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Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations
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Spatial- and time-domain versions of the unidirectional pulse propagation equa®®E are derived and
compared from the point of view of their practical application in simulations of nonlinear optical pulse
dynamics. A modification of the UPPE suitable for ultrathin optical waveguides, such as submicron silica
wires, is also presented. We show in detail how various, previously published propagation equations follow
from the UPPE in a unified way that clearly elucidates their underlying approximations and areas of

applicability.
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[. INTRODUCTION rect way to truncate the perturbation series such that a con-

fstent model is obtained.

Propagation equations have been important computationa - . .
pag d b b The goal of this paper is threefold. First, we want to ex-

tools in many different areas of optics, especially in nonlin- ) . !
ear optics. On one side of the spectrum we have numeric a_nd the development we started in Redd], this artl'cl'e
eing sort of a long version of the latter. [R4], the unidi-

Maxwell's equations solvergsee, e.g.[1]) that capture the X X - :
light-propagation physics very accurately, but require largef€ctional pulse propagation equatidPPE was introduced

scale computational resources for most problems. The nuf i . : '
merical difficulty of the direct Maxwell’s equations simula- m_the _vvhole[three-d|men5|ona(BD)] space. Here, we add to
(EhIS picture the complementary approach, namely a UPPE

. ersion solved in the spatial domain, starting from initial
On the o_ther side .Of the spectrum we have“th_e workhorsg Qata given in two spatial and one temporal dimensions, as it
the nonlinear optics, the nonlinear Schrodinger equatior)

o . . . is most usual in optics.
(NLS) (see[2] for applications in optics that considerably our second gogl is to provide a unifying framework for

reduces the computational effort and works extremely welly nigirectional optical propagation equations. We show in
for certain propagation problems. However, its computaetajl how various equations can be derived starting from the
tional simplicity comes at the price of several approxima-yppg and employinghe same procedurthat clearly eluci-
tions that restrict the applicability of the equation. As a con-qgates the physical meaning of all underlying approximations,
sequence, although the NLS often works far beyond whaind also reveals relations between different equations.
one would naively expecfl,3], it generally fails for ul- Last, but not least, our third goal is to provide a brief but
trashort pulse$4—-10Q. usable reference for practitioners of numerical nonlinear op-
Considerable effort has been devoted to designing propaics simulations. We identify problems suitable for the time-
gation equations that would share the advantages of both ttend spatial-domain UPPE equations. We also show that the
“raw” Maxwell’s solvers and the “simple” NLg11-14. UPPE can be implemented in an equally straightforward way
Several types of equations with “correction terms” were de-as, say, the NLS equation. We emphasize that the wider ap-
rived extending the region of validity of the NLS, while pre- plicability of the UPPE does not come with any substantial
serving its computational simplicity. In most cases, the basicomputational penalty in comparison with some other, more
idea was to maintain the unidirectional character of the NLSestricted equations. Thus, the UPPE should provide a ro-
equation, and relax the quasimonochromatic and slowbust, widely applicable computational tool. Although we do
evolution requirements. Most authors concentrated on reahot discuss technicalities, this paper is also intended as a
space representatiorjd1,12,14, but parallel efforts were guide for implementing practical solvers based on the vari-
made in the spectrdll5] and mixed[13] representations as ous versions of the UPPE.

well. Issues of the time-domain dispersid6-19, vectorial The rest of the paper is organized as follows. In the Sec.
character of ligh{20,2]], and nonparaxial propagation were |l, we specify the types of media for which we derive our
addresse(6,21,23. propagation equations. Then, for the sake of concreteness,

All non-Maxwell pulse propagation equations exploit, in we outline a generic model for ultrashort, high-power pulse
one way or another, the assumed localization properties giropagation in gases and condensed media in Sec. Ill. Al-
pulsed solutions that propagate in a nearlyvariant way. though most equations do not rely on any specific features of
The propagation equation then describes the evolution “othe model, we feel it is useful to provide the reader with a
top” of this self-replicating translation. However, different concrete example. In Sec. IV, the general coupled-mode
equations required different approximations to be invokedequation is derived and serves as a starting point for the
for their derivation, and the physical significance of the ne-bulk-media UPPEs, and can be used for fiber-like structured
glected terms is not always evident. Moreover, for equationsnedia as well. Section V A shows the derivation of the
that are derived as perturbation expansif2$23 in terms  z-propagated UPPE in detail. Section V B follows with a
of some small parameters, the question arises about the catescription of its time-domain UPPE counterpart, and Sec.
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V C continues with a discussion of some practical computagases25—-41], condensed bulk medigt2—4§, and in con-
tional issues. In Sec. V D, we present a UPPE that extendgentional, microstructured, and tapered fib¢4§—49, as
the generalized NLS, and is suitable for very thin, high-well as in ultrathin silica “wires'T50].

contrast optical waveguides, such as submicron silica tapers The optical Kerr and stimulated Raman effects can be
or silica “wires.” Section VI is devoted to the systematic described in terms of local modification of the optical sus-
derivation of several previously introduced propagationceptibility,

equations. Here we draw a consistent, unified picture that R .

connects different equations into a hierarchy, based on their P=€AXE, (4)
underlying physical restrictions. Finally, we conclude in Sec
VII with a brief discussion and a summary.

Il. MODEL MEDIUM PROPERTIES Ax= Z”b”Z{(l —Hir+ ffo R(DI(t- T)dT} )

A. Linear medium properties

‘that responds to the history of the light intendity

Here, f stands for the fraction of the delayed nonlinear re-
Our goal is to systematically derive a hierarchy of elec-sponse andR represents a memory function that describes
tromagnetic field propagation equations suitable for numerithe stimulated Raman effect. Often, parametrization in the
cal simulations of optical pulse propagation. We are interform R(7)~sin(Qne™'" is sufficient for ultrashort pulses
ested in approximating localizedin time and space [51]. The advantage of this approach lies in that its easy
solutions to Maxwell’s equations. Such pulse solutions usuimplementation does not require calculation of the convolu-
ally propagate in a well-defined direction which we choosetion integral in the Fourier domain. The convolution
as the positivez-coordinate axis direction. Therefore, we re- approach must be used in case the memory function is
strict ourselves to a medium with no sharp optical interfacesneasured and parametrized in a complicated way, e.g., in
crossing thez-coordinate axis, and consider a nonmagneticsilica [52].
dispersive medium with relative permitivitythat is a func- Note that the above expressions neglect the chromatic dis-
tion of the transverse coordinatesy, and of the angular persion of the Kerr effect. Althoughy may exhibit a finite

frequencyw, memory, it acts on the instantaneous valueEobnly. This

(1) fact greatly simplifies practical calculations. Moreover, there
is only rather limited data available on frequency depen-

This medium specification includes any dispersive homogedence of the nonlinear coefficients, (see Ref.[53] for

neous medium, such as air or water, as well as structuregilica). Therefore, the “background” index of refractiop is

fiberlike media, such as photonic, microstructured, and tataken to be constant, too, usually at the central frequency of

Ezf(w-X'Y): M= Uo-

pered optical fibers. the initial pulse.
Often, it is necessary to account for the response of the
B. Nonlinear material response optical field to the presence of a dilute plasma. Because of

the extremely short times scales implied by the pulse dura-
tion, plasma diffusion and ion motion can be safely neglected
in most cases. Thus, the free-electron dengitis usually

obtained as a solution to an equation of the following type

D= €€E* E+P. (2) [35,36,5%:

Nonlinearity, and other effects beyond the linear chro-
matic dispersion will be lumped in the polarizatiénin the
material constitutive relation,

— _ 2
The asterisk in this formula stands for the temporal convo- dp=alp+Db(l) - cp®. (6)

lution integral, with € being the memory function corre- The first term represents the avalanche free-electron genera-

sponding toe(w,x,y). The(nonlineay polarization is an “ar-  tion, with | being the light intensity, the second term is the

bitrary” function of the electric fieldP=P(E). We will also  MPI, which is a highly nonlinear function of the intensity,

include a current density that is nonlinearly driven by theand the last term describes plasma recombination.

optical field One usually assumes that the collective electron velocity
. v responds to the optical field and, consequently, the total
i=i(E), (3)  current density is governed by the following simple equation

for capturing interactions with dilute plasma generated by(see, e.g., Rel54]):
the high-intensity optical pulse. d. e? - -

While the derivation of various propagation equations d_tj(t) = n_]ep(t)E(t) -/, (7
does not depend on the concrete form of various nonlinear
responses, we next give an example of a generic model thathere 7, is the electron collision time.This equation can be
includes the optical Kerr and stimulated Raman effects, freesolved together withi6) to capture the effects of the plasma
electron generation, defocusing by the generated plasma, and the propagation of the optical field, namely defocusing
losses caused by avalanche and multiphoton ionizatiodue to plasma and plasma-induced losses. This approach also
(MPI). Such a model, with minor modifications, can be usedcaptures the linear chromatic dispersion caused by the
for the description of ultrashort optical pulses propagation irplasma.
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Alternatively, one can treat the plasma-induced effects as 1 (*72
f dt= $f dt (10

a susceptibility modification and lump them with the rest of

I5, which simplifies numerical calculations. The price for this
is that one must neglect the chromatic dispersion induced bfor all time-domain integrations, unless integration bounds
the free electrons. Then,P= is interpreted as a component are shown explicitly. _ _
of the nonlinear polarization time derivative arid is The transverse mOde.'T‘d*‘*‘?‘ Is a shorthand notation for
: whatever a unique identification of the transverse mode re-
approximated by . ) . L
quires. For example, in a homogeneous medium, it includes
two transverse components of the plane-wave’s wave vector
il . L . .
e = and an index that specifies the polarization.
—E, (8) : .
Mewr(1/7 = iwg) To keep the notation short, we also use the convention
that if modal fields appear without explicitly showing their

with wg being a chosen reference angular frequency. It need@Uments, the time-dependent and propagation phase factors

to be emphasized that this approximation not only com-are understood to be absorbed into modal fields,

pletely neglects the plasma induced chromatic dispersion,
but also modifies the “correction terms” that we discuss in
the following.

We also treat losses due to multiphoton ionization as non- Hoy = Ho %, y)ePml@ziot (11)
dispersive effects. Either an equivalent currése¢e, e.g.,
[12,54) or imaginary susceptibility contributions are in- The general orthogonality relation
cluded that correspond to the local rate of free-electron gen-
eration. Note that this is a universally utilized approximation 5 18 g o _
in the femtosecond pulse propagation area, but if the pulse fz [Em > Hy = Him X Enlixdy = 20mNn(@) - (12)
spectrum broadens in such a way that new frequencies carry.
a significant portion of its energy, the absorption losges Wil be used below.
well as MPI generation rateshould be frequency selective.

-T2

P = eAxp(p)E=p

£ = E(wx,y)gPn@ziot

IV. COUPLED-MODE EQUATIONS

1. INITIAL DATA AND MODAL EXPANSIONS Having fixed the notation, we proceed with the derivation

of the z-propagated UPPE. First, we follow a textbook
Most often, the initial data for optical pulse propagation method based on the reciprocity relation that leads to a gen-
are given(or approximateylin the x,y,t domain and the era| form of coupled-mode equation. Then, we specialize the
corresponding “initial value problem” is solved in tzedi-  intermediate result for the case of the homogeneous dielec-

rection. We refer to such equationsapropagated propaga- tric medium and for the fiberlike geometry. We start from
tion equations. If, on the other hand, the initial data is knownviaxwell's equations,

in the x,y,z domain, equations are solved in the time do-
main, and we term thent-propagated equations. From a j+aP+ede* E=V X H,

practical point of view, the- andt-propagated equations are

pretty much equivalent, but thepropagated versions are .

much more popular in the literature. We will therefore ~ odH =V X E, 13
present detailed calculations for tagropagated equations

. hich we scalar multiply by the complex conjugate modal
and show theit-propagated counterparts only for the mostW 1oh W WPy oY plex -~

fields, including their time and-dependent phase factors

important case. gtiot-iBn(w)z
Thus, let our initial data be given in they,t domain. '
Then, thex,y components of the electromagnetic field of a g:n (] + at|5) + GOE:n'até* ézg’r*nﬁ x H,

pulse propagating along theaxis can be expressed as a
superposition of the electromagnetic modal fields _ -
- poHym-dH=H,-V X E. (14
§ w,X, . . Let us rearrange both right-hand sides as follows:
i =3 Ao x ] I gt ? ?
H(xy,zt) me Hun(®,X,Y) E ([+aP)+ el -e* E=V -[A X E]+H [V X ELl,
(9)

é(x, A

whereA,(w,z=0) are known from a given initial condition. #ol HH =V - [EX Hp [+ -V X Hp], - (15)
The sum runs over all transverse modes and over a discregsd use Maxwell's equations for the complex-conjugate
set of angular frequencies, the latter corresponding to a finitanodes that appear in the last terms,

large normalization “volumeT in the time domain. Inwhat . I, .
follows, we use the notation E-(j+0P) + €l de* E=V -[H X E] = poH - dH,
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— oM G =V [EX Hol+ eF - de* &, (16) TPt ,2) = = %e‘"‘zz
Next, we subtract the two equations and integrate over the z
whole xytdomain, using the fact that fields vanish at infinity, XJ dxdydtei(wt_kxx_kyy)

o o Ly, T

Em - (j + 6P)dxdydt= 4 fz- H X &, ]dxdydt

J o apravae [ 2t goc x&,-[fxy.z) +aPxy.zb]. (24)
_ &ZJ Z-[é x 73[:”]dxdydt tF;en‘orming the temporal and spatial Fourier transforms leads
(17) ikz2 iw -

Note that only thex,y components of the pulse field appear aZAkx'ky*S"’(w’z) ﬂe 6 %P"x'ky(w’z)

in this equation. Thus, keeping in mind the implizit de-
pendence of the modal field, we insert the modal expansion - _fk (w,Z)]. (25)
(9) and use the orthogonality relatigh2) to obtain the evo- xYy

lution equation for the expansion coefficients, This system of equations determines the evolution of the two

20t - transverse components of the electric field, which can be
m(@,%,Y) - [[(X,Y,1) obtained aSEéx, ’+(w,Z):E$1'2 é)sLAkX,ky,s&(wvz)eikz(kx'ky’w)z-
We thus arrive at the homogeneous-medium UPPE,

1
azAm(w:Z) == N ()

+ atﬁ(x,y,t)]dxdydt (18)

&zékt,k Hw2)= ikzéklx,kyﬁ(wlz)
V. UNIDIRECTIONAL PULSE PROPAGATION y

EQUATION (UPPE) + > &l [2 o ka ky(w 2
A. The z-propagated version s1.2
The above equation can serve as a starting point for the o - (.2) (26)
derivation of various propagation equations in many sys- o2k Tk

tems, including optical fibers, hollow waveguides, micro-
structured and tapered fibers, and ultrathin silica wires. Herélere, k,= \ o?e(w)/ c2—k2— ky and one has to keep in mind
we specialize it to the case of a homogeneous, dispersiviat the polarization vecto also implicitly depend on the
medium. The eigenmodes are specified by their transversgave vector. Although this equation describes the transverse
wave numbers, polarization indsx 1,2, and gropagation- field components only, the-component of the field can be

direction sign %, obtained from the known transverse componébf if it is
m=k ks + (19) needed for the caIcuI:ation of the nonlinear polarizaffoand
. of the current density.
The modal fields are the plane waves We will refer to Eq.(26) as the full,z-propagated UPPE.

Its derivation is formally exact and, naturally, a similar equa-
tion holds for the backward-propagating portion of the field.
However, to close the system of equations for practical cal-
culations, one needs to calculate the nonlinear responses
given byI5 and f which in turn requires knowledge of the
completefield. Since the whole purpose of unidirectional
equations is to eliminate the need for knowledge of the
“backward-propagating” portion of the field, we have to
k= {Ke Ky k, = Vole(w)/c? - K- K2} (220 adopt an approximation at this point. Instead of calculating
P(E) j(E) from the complete field, we approximate these
quantities by their counterparts obtained from the simulated

forward-propagating f|eI(Ef,

Ei i e = & Xk +ikyy ko, k)], (20)

whereég, , are unit polarlzauon vectors normal to the wave
vector

These formulas allow us to calculate the modal normaliza-
tion constantsNy s+(w) [see Eq(12)]. To make the con-

tact with the numerical solver implementation closer, we
choose to normalize the plane-wave modal fields to a large,

finite volumeL, X L, X T. The normalization consta(w) P(E),j(E) — P(Eq),j(Ep). (27)
then reads Put in words, this approximation requires that the field “re
S,k K,) flected” in the backward direction is weak from the point of
Ny i, s() = LyLy, (23)  view of generating the nonlinear response. Naturally, the
Mow s . . .
necessary condition for that is that the nonlinear response is
and the evolution equations for the two polarization compo-tself a small perturbation on the background of the linear
nents propagating in the positizedirection are medium.
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In many practical applications, thecomponents of the in complete analogy with the-propagated version, we close
field and of the nonlinear response are negligible in comparithe system of equations by calculating the nonlinear re-
son with the transverse ones. In such a regime, the equatiafhonses from the forward-propagating field only, thus ap-
can be further simplified to a two-component or scalar formproximating
To this end, the sum over the polarization vectdgs, , &; & o L )
is replaced by an identity operator in the transvepsgaxia) P(D),j(D) — P(Dy),j(Dy). (31
vector subspace. This is a fair approximation, since this pro- o
jector acts on the nonlinear term, which itself must be aote that, unlike in the-propagated case, we solve the non-
small perturbation in view of27). The scalar form of the linear material constitutive equation for a given vector field

equation then reads, D and express the polarizatiﬁas its functional. This is in
- the spirit of most numerical Maxwell's equations solvers
E « (0,2) =iKEy  (,2) + 'szk (w,2) whereE, needed for the time-derivative evaluation, is calcu-
" " 2e0c, lated fromD

® One can see that the physical nature of the underlying
- zeoczkzlkx,ky(“"z)' approximation, expressed in Eq&7) and(36), is the same

in both thez andt-propagated versions of the UPPE. That
makes these equations essentially equivalent from the point

- 2 2 _ 112 _ 12 ) .
k= Voe(w)/c” — K~ k. (28) of view of how accurately they capture the pulse propagation
We will refer to this equation simply as thepropagated Physics. There are, however, practical issues that make one
UPPE, since it is actually its most useful form. or the other equation better suited for a given purpose. We
briefly discuss these computational aspects in the next sec-
tion.
B. The t-propagated version
The UPPE solved in the time domain was derived in Ref. C. t-propagated versusz-propagated equation:
[24]. It is nothing but a projection of Maxwell's equations Computational issues

onto forward-propagating half of the plane-wave space, and
in contrast ta(26), it describes the spectral amplitudes of the
electric induction vector,

For most practical purposes, especially when one intro-
duces additional approximatiofs.g., scalar field, axial sym-
metry, etc) the two approaches are practically equivalent.
. o [ IZIZ} [iw(IZ) A ] Both are very large systems of coupled, nonlinear ordinary
D) =iw(KDEt) + | 1-— | -| ——P(t) |. (29  differential equationgODE’s) with highly oscillatory solu-
k 2 tions. Available ODE solver libraries can be used, although
Here,lz is a 3D wave vector labeling the spectral amplitudesSUCh canned” routines are .often' written with relatively
- o small systems of equations in mind, and may use more
D(t) that evolve in time. The “free-plane-wave” angular fre- memory space than is actually necessary. We have not no-

quencieSw(IZ) satisfy the dispersion relation of the given ticed a big difference between numerical efforts required for

(homogeneoysdielectric medium, the two UPPE versions, at least in the “paraxial situations.”
The difference between the two becomes more appre-
w’e(w)/c? = K? (30) ; ; ; ;
: ciable in a regime of extreme focusing and/or when the vec-

Hence, the first term of the equation is the exact linear propalor effects are not negligible. Thepropagated version only
gator written in the spectral representation where it is diagdives us the transverse fields and though the longitudinal
onal. The second term on the right-hand side represents tf@mponent can be calculated from these, this is more com-
nonlinear interactions expressed in terms of the polarizatiorPlicated than in the-propagated version. Thus, in such a
We have factored out the transverse projection opefdtor fegime, thet-propagated equation is more straightforward to

—Ilelkz] to make it evident that the “initial conditionV -D |mplement._ . . .
. : ) . Calculation of the nonlinear responses is another aspect in
=0 remains preserved during the evolution, as it should.

S hich the z- and t-propagated equations pose different re-
Note that the structure of the equation is the same as th%“ bropag q P

f th ted on: The riaht-hand sid ist irements. In both versions, it is computationally conve-
ot the z-propagated version. 1he rignt-nand side ConsIStS Ok, 14 jntroduce a moving frame of coordinates that follows
the linear propagator and of the nonlinear response term th%

acts as a perturbation to the former. However, here we hav&roup velocity of the initial pulse(Note that if chromatic

an equation that holds for all three componentsDofFor  dispersion is strong and spectral broadening occurs, prefer-
practical purposes, one solves the equation for two compogply on one side of the spectrum, it may be advantageous to
nents and only calculates tirecomponent from the diver- adjust the moving frame velocity accordinglyery often
gence equation when needed for calculation of the nonlineahe evolution of the pulse is relatively slow in the moving
responseP. frame, and the adaptive integration st&p can be signifi-
Just as in the-propagated case, the equation is formallycantly longer than the temporal length of the computational
exact. Together with its backward-propagating counterparlomaincT (multiplied by the speed of light This is not a
they are equivalent to Maxwell's equations. In practice, andoroblem in thez-propagated version, since the whole history

e center of the pulse, usually with the velocity equal to the
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of the optical field is available at evewand the nonlinear One of the decisions to make when implementing the
response is straightforwardly calculated along thexis of  solver is to choose a method to control the adaptive ODE
the computational domain. On the other hand, in thesolver. We usually employ a conservative approach and com-
t-propagated equation, the respori¥,y,z,t) is normally  pare two solutions obtained with a coarse and finer step size.
calculated at each spatial location. If the response exhibitsess expensive approaches are certainly possible, for ex-
memory, such as the stimulated Raman effect, or plasmample, monitoring maximal intensities and/or plasma densi-
generation, previous “time slices” of various quantities thaties, which correlate well with the computational effort

contribute to the response, e.g., the plasma densityeeded to resolve the solution properly, is one simple way to
p(x,y,z,t-At), must be kept in memory. This approach conirol adaptive integration step. However, it requires some
works well as long as the integration stept is on the  «yning” of the step-change decision thresholds and can fail

micron scale. However, if the slow evolution of the pulse, gyficiently decelerate the solver in some extreme self-
allows a very long integration step, such tledit is larger focusing situations

than the size of the computational domain along zteis,
L,, nonlinear responses must be calculated differently. This is
because in the moving frame the past valueptf,y,z,t D. Optical waveguide z-propagated UPPE

—AD transforms intop(x,y,z=vgAt,t=AD), which may be Recently, very thin tapered fibers and submicron diameter

located outside of the computational domaim it is suffi- . i . .
ciently large. Fortunately, under such circumstances one caﬂIIca wires[50] have attracted much attention. These high-

safely replace(x,y,z,t-At) by its current-time value on the contrast waveguides exhibit very ;mall mode areas that de-
same “characteristicsp(x,y,z—vgAt,t), which is always pend strongly on the ffeq“ef‘cy- Since the frequency eren—
available in the computational domain. This is possible be-dence Qf the modal f|el<js IS comlpletely neglected in the
cause the long integration step is only achievable when th@€neralized NLS equation that is commonly used for
evolution of the pulse is relatively slow and, consequentlymicrostructured-fiber simulation, the new waveguides, such
this mapping of the local history onto the spatial profile is by@S silica wires, will in certain situations require an improved
default a good approximation. Then, the calculation of thePropagation model. We describe such a model in the follow-
response proceeds along thaxis and thus becomes essen-INg.
tially the same as in the-propagated equation. Let us restrict the propagated pulse to the fundamental

To summarize the above discussion, th@ropagated mode of the straight cylindrical waveguide of radasand
UPPE is preferred in most conventional pulse propagatioivrite the electric-field modal expansion in terms of tia-
situations. On the other hand, when severe focusing occur§)alizedmodes[N(w)=1] as
and when capturing the full vectorial nature of the optical - - o
field is required, the-propagated UPPE is more suitable. E(t,r,¢,2) = > Clw,)E(w,r,p)e Az (32)

To conclude this section, it may be worthwhile to describe @
briefly the numerical approaches to solve, say, §). As  Here, the fundamental mode electric-field components are
pointed above, these equations represent a large system of
ordinary differential equations. Besides the large number of Ea=My(r,0)f (d), a=r,¢,2, (33
equations, an important feature to consider is that in this Case eref (¢) stands for cosine and/or sine functions, depend-
it is especially expensive to evaluate the right-hand side, i.eih on aolarization and components. e '
the derivatives of the spectral amplitudggy x (w,z) with gonp P » €9
respect to the propagation varialf#eor t). Namely, to obtain & M, (r,w)coq ¢)
the polarization in Eq(28), one has to perform the transfor- _ . . .
mations between the spectral representation of the field and £y | =| Mor@)sin(g) Jexd-iot+iBw)z]. (34)
the real-space representation of the field. Then, the nonlinear & M1, w)cod ¢)
responses, such as Kerr or Raman effects, are calculated ﬁg .

. : . ing a frequency-dependent parametrization for the mate-
each point of the computational domain in real space and can_, . : :
p . o ; - _fial index of refraction, one can calculate the modal fields
be “collected” into the polarization or current density. This

. . X . : and the corresponding propagation constants exactly over the
response calcul_atlon step is ess_entlal_ly just an mplementza—esired range of frequencies
tion of the medium m_odel described in Sec. | B. _Once the For the relatively low intensities typical for supercon-
responses are k”OVY“ in the real-space representation the_y HSuum generation in microstructured silica fibers, the non-
transformed back Into Fhe 'spectral—domaln representatlorh, ear material response is due to the optical Kerr and stimu-
and all propagation derivatives can then be evaluated anlczfted Raman effects. They generate the polarization
passed to the ODE solver. '

The volume of computations necessary for the right-hand- P (r, ¢,t,2) = egAx(r, b, t,2E (1,1, 2)f (), (35)
side (RHS) evaluations is much larger than that of relatively .
simple calculations done by the ODE driver. Therefore, weVith
only parallelize the RHS evaluation and use a single-
threaded ODE solver. This greatly simplifies the parallel ex-
ecution synchronization: Roughly speaking, it is sufficient to
place synchronization barriers around the spectral tranddeing the local susceptibility modification af{ 7) the nor-

forms. malized Kerr and Raman response function.

Ax(r,¢,t,2) = 20y, FA(HEA(rL2) * R(D  (36)
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We insert these expansions into E&8) and perform in- VI. DERIVATION OF OTHER EQUATIONS FROM UPPE

tegration over the azimuthal angle to obtain S .
There are several types of unidirectional propagation

equation widely used in the nonlinear optics literature. The

9C(w,2) = iweghph, most prominent examples are those of the nonlinear
a o Schrédinger(NLS) equation[2], nonlinear envelope equa-
Xf rdr f die" @A@Y M’ (w,r) tion [11] (NEE), first-order propagation equati¢h2] (FOP),
0 aB forward Maxwell's equatiorf13] (FME), and several other
XEa(r,t,z)Kaﬁ[Efg(r,t,z) * R(H)], (37) equations that are closely related to these. The derivations

found in the literature differ from equation to equation, and
] ) ) in some cases the physical meaning of the required approxi-
where a is the radius of the waveguide strand aKd;  mations becomes hazy in the multitude of neglected terms.
=[o" dofi()f5(4) is the angular overlap integral. This is |n the following section, we show that all previous propaga-
the z-propagated UPPE specialized for the ultrathin wavetion equations are in fact special cases of the UPPE, easily
guide, such as submicron silica taper or a silica wire. Theybtained using the same, uniform procedure that clearly
generalization for two polarization components is obvious: Itidentifies what physical effects get neglected in the process
amounts to two coupled equations of the same type for thef derivation.
expansion amplitude€?w,z),a=1,2, with the coupling
through the angular overlap integrdﬂ%%. Of course, one can
include the higher-order modes the same way. ) o )
The most important difference from the generalized NLS ~ First, we adopt a scalar approximation and write &)
is that this equation takes into account the full frequencyin the form
dependence of the modal fields. The NLS is obtained readily _ ;
when one elects to replace the frequency-dependent modal ik (02 = TKE  (0.2) +1QPy i (0,2), (39)
fields by a fixed radial profile at a chosen reference frewhere

quency{): /\;l(w,r)—u\;l(ﬂ,r). Then, the radial integration

A. General procedure

—.f 2_ 12
can be factored out, resulting in the nonlinear coefficient K (ke ky, ) = Voe(w)/c? ~ Kk - ky (40)
and
2 2
= €Ny K (QLD)[AM 4(Q,1)[2 ©
4 Eonbnzfo rdr%ﬁ apl M QDM Q)% Ok k) = 41)

245002\s’/wze(w)lc2 - k>2< - kf,

are the plane-wave propagation constant and nonlinear cou-
i , Eling coefficient, respectively. For envelope equations, we
and the equation reduces to the NLS in the spectral represe xpress the field in terms of an envelope by factoring out the

tation. _ _ .. carrier wave at a chosen reference angular frequerayith
We have studied the regimes of pulse propagation in uly,e corresponding wave-vectkg=K (0, 0 wg)
trathin silica wires and tapered fibers when the deviations o

between the generalized NLS solutions and solutions ob- E(x,y,zt) = A(x, Y,z t)e R er) (42)
tained from the above improved equation become significant.

These issues will be discussed in a separate work. Here, d S|m|IarIy| fo‘r‘thednontlllnea.rt ptc:llarlzatlon: Tht(_en, as_l_ﬁ first
only want to point out some computational issues, importan? ep, we replac& andQ by suitable approximations. These

for the practical implementation of a solver based Onapproximations are usually Taylor expansions in frequency

Eq. (37) and transverse wave numbers. At that stage, one can easily
From a numerical simulation point of view, the radial in- identify the additional approximations required for the given

tegration is the main complication, because it cannot be pelgquatlon. In the second step, we transform the new equation

: into the real-space representation, which is formally done by
formed before the spectral transformations of the responsé1 placing the spectral variables Kf and O by differential

are calculated as functions of radius. Indeed, the resultin .

simulator is roughly an order of magnitude slower than its perators acting on the envelope,

generalized NLS counterpart. Fortunately, since the modal (w=wg) —id ike— 3 iky— dy. (43
fields within the core are rather smooth functions of radius, a o

very simple integration scheme that employs relatively fewAlso, thez derivative in the envelope representation goes to
sampling points turns out to be sufficient. A Gaussian inte- ;

gratilca)n Scﬂeme with eight radial samples works well. Thus, 9z = k(wg) + 9. (44
the nonlinear response is calculated in the same way as féfinally, we transform to the frame comoving with the group
the NLS for each radial sampling point, and the correspondvelocity of the pulse to obtain the desired equation. Thus,
ing responses are then “collected” during the radial integradifferent equations are obtained from different approxima-
tion. It is therefore quite straightforward to upgrade the con+ions of the linear propagatét and of the nonlinear coupling
ventional(spectral domainNLS solver to thez-propagated Q. Apart from factoring out the carrier wave, the procedure
thin-waveguide UPPE equation. is the same for a nonenvelope equation.

(38)
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At this stage we can see the approximations that are conthe previous subsection, need to be implemented to obtain
mon to all UPPE. They are those that were needed to obtaithe NLS: Approximating to second order in frequency and
Eq. (28). transverse wave number amounts to the paraxial, and quasi-

First, the optical field generated in the backward directionmonochromatic approximations for the linear wave propaga-
has to be so weak that the nonlinear response calculated frotion. The approximation in the nonlinear coupligy also
the forward-propagating field is an accurate approximatiomequires a narrow spectrum. The slow variation of the enve-
of the actual response. The obvious problem with this aptope, usually invoked in the NLS derivation, appears here
proximation is, of course, that it is nat priori clear in a only as an implicit consequence of the narrowness of the
concrete situation whether it holds or not. spatiotemporal spectrum.

Second, we essentially work with scalar equations, even
in the case of equations that couple two transverse compo-
nents. Namely, unless ttecomponents of the field and of As in the case of the NLS equation, the NEE is paraxial.
the nonlinear response are completely included, the diverHowever, in the temporal domain, the NEE goes far beyond
gence condition in Maxwell's equations is not properly re-the NLS equation. Formally, the NEE requires very little
flected in a unidirectional propagation equatj@d]. In some additional approximation in the temporal domain, and it ap-
cases this becomes evident already at the first step, when @ears to be extremely close to the paraxial version of UPPE.
equation is derived starting from the wave equation and the Indeed, we take

C. Nonlinear envelope equation

VV.-E term is already neglectg®6]. c s o
K= +k(w)—- — (kX + k), 50
(w) 2wnb(wR)( k) (50
B. Nonlinear Schrodinger equation so that the only approximation apart from paraxial is the

This is the simplest case in which we choose a referencgonstant index of refractiony(w) — np(wg) in the denomi-

angular frequencysg and the corresponding reference wavenator of the diffraction term. o
numberks=k(wg), and take Further, the first term in the above approximation is reex-

pressed as a sum of its two lowest-order Taylor expansion

_ K’ 1 terms plus the rest,
K=k +vg' (0= wp) + 5 (0= wp) = 5 (6 +K). P
R

k(w) = k(wg) + vy (@ = wg) + D(w = wg), (51)
(45) where
This is a second-order Taylor expansion dnand k,k, w N N
aroundwg and (0,0). In the nonlinear coupling coefficient, Dlw-wg=3 (0 k) (0 — wg) _ (52
we neglect all variable dependencies and take its value at the 2 \do" w=og n!
reference frequency, ] )
For the nonlinear coupling term, we preserve the fre-
0~ WR (46) quency dependence, but neglect the transverse wave-number
2€eon(wR)C’ dependence completely,

For simplicity, in the NLS we only account for the instanta- - (0~ wg) + wg (53)
neous optical Kerr effect, and write the nonlinear polariza- 2eqcn(wR)

ion envel . .
tion envelope as Here, as in the free-propagation term, we neglect the chro-

P = 2egn(wr)n,l A. (47)  matic dispersion of the background index of refraction. The
spectral representation of the equation then reads,

Inserting the above expression in®P) and(42) we obtain ) ) — _
dpA+ikgA=ikpA +ivg (0 = wg) A +iD(w - wr)A

o % | :
(9ZA+|kRA—|kRA+|Ug (w—wR)A+?(w—wR)2A _ Ic (l+w_wR> 1(k)2(+k§)A
. . 2wrN(wg) WR
| lw,
- —(C+IA)A+—Lnyl A. 48 i -
2kR( KA+ c nol A (48) L <1+w wR)P. (54
2eqcn(wR) R

It is customary to normalize the envelope amplitude such o )
that|.A|2=1. Using ruleg43) we finally obtain the NLS equa- After transforming into the real-space representation, we ob-
tion, tain the NEE,

[ ik”

. . _1
| DA (15
ok ALA—?ﬂttA+—(Zan|A|2A. A+ g GA=ID(igA+ ZKR(1+ at) A4
R

(9, + U;lat)A: wR

ik i
(49) + 27?)(1 + —at>7>. (55)
The above derivation procedure made very explicit what ap- oMbl @R “R

proximations, beyond that specified (&7) and discussed in To summarize, the additional approximation needed in this
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case is paraxiality both in the free propagator and in the i ic ., iw
nonlinear coupling, and a small error in the chromatic dis- %2Ekk,.0 = = Exo ™ 5 (K KB 05— Pk on
persion introduced when the background index of refraction 0

is replaced by a constant, frequency-independent value in (59

both the spatiotemporal correction term and in the nonlineahich is equivalent to Eq2) of Ref. [12]. After transform-
coupling term. Note that the latter approximation is nothingjng into the real-space domain, we arrive at the FOP equa-
to worry about: It is such a small effect that in practice therejg,

will almost certainly be other, much weaker aspects of the
model, such as the plasma equation, neglected nonlinear dis e ! 1
persion, and uncertain MPI parameters, to name a few. dpt )R h=2A, B drE(r,,7) - ZEOCatP(rL’t)'

(60)

' RTRII It is clear from the above calculations of the NEE and
The partially corrected NLEPC-NLS equation is similar FOP equation that, despite the rather different ways they

to the NEE. It is obtained from the UPPE in the same wayw qinally derived. th i i b .
with the only difference being the approximation adopted in ere originally derived, these two equations become equiva-

the spatiotemporal focusing term. Namely, the correctioAent .if one chooses to treat the dispersion properties of the
term of the free propagator in E@54) is replaced by its medium on the same level.
first-order expansion,

D. Partially corrected NLS

F. Forward Maxwell equation

(1 L2 wre>_lz (1 _w- wR) (56) The FME, introduced by Husakou and Herrmdaf, is
wR wr /' another nonenvelope equation that is therefore free of any
reference frequency. It was derived in an intuitive way from

the wave equation with a neglect&ﬁ-é term, though it

which leads to the equation

i i was written in a vector form. We therefore start its clean
&ZA+v51(9tA= iD(ig) A+ —(1 ——5t>ALA derivation from the fullz-propagated UPPE. However, the
2Ke WR “zeroth” step is to discard the projectd &; &, which gives
ikg i us essentially the same starting point as for the equations
T(l + —19t>7’- (57)  discussed above, only that we havécaupled z-propagated
2¢€oni(wg) WR

UPPE for each component. This tells us that the resulting

Thus, it may seem that the PC-NLS is quite close to theeduation will still be egsenftially a scalar one, meaning that
NEE, but that is not the case. The dispersion properties df'€ vector nature of light is not captured completely cor-
their respective plane-wave solutions are quite different®Ctly, and the reason for this is traced back to the neglected
While the PC-NLS provides better-than-NLS approximationVV-E. This “drawback,” however, becomes “justified” in the
around the reference frequeney, its dispersion properties next step, where we approximake and Q by its paraxial,
become rather pathological arouag=2wg, where its dif- and zero-order expansions, respectively,

fraction term changes sign as a consequence of the truncated

correction factor. As a consequence, PC-NLS should only be K =~ k(w) - (kK2 + k§) Q=~ v (61)
used when the pulse spectrum remains narrow. If the spec- 20np(w) 2epCnp(w)

trum broadens too much, artifacts in the angular distribution, ihis paraxial formulation, the equation is limited to the

of the spectrum occur around and beyane 2wg. L . o . > =
pectru . . y “R regime in which the polarization scrambling teM¥ -E does

) _ _ not play any important role.
E. First-order propagation equation Note that the above approximations férandQ are ex-
Unlike the above examples, thH&OP) equation, intro-  tremely similar to those for the NEE. Here, the chromatic
duced by Geissleet al, [12], is not an envelope equation. It dispersion of the index of refraction (sorrectly preserved.
is, however, equivalent to the NEE from the point of view of The resulting equation is then obtained by transforming to
the approximations required for its derivation, as we shalféal space in the transverse coordinate only, keeping the
see shortly. Though it is not at all necessary, we neglect théPectral frequency-time representation,

linear chromatic dispersion to obtain the same equation as i

Geissleret al. dE(X Y, w,2) = ik(w)E(X,Y,,2) + A EXXY,0,2)
In Eq. (28), we approximate 2k(w)
|ILL0(,()C
w C 5, w + ——P(X,y,0,2). (62
~ — - — + ~ — 2n
K . 2w(k,( k) and Q 2es’ (58) p(w)

This equation is equivalent to the FME H®) of Ref. [13].
which is the same approximation as the one in the NEE, onlyThe only difference is that we have not changed to the mov-
with vacuum in the role of the linear medium. Thus, E28)  ing frame coordinate§=z, n=t—z/c, because in the disper-
becomes sive medium it is computationally more convenient to use
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the frame that moves with a suitaldeoup velocity, an im-  nents are not negligible. This equations bridges the gap be-

portant detail in strongly dispersive medium. tween the numerical Maxwell's equation solvers on one side,
Thus, formulag50), (53), and(61) show that there is very and a family of unidirectional propagation equations, on the

little difference between the FME and NEE. Actually, the other.

most convenient way to solve the NEE is in the spectral The z-propagated UPPE is the propagation equation of

domain, where the correct frequency dependence of thehoice for most situations occurring in high-power femtosec-

background index of refraction can be taken into account—end pulse propagation in bulk condensed and gaseous media,

that way the NEE becomes equivalent to the FME. when the typical transverse filament size is sufficiently larger
than the wavelength.
G. Correction terms and reference frequency We have also presentedzgpropagated UPPE suitable for

strandlike waveguides with transverse dimensions compa-

To conclude this section, we would like to point out the 516 15 the wavelength, in which the modal field profiles
relation between what are sometimes called Co”eCt'or&trongly depend on the frequency.

terms” and the reference frequency and reference wave vec- Many propagation equations previously published can be

tor that appear in envelope equations. In the present ConteXyyived from the UPPE. The derivation follows the same
the correction ter.msfare Lrjlnd,\e”r_sstogd as deV|at||ofn Of. rocedure independently of the given equation type. Namely,
propaglamon uneﬁlon rom the .$8pat|otempora OCUSINY;arious equations are obtained by selecting appropriate addi-
terms[16] and self-steepening terni$8] are most COMMON  yiona| approximations in the UPPE. That way, the propaga-
examples that appear In the equations d|scus_sed apove, Hn equations can be categorized based on the captured
there are a]so perturbation approaches fo_und in the “teratur;%ysics rather a on the way they are originally derived. This
thalt so”metlm:as lead to 'numeroufs correcfuon terms. d pproach readily reveals in what situations one should expect
n all envelope equations a reference frequency and a relpq o4y ation to work well or to fail. It also reveals that some

erence wave number appear, and are mostly chosen equaldgaiions published originally in different representations are

the central frequency and wave number of the input pU|SeactuaIIy equivalent under certain conditions.

These quantities are artificial and to a certain degree arbitrary \soceover viewing the variety of propagation equations

‘I‘\ﬁ]auge'l’lyparamet_ers th%’ offcourse, do notl .appearl n e om the same point of view, with the UPPE as their origi-

axwell's “equations. erefore, any resulting solutions i, point, also shows a previously unrecognized meaning
should not depen_d on how the reference is chosen. This Ma¥% various “beyond the NLS correction terms.” Such terms,

not bel tPe case If ”}e r:eferelnce IS se:]ectec:] too far from tt)haesigned to improve the NLS equation and extend its validity
centra rquencgl do the pu sl_e, or when the sp_?rc]trum €ihto the realm of ultrafast pulses and of extreme spectral
comes too broad due to nonfinear interactions. The COMeGroadening, can be understood as corrections that “repair”
tion terms were introduced into equations to achieve g, Nis's dependence on the choice of the reference fre-

broader a applicability of the resulting equation. One way toquency. For example, the NEE equation, though it explicitly

view such corrections is that the additional terms partially. o oine . turns out to be almost reference independent
restore the equation’s invariance with respect to the choice hich is ian’icative of a “good equation.” On the other hand '
the _reference frequency. For exarplple, the spa_t1|otemporal fQhen corrections are treated as series expansions, the desired
cusing correction termoperatoy @R [1_*_'1/ wrd] ) that_ ap- “gauge invariance” with respect taz can be badly broken
pears in the NEE equation and modifies the diffraction termy,an at frequencies not far fromy.

seems to depend on _the referem,‘@_?ut it i; in fa.ct.propor- Finally, we note that thez-propagated UPPE can be
tional to the “gauge-independen&™, provided it is prop-  gq|yed with the same easer difficulty) as, say, the NEE or
erly implemented in the spectral domain. even the NLS, in the spectral domain. Ordinary differential

This observation hints at a simple but rarely performedgqyation solvers can be utilized and work well with this
check of numerical simulations based on envelope equationgquation_ The numerical solver can be easily implemented
A comparative simulation run performed with a shifted ref- ¢, fibers, radially symmetric geometries or full 3+1 dimen-
erence frequencyi.e., sufficiently different from the pulse gjona| simulations. Since the UPPE can be viewed as the
carrier frequencywill readily reveal what part of the simu-  «minimal approximation” unidirectional equation, it presents

lated spectra can be trusted. itself as a robust, universal simulation tool.
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