
(limit cycle) in an infinite-dimensional phase space. These
can also be stable or unstable. Stable pulsating solitons exist
for an indefinite time, in the same way as stationary solu-
tions. A pulsation that appears in the soliton profile is just the
external revelation of its internal dynamics. Dissipative soli-
tons can take a variety of shapes and also show a variety of
periodic and chaotic changes. One of the most striking be-
haviors that we have observed numerically[8,9] and experi-
mentally[10] is that of “explosions.” These are soliton solu-
tions that periodically suffer explosive instability, but return
to the original shape after each explosion. The solution
serves as an attractor in the sense that a wide variety of
localized initial conditions converge to it.

In the first work on exploding(erupting) solitons [9], it
was found that these localized objects exist over a wide
range of the system parameters(see Fig. 5 of[9]). In fact, the
range of parameters is, if not larger than, then at least com-
parable with the range where stable stationary solitons exist.
This makes their study quite worthwhile, both theoretically
and experimentally. This remarkable property should also
make their observation a relatively easy task. Some explana-
tions for the existence of exploding solitons and their un-
usual dynamics were presented in our recent work[11].

The existence of internal dynamics in the dissipative soli-
ton creates a variety of new instabilities that do not exist in
conservative systems. This fact makes the study of its stabil-
ity more difficult than that in conservative systems. For sta-
tionary solitons, we can apply linear stability analysis, but, in
the case of pulsating solitons, that is not possible. In the case
of exploding solitons, there are two clearly distinguished re-
gions: the laminar stage of propagation and the exploding
stage. Therefore, in this particular case, we can use the linear
stability analysis, at least partially, and apply it to the soliton
in its laminar regime when the soliton is very close to being
stationary. In this way, we can answer at least some of the
questions related to its unusual behavior.

In the present work, we have found that soliton explosions
can be strongly asymmetric; namely, each explosion happens
predominantly at one side of the soliton rather than at both
sides simultaneously. From one explosion to another, the side
of the soliton where it occurs alternates, so that explosions
occur at the left-(LHS) and right-hand sides(RHS) of the
soliton successively. Taking into account that the soliton it-
self in the laminar regime of propagation is symmetric and
that there is no asymmetry in the equation, these strongly
asymmetric explosions need explanations.

These explanations can be obtained if we study the stabil-
ity of the stationary solution that serves as a foundation for
the exploding soliton. The set of linear eigenfunctions and
the eigenvalues that we found turned out to be almost degen-
erate, and consisted of a symmetric and an antisymmetric
mode, as should occur in a symmetric system. In addition,
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we have found that the eigenvalues for these two modes are
slightly different. This causes them to compete, and the in-
stability becomes highly asymmetric due to the nonlinearity.

II. THE MODEL

The cubic-quintic complex Ginzburg-Landau equation
can be written

icz +
D

2
ctt + ucu2c + nucu4 = idc + ieucu2c + ibctt + imucu4c.

s1d

When used to describe passively mode-locked lasers,z is the
cavity round-trip number,t is the retarded time,c is the
normalized envelope of the field,D is the group velocity
dispersion coefficient, withD= ±1, depending on whether
the group velocity dispersion is anomalous or normal, re-
spectively,d is the linear gain-loss coefficient,ibctt accounts
for spectral filteringsb.0d), eucu2c represents the nonlinear
gain (which arises, e.g., from saturable absorption), the term
with m represents, if negative, the saturation of the nonlinear
gain, while the one withn corresponds, also if negative, to
the saturation of the nonlinear refractive index. In the rest of
the paper we shall always assumeD=1. Our numerical simu-
lations for solving Eq.(1) are based on the split-step tech-
nique using a fast Fourier transform routine for the linear
part of the equation.

Equation(1) has a variety of localized solutions. These
are stationary solitons, sources, sinks, moving solitons and
fronts with fixed velocity[12,13]. A multiplicity of solutions
can exist simultaneously. For example, solitons can exist in
several forms and many of them can be stable for a certain
range of values of the equation parameters[14]. In addition
to localized solutions with fixed shape, there are pulsating
solitons[8], whose profile changes periodically with propa-
gation distancez. Another interesting discovery is the “ex-
ploding soliton” [9]. This localized solution belongs to the
class of chaotic solutions. It has intervals of almost station-
ary propagation, but, over and over again, an instability de-
velops, producing explosions, and then the stationary shape
is subsequently recovered.

Another example of an exploding soliton is shown in Fig.
1. It has the same main properties as those explosions we
presented in previous works. That is,(1) explosions occur
intermittently. In our continuous model, they occur more or
less regularly, but the period changes dramatically with a
change of parameters.(2) The explosions have similar fea-
tures, but are not identical.(3) Explosions happen spontane-
ously, but additional perturbations can trigger them.(4) One
of the basic features of this solution is that the recurrence is
back to the stationary soliton solution. These characteristics
have been observed both theoretically[8,9] and experimen-
tally [10]. In contrast to our previous cases, one of the dis-
tinctive features of the present example is that each explo-
sion occurs predominantly on one side of the soliton.

We note here that the explosions observed in the experi-
ment[10] were asymmetric. However, the asymmetry in that
case is related to the asymmetry in the system. Explosions

can be made asymmetric if, for instance, we introduce a term
in the equation to account for the third-order dispersion in
the system. However, in the present case, third-order disper-
sion is absent and the equation is symmetric relative to a sign
change in thet variable. Due to this symmetry, the chances
that the explosion will occur at any particular side are equal.
In the example shown in Fig. 1 the side on which the explo-
sion occurs changes at each consecutive explosion.

Most of the known soliton solutions are even functions of
t, but for small regions of the parameter space, noneven so-
lutions can also be found[14,15]. Explosions, being chaotic
solutions in both space and time[9], are asymmetric in the
sense that each wing of the pulse breaks into different pieces
in a random way. Using the term “symmetric explosion,” we
mean that both wings of the pulse explode and recover al-
most simultaneously, in such a way that the center of the
pulse remains almost fixed. What we describe here is that for
a small region inside the parameter space where explosions
occur, these are strongly asymmetric, i.e., both wings ex-
plode asynchronously, and after each explosion and subse-
quent recovery, the center of the solution changes its posi-
tion.

Because of the asymmetry, the maximum of the soliton in
the laminar regime of propagation shifts inz alternately to
the left- and right-hand sides after every consecutive explo-
sion. These shifts, for a number of explosions, are shown in
Fig. 2. The “vertical” lines in this figure indicate that the
peak amplitude is delocalized at the very zenith of the explo-
sion. The initial condition in this particular case is the unper-
turbed(symmetric) soliton solution for the parameters writ-
ten inside the figure. The value of the energyQ, defined by
Qszd=e−`

` ucst ,zdu2dt, versus the propagation distance for the
same simulation is shown in Fig. 3. After a certain propaga-
tion distance where the solution hardly changes, the instabil-
ity develops from numerical noise producing, first, four big

FIG. 1. Soliton evolution showing two consecutive strongly
asymmetric explosions. The values of the parameters are given at
the top of the figure.
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“symmetric” explosions. These appear only during the tran-
sition period. The first four explosions take place on both
wings of the pulse and therefore, at its zenith, have almost
twice the amount of energy of the asymmetric explosions.
Due to the “symmetry,” the center of the soliton is not
shifted, as Fig. 2 shows. All explosions afterward are
strongly asymmetric(two of them are shown in Fig. 1). The
separation between consecutive explosions shortens and be-
comes approximately half of the separation between the first
four.

Exploding solitons are intrinsic modes of the system in
the same way as stationary solitons. The solution converges
to this type of evolution starting from a wide range of initial
conditions. In this sense, the soliton with strongly asymmet-
ric explosions serves as an attractor. Figures 2 and 3 show
this convergence from a particular initial condition. Similar
behavior is observed when we change the equation param-
eters in certain limits or use another initial shape.

Explosions are one of the many types of instabilities that
a soliton can suffer in dissipative systems. Understanding the
reasons for such instabilities is important in applications. In
fact, a better understanding of instabilities will help to design
stable laser configurations. In the case of exploding solitons,
the natural approach for studies seems to be linear stability
analysis of the soliton in its laminar regime. We note that the
soliton is not completely stationary, even in this part of the

evolution. However, there is a stationary solution of the
CGLE that serves as a “ground state”(partially attracting
state) for recoveries after each explosion. The solution ap-
proaches this stationary solution with relatively high accu-
racy before the next instability develops. This stationary so-
lution can be found using, for example, a shooting technique
based onz-independent ordinary differential equations[13],
chap. 13. The next step is the linear stability analysis of this
stationary solution.

III. LINEAR STABILITY ANALYSIS OF THE STATIONARY
SOLITON

The stationary soliton solution of the CGLE can be writ-
ten in the formcsz,td=c0stdeiqz, wherec0std is a complex
function of t with exponentially decaying tails. The real
numberq is its propagation constant. The functionc0std can
be calculated numerically when the analytic form is un-
known. The stationary soliton solution is a singular point of
this dynamical system in an infinite-dimensional phase
space. The evolution of the solution in the vicinity of this
singular point can be described by

csz,td = fc0std + fstdelz + hstdel*zgeiqz, s2d

where fstd andhstd are small perturbation functions(we as-
sumeuf ,hu! uc0u for any t), andl is the associated perturba-
tion growth rate. In general, alll’s are complex numbers and
f andh are complex functions. Substituting Eq.(2) into the
CGLE Eq.(1), we obtain

sil − id − qdfelz + sil * − id − qdhel*z + sD/2 − ibdf tte
lz

+ sD/2 − ibdhtte
l*z + 3sn − imduc0u4sfelz + hel*zd

+ 2sn − imduc0u2c0
2sf * el*z + h * elzd + 2s1 − ied

3uc0u2sfelz + hel*zd + s1 − iedc0
2sf * el*z + h * elzd = 0.

s3d

Separating terms with different functional dependencies
on z, we obtain the following two coupled ordinary differen-
tial equations:

Af + Bftt + Ch* = lf ,

A * h * + B * htt
* + C * f = lh * , s4d

where,

A = d − iq + 2se + iduc0u2 + 3sm + induc0u4,

B = b + i
D

2
,

C = fe + i + 2sm + induc0u2gc0
2.

The technique for solving Eqs.(4) numerically has been
described in[11]. Here, we use the following parameters for
the CGLE:m=−0.1, e=1.4, b=0.15, andd=−0.8, while n
=−0.4. The complex plane, with the eigenvalues obtained as
described in[11], is shown in Fig. 4. The total spectrum

FIG. 2. Temporal position of the field maximumtmax versusz.
The initial input is the unperturbed soliton solution. The first three
explosions are “symmetric.” Strongly asymmetric explosions occur
after z=400.

FIG. 3. EnergyQ carried by the solution as it propagates.
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consists of two complex conjugate eigenvalues with positive
real parts and a continuous spectrum of complex conjugate
eigenvalues, all with negative real parts. An important obser-
vation is that the two complex conjugate eigenvalues with
positive real parts are almost degenerate. There are two
eigenfunctions corresponding to almost the same eigenvalue,
where one is an even function oft and the other is odd. The
real part of the eigenvalue, when positive, is usually called
the growth rate of the perturbation, and we will henceforth
denote it asg.

These two eigenvalues with the highest growth rates can
also be found using an alternative technique[16] by impos-
ing the desired symmetry through the boundary conditions.
We used both methods. Figure 5(a) shows the largest growth
rate of the even and odd perturbations associated with the
stationary solution corresponding tom=−0.1, e=1.4, b
=0.15, andd=−0.8, vsn. The two curves are indistinguish-
able on the scale of this figure. The difference between them
is shown in Fig. 5(b). The growth rate for the odd perturba-
tion function is always slightly greater. The difference dimin-

ishes asn increases(unu decreases) and the growth rate itself
increases considerably, so that the relative difference quickly
tends to zero. On the other hand, the difference increases
when the growth rate tends to zero and the stationary solu-
tion tends to be stable. Although the figure concentrates on
what happens when we changen, we have obtained similar
results when changing any of the parameters around the
point sd ,b ,e ,n ,md=s−0.8,0.15,1.4,−0.4,−0.1d. The g de-
pendence on variableb is shown in Fig. 6. In this section of
the parameter space, the real part of the eigenvalue becomes
zero atb<0.162. Considering all such plots, we can find a
surface in the five-dimensional parameter space where the
real part of the eigenvalues is zero(the surface of neutral
stability).

Figure 7 illustrates the profiles of the(a) even and(b) odd
eigenfunctionssf ,hd with the largest growth rates. With the
solid line, we also show the corresponding stationary solu-
tion with which they are associated. The distinctive feature
of these perturbation functions is that they consist of two
well-separated parts. At the top of the soliton, the perturba-
tion function is close to zero and becomes nonzero on the
soliton wings. This property, together with the slightly dif-
ferent eigenvalues, is the key for understanding the phenom-
enon of strongly asymmetric explosions.

IV. GLOBAL DYNAMICS OF EXPLODING SOLITONS

A. Explosion as a homoclinic orbit

Before explaining the reasons for strongly asymmetric ex-
plosions, let us consider the global dynamics of the unstable
soliton after the linear stage of instability. In the presence of
eigenvalues with positive real parts, the soliton evolution un-
dergoes the following transformation. Suppose, initially, we
have the stationary solution with small perturbations. We

FIG. 4. The spectrum of eigenvalues in the complex plane for an
exploding soliton.

FIG. 5. (a) Largest growth rate for even(dashed line) and odd
(dotted line) modes of perturbation as a function ofn. The two lines
are indistinguishable on the scale of the figure.(b) Difference be-
tween the largest growth rates for odd and even mode perturbation.

FIG. 6. (a) Largest growth rate for even(dashed line) and odd
(dotted line) modes of perturbation as a function ofb. (b) Differ-
ence between the largest growth rate for odd and even modes of
perturbation.
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note that the real parts of the eigenvalues are relatively small,
so that perturbations grow slowly. The imaginary parts of the
eigenvalues(which are usually quite large) result in (fast)
oscillations whose amplitude increases on propagation. We
also note that the soliton center is not influenced by this
instability, because the eigenfunctions are almost zero in the
central part of the soliton. Thus, these fast oscillations, with
exponentially growing amplitudes, initially occur only in the
wings of the solution.

After the initial linear growth of the perturbation, its am-
plitude becomes comparable with the soliton amplitude, and
the dynamics becomes strongly nonlinear. The nonlinearity
mixes all perturbations, creating radiative waves. The ampli-
tudes of radiative waves increase at the expense of the initial
perturbation. Consequently, the fraction of the initial pertur-
bation within them becomes small. The solution at this stage
appears to be completely chaotic. However, the solution re-
mains localized, both in amplitude and in width, due to the
choice of the system parameters. In particular, the maximum
field amplitude is limited, due to the fact thatm is negative.
In addition, a positiveb ensures that the total width in the
frequency domain also stays finite, provided that other pa-
rameters are within certain ranges. It is also important that
the stationary soliton shape is fixed, thus providing the point
of return. As all radiative waves have eigenvalues with nega-
tive real parts, they decay and quickly disappear, since the
eigenvalues for most of them have negative real parts with a
larger modulus than the initial perturbation. This means that

the solution returns to the state of a stationary soliton with a
small perturbation that has an eigenvalue with positive real
part. As the real part of the discrete eigenvalue is relatively
small, the instability develops again later, thus repeating the
whole period of the evolution described above. This process
is repeated indefinitely along thez axis. One cycle of this
evolution is shown, schematically, in Fig. 8.

The fixed point, shown by a black dot in this figure, cor-
responds to the stationary soliton solution. It can be classi-
fied as a stable-unstable focus, because all the eigenvalues in
the stability analysis appear as complex conjugate pairs. We
stress here that our system has an infinite number of degrees
of freedom, and that the evolution actually occurs in an
infinite-dimensional phase space. It cannot be reduced to a
finite-dimensional problem, as all the eigenvalues play es-
sential roles in the dynamics. As the fixed point is unstable,
the trajectory leaves it in the direction in the phase space
defined by the discrete eigenvalues. This motion is exponen-
tial as well as oscillatory. After complicated dynamics in the
whole phase space, the trajectory, being homoclinic, returns
to the same fixed point but along a different route, as defined
by the continuous spectrum. This return is also accompanied
by oscillations, as all the eigenvalues in this problem are
complex. This scenario is similar to the one described by
Shil’nikov’s theorem[11,17].

This process can also be compared to the relaxation oscil-
lations in nonlinear systems with one degree of freedom
[18]. The frequency of those oscillations is related to the
relaxation parameters of the system rather than to real fre-
quencies. Our exploding soliton is an example of a relaxation
oscillation in a system with an infinite number of degrees of
freedom. The main feature of these oscillations is that all
complex eigenvalues play an important role in these oscilla-
tions. As with any other relaxation oscillations, the period of
the oscillations is not fixed and varies from one explosion to
another.

B. Perturbation functions as supermodes of a coupler

The soliton instability becomes more complicated when
there are several modes of perturbation with positive real

FIG. 7. Real(dotted line) and imaginary(dashed line) parts of
(a) the even and(b) the odd perturbation functions, normalized for
convenience. The solid lines in(a) and (b) show the amplitude of
the soliton itself.

FIG. 8. One cycle of evolution of an exploding soliton in an
infinite-dimensional phase space.
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parts. As we have only two modes, the changes of the soliton
shape can still be explained using a relatively simple ap-
proach. For a soliton, the perturbation function is essentially
a mode of a waveguide. The splitting of the function into two
parts, as shown in Fig. 7, makes it look more like a mode of
a coupler rather than a mode of a single waveguide. We
know that a coupler can have so-called supermodes. These
are symmetric and antisymmetric combinations of modes of
each of the waveguides comprising the coupler. We also
know that these supermodes have slightly different propaga-
tion constants.

Similarly, our symmetric and antisymmetric perturbation
functions have slightly different eigenvalues. The difference
between the eigenvalues is defined by the distance between
the left- and right-hand sides of the perturbation functions,
which are separated by a region of exponentially decaying
amplitudes from each side. As a consequence this difference
is exponentially small. We have been able to distinguish the
difference between the eigenvalues numerically[see, e.g.,
Fig. 5(b)]. Nonetheless, even though small, this difference
can play an important role in the dynamics.

A combination of symmetric and antisymmetric modes
produces an asymmetric perturbation. Hence, generally
speaking, the explosions are never symmetric. The chaotic
soliton profile during the explosions is neither an even nor an
odd function oft. It comes close to being an even function
only during the laminar regime of evolution. The almost
equal values of the eigenvalues for even and odd perturba-
tion functions make the explosions asymmetric, in the sense
that each explosion occurs predominantly on one side of the
soliton. Then, the growth of the perturbation at one wing of
the soliton can be suppressed, and at the opposite wing can
be enhanced. We observe this interesting feature clearly in
Fig. 1.

V. ENERGY CONSIDERATIONS

A. Energy flow across the soliton

The above results show that the soliton is stable in its
central part but unstable in its wings. To some extent, this
feature can be understood if we recall that solitons in dissi-
pative systems have parts generating energy and parts dissi-
pating it. The analysis can be done, based on the continuity
relation for the CGLE equation, and this can be written in the
form

]r

]z
+

] j

]t
= P, s5d

wherer is the energy density,

r = ucu2.

The corresponding fluxj is

j =
iD

2
scct

* − ctc * d,

and the density of energy generationP is

P = 2ducu2 + 2eucu4 + 2mucu6 − 2buctu2 + bsucu2dtt.

The last term distinguishes Eq.(5) from the conservative
system whereP is zero. For a stationary solution, the energy
densityucu2 does not depend onz. Therefore, the first term in
Eq. (5) is zero. Hence, the energy fluxj is defined by the
regions of energy generation and loss. The energy flows from
the parts where the energy is generated to the parts where it
is dissipated. A large energy flow may create turbulence and
corresponding instability.

Figure 9 shows the curve for the energy fluxj across the
soliton as a dotted line. It is zero in the center of the soliton
and has opposite signs at its wings, reflecting the fact that
energy flows from the center to the tails. In the figure, we
also showPstd as a dashed line and the soliton itself by a
solid line.

B. Three stages of the soliton cooling process

The central part of the soliton is the source of the energy
generation, as we can see from the curve forP in Fig. 9.
Literally speaking, it is the hottest part of the soliton. The
energy flows from the center to the sides of the soliton and is
dissipated at its wings. This process is nothing other than
soliton cooling. Depending on the parameter values of the
system, soliton cooling can be laminar, wave assisted, or
turbulent. When the soliton is stable, the shape is a smooth
function of t and the energy flow is laminar. This happens at
values ofn below −0.41 when the real part of the eigenval-
ues is negative.

Keeping the rest of the parameters fixed, at values ofn
around −0.41, the discrete eigenvalues obtained from the lin-
ear stability analysis described in Sec. III cross the vertical
axis in the complex plane, thus gaining a positive real part.
As soon as the real part becomes positive, the instability
develops. If this growth rate is small enough, any perturba-
tion will develop until saturation is reached, giving rise to
periodic wave motions in the soliton wings. In this regime,
the energy flow to the soliton tails exceeds the value at which
laminar cooling is possible. Small amplitude waves appear in
the soliton wings and these assist the soliton cooling process.

FIG. 9. Energy generationPstd (dashed line) and energy fluxjstd
(dotted line) across the soliton. The soliton profileucu, denoted by
the solid line, is included for comparison(RHS scale).
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Figure 10 shows an example, forn=−0.41, of such soli-
tons with waves in both wings. These waves are defined by
the two sets of perturbation functions, and the frequency of
the oscillations is very close to the imaginary part of the
eigenvalue with the largest real part. The closer we are to the
bifurcation point, the closer is its angular frequency to this
imaginary part. The symmetric and antisymmetric perturba-
tion functions can be involved in various proportions, de-
pending on the initial conditions. As a result, the symmetry
of the oscillations is determined by the initial conditions.
Figure 10 shows antisymmetric oscillations around the soli-
ton. The oscillations can also be symmetric, as shown in Fig.
11, or any combination of the two, in accordance with the
fact that the soliton has even and odd perturbation modes.

The soliton cooling process is still laminar but wave as-
sisted here. The periodicity in thez direction, related to
waves in the wings, can be seen clearly from Fig. 12, which
shows the soliton intensity at a fixedt of the soliton profile,
namely, at ±3 from the center of the soliton, versusz. Similar
periodic behavior occurs if we plot the soliton intensity for
any other value oft.

Different modes of oscillation have different phase delays
between oscillations in the right or left wings of the soliton.

The presence of even and odd perturbation functions creates
a situation where the two wings of the soliton seem to oscil-
late independently. The three curves in Fig. 12 are for the
same equation parameters but different initial conditions.
Each initial condition inevitably converts, after some propa-
gation, into a periodic solution with fixed amplitude and pe-
riod, but with a random phase relationship between the os-
cillations of each wing.

On further increase of the parametern, the wave ampli-
tude at the soliton wings increases, providing higher energy
flow and better cooling conditions. At certainn, the wave-
assisted stage also becomes impossible and waves are trans-
formed into chaotic formations, thus, transforming the sta-
tionary soliton into an exploding one. This consideration
allows us to distinguish three clearly pronounced stages of
the soliton cooling process.

We can formally compare the three stages of the soliton
cooling process with the processes occurring in Rayleigh-
Bénard convection experiments[19]; namely, the Rayleigh-
Bénard phenomenon is an instability of a fluid which is con-
fined in a thin layer, and is heated from below to produce a
fixed temperature difference. Depending on the temperature
difference, the process of heat transfer changes. When it is
low, we have homogeneous heat conduction, at higher val-
ues, the convection pattern appears, and if the temperature
difference is very large, then the fluid rises very quickly, and
a turbulent flow may be created. We should stress that at this
stage we can only give this analogy rather than compare
these two phenomena in detail.

FIG. 10. Antisymmetric oscillations around the soliton.

FIG. 11. Symmetric oscillations around the soliton.

FIG. 12. Soliton intensityucu2 versusz for the same equation
parameters but for three different initial conditions. The curves in
(a) are for the rhs tail(namely, fort= +3) and the curves in(b) are
for the LHS tail st=−3d. The oscillations are independent and can
be in phase(solid line), out of phase(dotted line), or at another,
different phase difference(dashed line).
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VI. DISCUSSION

Nonlinear dynamics operates with phase space and spe-
cial points and objects in this space. We can link our results
to these objects developed in the case of systems with a finite
number of degrees of freedom. There is never a one-to-one
correspondence, but common features between these objects
can certainly be noticed. First of all, the stationary soliton is
fixed in z, and therefore it is a singular point of a system, just
like any other stationary solution. Pulsating solitons change
their shapes periodically, and therefore they are equivalent to
limit cycles. They all have the basic properties of limit
cycles. They bifurcate from stationary solitons at certain val-
ues of parameters. The periodic motion becomes stable after
this bifurcation, while the stationary soliton becomes un-
stable. Nearby trajectories in the phase space converge to the
pulsating soliton, rather than to the stationary solutions. This
convergence occurs in the same way as trajectories in two-
dimensional phase space converge to stable limit cycles.

Exploding solitons have a counterpart in finite-
dimensional dynamics in the form of relaxation oscillations
[18]. We recall that relaxation oscillations also form a limit
cycle which is more complicated than a simple circular struc-
ture. The period of relaxation oscillations is related to relax-
ation parameters in the system, rather than to real frequen-
cies. At the same time, when the number of degrees of
freedom increases, the dynamics becomes more complicated.
Our present study shows these complications. It shows that,
in addition to the simple, almost periodic behavior inz, the
soliton can have lateral instabilities with energy bursts shift-
ing to the left or right in each explosion.

Alternatively, exploding solitons can be considered as
strange attractors. The exploding soliton solution is chaotic
rather than regular. At the same time, the solution stays lo-
calized and it does not leave a certain region in the phase
space. Moreover, nearby trajectories converge to this region,
so that a localized initial condition becomes an exploding
soliton after some distance of propagation. These analogies
help us to understand the phenomenon to some extent, but
careful studies using linear stability analysis and beyond are
needed to give a more complete picture.

VII. CONCLUSIONS

In conclusion, we have found that, at certain values of the
parameters, solitons can have strongly asymmetric explo-
sions. These have a counterpart in nonlinear dynamics with a
finite number of degrees of freedom in the form of relaxation
oscillations. We gave qualitative explanations for this effect,
after carrying out a linear stability analysis. We revealed a
three-stage soliton cooling process in the transition from sta-
tionary to exploding solitons. These results can be helpful in
predicting instabilities of passively mode-locked lasers and,
as a result, in helping to make them more stable.
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