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Circular photonic crystal resonators
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We study analytically and numerically a new class of circular resonators based on a radial photonic crystal
reflector. The Bragg confinement enables the realization of compact resonators exhibiting both large free
spectral range and higQ-factor. The dependence of the resonator characteristics on the reflector architecture
and dimensions is studied in detail. Good agreement is found between the analytical and the numerical results
obtained by finite-difference time-domain simulations.
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I. INTRODUCTION Recently, we have suggested utilizing Bragg reflection in-
Circular resonators are key ingredients in the realizatiorptead of TIR as the radial confinement mechanism in order to
of many basic components needed for advanced 0ptica| Conb.l’eak the link between the FSR and the loss and facilitate
munication systems. During the last decade, numeroulw-loss, large FSR circular resonatdfs?]. This concept is
circular-resonator based applications such as fitgfsadd/ illustrated in Fig. 1. A disKFig. 1(a)] or a circumferentially
drop multiplexers[2], modulators[3], and delay lineq4] guiding defectFig. 1(b)] is located within a medium which
have been suggested and demonstrated. In addition, the agensists of annular Bragg layers. The confinement of the
plicability of circular resonators was shown to extend be-modal field within the defecfFig. 1(b)] or in the disk[Fig.
yond telecommunication to the fields of sensi&d, spec- 1(a)] is accomplished by Bragg reflection instead of TIR.
troscopy, and standardizatig@], as well as to basic research Unlike conventional resonators, the reflectivity of the Bragg
in QED, nonlinear optics, and other related fie[@s3). mirror can be increased simply by adding more layers. As a
For many of these applications, the circular resonator isesult, the radius of the defegr the disk can be reduced
required to exhibit low losses or, equivalently, a high quality 3jmost arbitrarily without the penalty of higher bending
factor (Q). In addition to highQ, it often desirable that the |ggges.
resonator has small dimensions or, equivalently, exhibits pisk and ring resonators based on distributed Bragg re-
large free spectral rangé&SR). Unfortunately, for conven-  flection were analyzed before for both laser and passive reso-
tional resonators, which utilize total internal reﬂeCt(an) nator app“cationS, emp|0ying various techniques such as
as the radial confinement mechanism, these requirements a¢gnformal mapping, coupled-mode approach, and field trans-
mutually contradicting. To exhibit large FSR, a circular reso-fer matrices[13]. While circular symmetric structures, as
nator is required to have a short circumference and smabnhown in Fig. 1, can be modeled accurately by transfer ma-
bending radius. In these Conditions, the efﬁCiency of the TlR{nX formalism [13], the ana|ysis of noncircular Symmetric
confinement mechanism is significantly impaired, leading tostructuregsee Fig. 2 requires different tools. Recently, we
larger power dissipation and low&-factor [9]. developed a coupled-wave approach to design and analyze
For a given bending radius, the radial confinement andch structure$l4].
hence, the bending losses, can be improved by increasing the |n this paper, we study analytically and numerically the
index contrast between the core and the cladding. On thgnharacteristics of disk resonators that utilize photonic crystal
other hand, this would decrease the FSR due to the increaggflectors. The main advantage of this class of resonators,
in the effective indexpropagation factgrof the electromag-  compared to the circular symmetric structures shown in Fig.
netic field in the core. Since there is a limit to the rEfraCtiVEJ_, is that it is suited to a greater Variety of realization con-
index value of available optically transparent materials, it iscepts. Particularly, the fabrication of such structures is com-
clear that the TIR mechanism inherently limits the ablllty to pat|b|e with the Suspended membrane Concept which was
realize circular resonators with both low losses and |arg&broven to be very successful for PC defect cavified. In
FSR. addition, unlike the circular symmetric devices, the upper
Photonic crystalPC) cavities have been extensively stud- syrface of the circular PC resonators is continuous and,
ied for highQ cavity applicationdQ values up to 4.5% 10" therefore, supports the deposition of an electrical contact,
have been demonstrajefl0]. However, these resonators thys enabling electrical pumping.
consist primarily of a defegeither point or ling, which does In Sec. Il we briefly review the coupled-wave approach
not necessarily support a whispering-gallery-mode-like soluwhich is employed to design the resonators. In Sec. Ill we
tion, or of hexagonalnoncirculay cavities incorporating tilize this approach to design circular PC resonators and to
120° abrupt bends which tend to support localized boundtyudy the impact of various photonic lattice designs on the
states[11]. resonators’ spectral features, modal field profile, and
Q-factor. In Sec. IV we study the impact of the reflector
finiteness and in Sec. V we discuss the results and summa-
*Electronic address: koby@caltech.edu rize.

1539-3755/2004/13)/0366038)/$22.50 70 036603-1 ©2004 The American Physical Society



J. SCHEUER AND A. YARIV PHYSICAL REVIEW E70, 036603(2004)

FIG. 1. An illustration of(a) a
Bragg disk resonator; ant) an
annular defect modging) resona-
tor structure.

II. COUPLED-WAVE EQUATIONS

AHP(x) + BH2 (%), X< Xo

7| B0 + BoHZ00, x>,

(4)

We consider a wave which propagates azimuthally in a
structure as illustrated in Fig. 2; a disk of dielectric material
which is surrounded by radial perturbation of the dielectric
coefficiente(p). Assuming the electromagnetic field is well |Introducing Eq.(4) into Eq. (3b) and neglecting the second
confined in the vertical dimension, the effective index ap-derivatives ofA(x) andB(x) leads to[using Eq.(3a)]
proximation[15] can be used to reduce the 3D problem to an
equivalent 2D problem. In the 2D geometry, the modal solu-

tions can be separated into two independent polarizations: da/ dH® H®\ dB/ dH® H®\ Ae
.. L. m m m m (1)
TE, consisting ofE,,H,, and H,, and TM consisting of - +—— | +—|2 +—— |+ —(AH,
p . ) dx\ dx X dx\  dx X ng
H,,E,, andE, wherep, 6, andz are, respectively, the radial,
azimuthal, and axial coordinatg46]. All the electromag- +BH§§)):O, (5)

netic field components can be expressed byztbemponent

of either the electridTE) or magnetic(TM) fields. In this

paper, we focus on the TE polarization although the analysighere the specifix dependence of the amplitudes and the

of the TM polarization is similar. Hankel functions was dropped for clarity. In previous studies
We look for a modal solution of the Helmholtz equation [13], the asymptotic approximation for the Hankel functions

in radial coordinates which is resonant in the structure showmas used to derive a simplified equation, yielding complex

in Fig. 2, with the following functional form: exponentials inx as the required perturbation profile. Here
_ we introduce the following approximation for large
E, = E(p)exp(im6), @D ) HE2/x< <dH*?/dx anddH 2 dx=~ +iH*? [14]. Ap-

wherem is an integer. The radial part of the field satisfies theP@rently, this approximation for the derivatives of the Hankel
Bessel equation: functions is more accurate than the derivative of the “con-

ventional” asymptotic approximatiofsee[14] for more de-
2d2E 5 o o tails).
P d_p2 + PE +[k%(p)p° - mJE=0, 2 Under these approximations, equati®@mcan be rewritten
as
wherek(p)=kye(p) is the wave number. We assume that the
dielectric coefficients(p) is given bys=n§ in the unper-
turbed aredp < p, in Fig. 2 and bye=n3+As(p) within the
perturbed region. Introducing the normalized radixs
=kghgp yields the dimensionless wave equation:

XPE+ XEg+ [X2—mP]JE=0, X=X, (39
A
XPE, + XE, + {xz(l +$> - mZ]E= 0, X> X,
0
(3b)

wherexy=kgngpg is the dimensionless radius of the disk. The
solution of Eq.(3) in the disk region is given by a superpo-
sition of themth order Hankel functions of the first and sec-
ond kind. When the perturbatiake(p) is small compared to
n(z,, the solution of Eq.(3) in the perturbed region can be
written as slowly varying envelopes multiplying the Hankel  FIG. 2. Schematic index profile of a PC disk resonator. Gray:
functions: material; and black: air holes.
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. @ Ag(X) @ A schematic of a circular PC resonator structure is shown
2I[HZ ()ALX) = Hi () By(x)] + 2 [ACOH ' (x) in Fig. 2. Since we attempt to design a resonator, we need to
0 know the required resonance wavelengttand the modal
+BHP(x)]=0. (6)  field azimuthal numbem. Knowing that the required pertur-

, ) bation profile is given by Eq9), the parameters left to be
@ @
It should be noted thatl * andH,’ represent incoming and jatermined arer and the disk radius,.

outgoing cylindrical waves. In view of EqE) itis clear that " qige the diski(x<x,), the modal field is given by Eq.
the per':)urbanomsh, W.h'Ch IS reqw(;ed to e_ff|(:|ently cou;;le | 4). For the field to be finite ak=0 it is required that the
power between the incoming and outgoing waves, shou mplitudes of the incoming and outgoing waves are equal,

have the following form: ) , L
i.e., A=B. As a result, the field ak<x, is given by J(x)

Hﬁﬁ)(x) *Hﬁrl,)(x) whereJ,, is themth order Bessel function of the first kind. In
Hﬁ)(x) ta HE?(X)’ () the grating region(x>xg) the field profile is given by Eq.

(10). For simplicity, we assume that the gratings extend to
wherea is a complex amplitude of the perturbation. Intro- very large radius so that the exponentially increasing term in
ducing Eq(7) into Eq.(6) and keeping only the first order in  Eq. (10) vanishes, i.e.A;=0. At the interface between the
H'Y andH'? (as in the derivation of Cartesian coupled modedisk and the gratingx=x,), both the field and its derivative
theory yields a set of coupled equations for the wave ampli-must be continuougfor TE polarization. The phase of the

Ae(X) = a

tudesA andB: coupling coefficienk=|klexp(i¢,) (or @) can be, in principal,
dAX) o selected arbitrarily(as for Cartesian Bragg reflectprst

2i +—B(x) =0, merely introduces a spatial shift of the gratir{§s However,

dx  ng this phase affects the required disk radigg,which satisfies

the boundary conditions. For the specific caseppf /2,

P dB(x) + 2 A =0 8 the characteristic equation fag is simple:J,(xg) =0. In this
: dx nS (x)=0. ®) case, the required perturbation and field profiles are given by

SinceHﬁrll) andHfﬁ) are complex conjugates of each other, the _]0, x<Xo
ratio between them is twice the phas®f the numerator and As(x) = —2lalsim2o(H® = (118

: |alsin2e(Hyp (X)] X=X,
Eq. (7) can be written as

Ae = 2|alcod20(HY) - o}, 9 In(¥), X<X

e = 2alcos2¢(HY) - .} © E(X):{ o, X< b

where ¢, is the phase ofe. It is worth noting that the Jn(x)exi = [Kl(x=xp)], x=xo.

coupled amplitude equation(®) and the required perturba- . . . .
tion profile (9) exhibit fundamental resemblance to the Car_Eqquon(ll) ylelds both the pertment per'turbatlon term and
the field profile. In order to radially confine the mode, the

tesian casgl6]. In both cases, the perturbation is determined erturbation profile must include a term with the functional

by the phase of the eigenmodes of the wave equation in th .

appropriate coordinate@lane wave for the Cartesian case fgﬂrg 9:] Eqn.(géla).r'orglégallze a PC reflector, we suggest the
and Hankel functions for the cylindrical cgse wing Index profiie:
The equations s&B), which describe the evolution of the 0= {ng_ (ng_ nﬁ)j[Zcp(HE?(x)),al]J[l 0], X>X%

amplitudes of the cylindrical waves ip, can be readily )
ng, X< Xg,

solved:
A(x) = A; expkx) + A, exp(— kx), 0, sinly)<a

@)= {1, siny) = a, (12

k
B(x) = —i—[A; expkx) — A, exp(- kx)], (10
K where -1< ayq,a,<1, ng is the material index of refraction
wherek= a/2n§ is the coupling coefficient between the out- and | is the azimuthal number of the index profile. The struc-

going and incoming waves. Knowing the perturbation profilet“re consists of a dielectric material of refractive indgx

needed to attain radial confineme®) and the modal field Perforated by holes with refractive index.
profile (10), it is possible to design and analyze a circular This index profile is the radial equivalent of a rectangular
distributed feedback resonator. PC with rectangular holes. The perforation functidty, «)

can be interpreted as a generalized rectifier ofy3jrgener-
ating square “pulses” only where §in> «. The larger the
value ofa, the narrower the “pulses.” The index profitE2)

In this section, we employ the results of the previous secincludes twadJ functions: the first generates annular slits cen-
tion to design and analyze a disk resonator which is based deered at the maxima of s{lﬁgo[Hg)(x)]} with widths that are
a circular PC reflector. The modal field characteristics araletermined bya;. The secondi function modulates these
verified and studied further by finite difference time domainslits as a function of the angkwith angular frequencyand
(FDTD) simulations. “duty-cycle” determined byx,.

Ill. CIRCULAR PHOTONIC CRYSTAL RESONATORS
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profile (12). Figure 3b) depicts a “triangular’-type lattice PC
reflector, in which every other “necklace” of holes is rotated
by =/l (I is the azimuthal periodicity of the perturbatjon
The dielectric profile of this lattice fox> X, is given by

8triangular(xl 0) = n(z) - (ng - nf,){j(2<p[H%)(x)],a1)
X3(e[HF (01,03(16,,)

+J2e[HP (0], a1 - I (A HP (x)]1,0)]
XJ[10+ 7, a5]}. (15

The perturbation in Eq.15) consists of two terms where one

of them generates the rotated necklaces of holes and the
other generates the nonrotated necklaces. An additinal
function was used to distinguish between the two sets of
holes. The leading term of the perturbation profile can be
calculated by substituting E¢13) into Eq.(15) and keeping
only the terms with first order ip and zero order ird. Not
surprisingly, the outcome of this calculation is identical to
the “rectangular” lattice cas@4).

(d)

FIG. 3. The different reflector typesa) “rectangular” lattice, Figure 3c) depicts a reflector which does not consist of a
(b) “triangular” lattice, (c) “varying{” lattice with rectangular  sjngle azimuthal modulation frequency. This type of reflector
holes, and(d) "varying" lattice with circular holes. was constructed with an attempt to keep the hole shapes as

close as possible to an ideal square. As a result, the number
For ny,=1 (air holeg, the Fourier expansion of the perfo- of holes per “necklace” increases for larger radii. We desig-
ration functionJ(y, @) is given by nate this type of reflector as a “varyingattice. This type
of reflector does not have an equivalent Cartesian PC be-
cause it does not form a genuine crystal. Nevertheless, in the
S (-1)m-1 small perturbation regime we expect the characteristics of
- E ———— cogm sin Y a)]sin(my) such a resonator to be similar to those of the resonators
mey M7 shown in Figs. 8a) and 3b).
S (—1)m+1 In the_r resonator depicted in Fig(d3, the concept de- _
- > ———= sinfm sin"Y(a)Jcogmy). scribed in the previous paragraph was extended further. It is
m=1 ™ reasonable to assume that if the holes perforating the me-
(13) dium are small, their actual shape is of less significance and
that the important factor is their area. The reflector in Fig.
The term which is responsible for the radial confinement of3(d) was constructed by replacing each hole in Fig) Svith
the modal field is the first order in the radial expansion andh circular hole which has the same area. Again, we can ex-
zero order in the azimuthal expansion, which is given by pect the resonator characteristics to remain unaffected.
_ 2 — 1 Figure 4 compares the numerically calculated radial mode
Ae1,0= = 2~ cogsin™(ayJeos ()l 7. (14) profiles of various resonator types which have the same
The fact thatAg, o is independent of the azimuthal number and a, parameters and the analytically calculated profile
of the perturbationl, indicates that the azimuthal details of (11b). The wavelength is 1.52m and the parameters of the
the index profile are of less significance. The azimuthalstructures are defined in the figure caption. The numerical
modulation is averaged over the device circumference and itsolutions indicate that, as expected, the mode profiles of the
only influence on the coupling coefficient is through the “fill- different structures are practically identical. In addition, the
ing factor” cos*(a,). A similar conclusion was also deduced good agreement with the approximated analytical solution is
for microstructured fiber§l7]. It should be clear, however, clear, even though the index contrast in the reflector region is
that this result stems directly from neglecting all the terms inrelatively high.
Eq. (12) exceptAe; o, which is accurate only if>m. Nev- Figure 5 depicts the resonance frequencies calculated by
ertheless, in this limit the conclusion holds and the azimuthalwo-dimensional FDTD for several PC reflector structures
dependence of Eq12) can be modified without deteriorat- @, and a, are the same for all structune§he spatial reso-
ing the performances of the device. lution was 0.01um. The resonances were calculated by ex-
In the remainder of this section, we verify the results ofciting the structure with a very short pul&20 fs) and letting
the coupled-wave analysis using FDTD simulations. Weit circulate in the resonator for a long period while monitor-
study the spectral characteristics d@dactor of circular PC  ing the field amplitude at the peak of the mode. Taking the
resonators that employ reflectors of different geometries. Th&ourier transform of the field yields the spectral response of
PC-reflector types are illustrated in Fig. 3. Figur@3de- the resonator. The spectral responses of all the structures are
picts a “rectangular lattice” consisting of the perturbationalmost identical, with resonaceslat1.52 um for m=8 (the

J(y,a) = cosYa)lm
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= = Rectangular 58 1

.......... Triangular 66
08¢t —— Vaying /rect -

——— Varying / round
os °  Analytic

FIG. 4. Comparison between the modal field
profiles of the different resonator structures:
“rectangular” lattice withl =58 (dasheg, “trian-
gular” lattice withl =66 (dotted, “varyingd” lat-
tice with rectangular holegsolid), “varying”
lattice with circular holegdash-doy, and analyti-
cal solution(circley. The other parameters of the
structure arey=3.5,m=8, @;=0.9, anda,=0.

04 r

(=3

Field amplitude [arb. units]

» ['z_tlm] 5 6 7 8
target modgand at 1.455um for m=9. The inset of Fig. 5 lattice type and the azimuthal perforation frequency. It is,
shows the modal field profiles at the resonance frequencigberefore, interesting to examine whether the quality factor is
and the corresponding field profiles, which are also identicahlso independent of the reflector architecture. Figure 6 shows
for all structures. It is evident that the field profilemE8 is  the dependence of the ringdown time constamtd, hence,
more confined in the resonator than the field profilenof the Q) on the azimuthal perforation frequentyThe ring-
=9. This is because the radial part of the gratings is designedown time constant is a measure for the photon lifetime in
for m=8 and, as a result, thre=9 mode has a smaller decay the cavity and it is related to th@ according to
coefficient in the gratings. This is in contrast to conventional
(TIR based disk resonators for which highen numbers are Q =Wo1o, (16)
generally associated with more grazing incidence angles Gfherew, is the resonancengulay frequency of the resona-
the field at the interface. These modes are confined morgy.
strongly in the disk and, therefore, experience lower bending |t seems that the general trend is that higlefactors are
losses. attained for larger values dffor both the triangular and the
According to Eq(14), the modal field profile of the reso- rectangular lattices. However, there is a clear decrease in the
nator is independent of the azimuthal frequency of the perQ for |:56, most probab|y due to grating assisted phase
turbation,|. Figure 4, which depicts the field profile for vari- matching to a radiating mode. The simulations also indicate
ous structures, indicates that this is indeed correct. Moreovefhat a rectangular lattice reflector exhibits lower losses com-
as shown in Fig. 5, the spectral respoise., the resonance pared to a triangular lattice reflector with the same angular
wavelengths of the resonators is almost independent of theperturbation frequency. Nevertheless, as seen in Fig. 6, a

A — - Trangular =39 | 60
— Square /=41
sok L0 e Varying-/ circular
= - = Varying-/ rectangulax 50 ¢ Rectangular|
— 081 ]
_ —O— Triangular
] o "
3 “l ol Varying-l |
2
il 061
= 0| & 30f |
g "
S 04f
A
ol 201 ]
0.2r
10} |
0.1r
D
144 146 148 15 152 154 156 158 Y a8 S0 s se se s @ e e 6
A [pm] !

FIG. 5. Resonance frequencies of the various structures: “trian- FIG. 6. The cavity ringdown time constant as function of the
gular” lattice with1=39 (dashegl “rectangular” lattice withl=41 azimuthal perturbation frequentyand “rectangular” latticésolid)
(solid), “varyingd” lattice with circular holes (dotted, and and “triangular” lattice(dashegl The dash-dot line indicates the
“varying-l” lattice with rectangular holegdash-dot The inset ringdown time constant of the “varying-lattice with rectangular
shows the corresponding field profiles. holes.
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reflector consisting of higher angular perturbation frequency
for larger radii(“varying-1”) is significantly superioifrom
the quality factor point of viewto a reflector with constant
angular perturbation frequency. This result can be understoo:
as stemming from the dependence of Qen |. At larger
radii, the angular frequency of the “varyitgreflector in-
creases and, as a result, the reflectivity of the gratings is
improved.
The fact that the coupled-wave approach does not predic
different characteristics for the various lattice types and val-
ues of | is not surprising. The information on the azimuthal
perforation profile is lost in the selection e, as the
perturbation term. This term is influenced by the azimuthal
properties of the lattice only through the mean azimuthal FIG. 7. Schematic cross section of the resonator structure, illus-
“filling factor” which is independent of I. To account for the trating the amplitudes of the inward and outward propagating field
impact of the higher order azimuthal terms, a cylindricalcomponents in each relevant region.
equivalent of the more rigorous coupled-wave analysis has to

be developed18]. This is, however, beyond the scope of this HY) +rH2(x), x<xo
paper. - () @)

The analysis given here is two-dimensional and, there- E.= A(:(I))Hm () +BOIHR (), Xo=x<x  (17)
fore, does not account for out-of-plain radiation losses. It has tHY (), x>,

been recently shown that, under certain circumstances, thgherey, is the normalized external radius of the gratings and
out-of-plain losses could be the dominant mechanism WhICIA(X) andB(x) are given by Eq(10). The amplitude of the

limits the attainableQ of a PC cavity[19]. These vertical  fig|q in one of the regions can be selected arbitrarily. In Eq.
radiation losses stem from low spatial frequency component@N), the amplitude of the outgoing field in the inner disk was

of the modal field profile which do not satisfy the vertical g5jected to be 1. Requiring the boundary conditions, and
TIR condition. However, a significant part of these losses calg(I (for TE, continuity of the field and its derivatiyg/ields

by canceled by careful optimization of the index profile, es-gyhressions for the reflection and transmission of the Bragg

pecially if the modal field and, correspondingly, the index mirror, which under the assumptions of small coupling and
profile are modified to have a more radial symmetry. RyU 10 4t thatl,(x;) =0, are given by

al. showed that it is possible to improve the verti€alof a

PCH2 cavity by a factor of 100 simply by rearranging the 12 r =tanh|k|(x — Xo)],
nearest-neighbor holes more symmetrically and decreasing
their size[19]. The structure of a circular PC resonator and t = 1/coslilk|(x = Xo)1, (18)

its mode profile already possess the desired radial symmetry

and are expected to exhibit low vertical radiation losses. Wherer andt satisfy the conservation of powef+t*=1.
The reflection coefficient r indicates the fraction of the

field amplitude which remains in the cavity after each
IV. FINITE GRATINGS “bounce” of the fi_eld from the Bragg mirror. The number of
“bounces” in a single roundtrip is equal to the azimuthal
number of the modem. Therefore the power loss in the
cavity per revolution due to the finiteness of the structure in
given by

The field profile shown in Eq11b) was calculated under
the assumption of infinitely long gratings. Under this as-
sumption, the reflection coefficient of the Bragg mirror is
unity _and the electromggnetic fie!d propagat_es in the resona- L=1-r?"=1—tanKF"M|k|/(x, — Xo)]. (19)
tor without loss(assuming there is no material absorpjion ] ] o
However, in any practical device the gratings’ length is finite The loss per revolutio(d9) is related to the cavity ringdown
and, therefore, part of the energy in the resonator “leaks” ofime constant through the energy velocity of the modal field
radiates to the device surroundings. in the resonatof20]. The roundtrip tlme is given by the ratio

The coupled-wave equation) and their solution(10) between the total energy stored in the (esonator and the
can be used to evaluate the power leakage due to the finit®OWer flow through a radial cross section in the structure:
ness of the gratings. Figure 7 shows a radial cross section of 1
the resonator structure and thecomponent of the electric = f f (eon?|E|? + uo|E|?) pdpd6
field in the three distinct regions of the device: the inner disk, 4
the Bragg reflector, and the external surroundings. To ac- 0 "
count for the power leakage, we assume that the Bragg mir- Ef Re(EH )dp
ror has a reflection coefficieftf <1 and a transmission co- N
efficientt. The electric field in the different regions is given The power loss per roundtriid9) corresponds to the decay
by: in the field intensity within a single roundtrip time, equal to

(20)

TRT=
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25

o FDTD
—— Exponential fit

¥ [um]

0.5

4 42 44 46 48 5 52 54 56 58 6
p-p, [pm]

FIG. 8. FDTD calculated cavity ringdown constant as a function
of the grating “length,” x,—X,, and an exponential fit for a
“varying-1” type resonator with rectangular holes. x [pm]

exp(—7x7/ 7o), wheren, is the cavity ringdown time constant. __FIG. 9. Field profile of a "varying* type resonator with a
Equating the two quantities yields an expressiondpr rsez,ﬁ)r: long” reflector. The white lines indicate the reflector

—_ TRT _ TRT ~
™ In{tanH |K| (x, _XO)]}k<14meXF{2|k|(X| Xo)].

pling coefficient between the incoming and outgoing waves.
21) Good agreement was found between the analytically calcu-
lated field profile and ringdown time constant, and the nu-
Figure 8 depicts the cavity ringdown constant as a functiormerically obtained results, even for relatively high index
of the reflector “length,’, —x, for a “varying-I" type reso-  contrasts.
nator (see Fig. 3 calculated by FDTD simulations and a fit ~ While the modal field profiles and the spectral response of
based on Eq(21). The parameters of the resonator are thethe resonator seem to be independent of the azimuthal prop-
same as in Fig. 4. It is clear that the ringdown time constanerties of the perturbation, ti@-factor increases as a function
is indeed an exponential function of the grating length. Theof |, even wherl >m. In addition, rectangular lattice reflec-
coupling coefficienk extracted from Fig. 8 is approximately tors exhibit lower losses compared to the corresponding tri-
0.03 which is quite close to the predicted value of 0.032angular lattice reflectors. However, the “varyiligype reso-
given by Eq.(14). nator exhibits a much highdd (by almost a factor of 10
Figure 9 depicts the field calculated by an FDTD simula-compared to the fixetliresonators. At first glance, this result
tion of a “varying{” type resonator where the reflector is seems counterintuitive because the electromagnetic wave is
finite with an external radius of 5:8n. The existence of the not expected to be influenced by features that are much
radiating field at radii larger than the B is clearly vis- smaller than the field effective wavelength. Nevertheless, the
ible. It should be emphasized that adding layers to the refleczoupled-wave approach presented here accounts only for the
tor does not change the FSR or even the resonance frequéiirst order terms in the perturbation. Since the structures ana-

cies of the device. lyzed here exhibit high index contra@.5 vs J it is likely
that higher order terms have non-negligible impact.
V. DISCUSSION AND SUMMARY The bending losses of the PC circular resonator were

shown to be decoupled from the FSR and even from the

We have studied, analytically and numerically, the char-actual resonance wavelength of the cavity. Lower losses and
acteristics of circular resonators that are based on a PC ré&igherQ can be attained simply by adding more layers to the
flector, using the FDTD algorithm and a coupled-wave ap-+eflector(see Fig. . The decoupling of the resonator FSR
proach. In the limit of small perturbations, the actual angularand resonance frequencies from the bending losses is a sig-
profile of the reflector is of minor significance for many of nificant advantage of the circular PC resonators which paves
the resonator characteristics, with the important factor beinghe way to the realization of compact devices exhibiting both
the average “filling factor” of the perforation. Several lattice high Q and large FSR.
and “quasi-lattice” types were suggested and studied, all ex-
hibiting similar spectral responses and mode profiles even ACKNOWLEDGMENTS
beyond the small perturbations limit. The effect of the reflec-
tor finiteness on the cavity ringdown time constant was also The authors would like to thank George T. Paloczi, Will-
studied, showing that this time consta@nd hence the iam M. J. Green, Joyce K. S. Poon, and George Ouyang for
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