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A closed set of averaged fluid equations for a relativistic plasma immersed, simultaneously, in a slowly
varying magnetizing field and a sharply varying electromagnetic field(radiation field, for example) of arbitrary
intensity is derived. The modifications due to the radiation field on the plasma stress tensor and the Lorentz
force are explicitly displayed. The resulting equations include the effects of radiation reaction as well as
radiation pressure.
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I. INTRODUCTION

Time scale separation

Many astrophysical systems, such as galactic and intraga-
lactic jets, electron-positron ultrarelativistic beams in the
pulsar atmospheres, relativistic plasmas in active galactic nu-
clei, and black hole magnetospheres[1] involve a plasma
interacting with two kinds of electromagnetic field: a slowly
varying field, sometimes called the background field, that
serves to magnetize the plasma, and a radiation field. The
time scale(typical period) of the radiation is usually very
short compared to the plasma dynamics of interest. On the
other hand the radiation field may not be a perturbation of
the background field: The field strengths associated with the
radiation can easily exceed those of the background.

Because of the separation of time scales, the radiation
quickly equilibrates to a nearly thermodynamic equilibrium,
at least in the case of an optically thick plasma. The radiation
field then affects plasma dynamics on the longer time scale
mainly in two ways: radiation reaction forces experienced by
accelerated charged particles in the plasma and radiation
pressure.

A closed fluid description of a magnetized relativistic
plasma, without radiation, has been presented recently[2–4].
The effect of radiation reaction forces on this closure has
also been considered[5]. The purpose of the present work is
a comprehensive treatment of a plasma fluid interacting with
a strong electromagnetic field, including the radiation field.
Thus both radiation reaction and radiation pressure—the en-
ergy momentum tensor of the electromagnetic field—are in-
cluded. In addition to the assumptions of time-scale separa-
tion and thermal equilibration of the radiation, our work is
limited in two other ways. First, while we provide a closed
description of the evolution of the(two-species) plasma in-
cluding radiative effects, the slow-time-scale dynamics of the
radiation itself is presumed to be given. The reason for this
simplification is that much of the radiation in astrophysical
contexts emanates from some region distant from that under
consideration. Second, while the slow-time-scale plasma cur-
rent is allowed to result from a combination of ion and elec-
tron motion, we assume that only the electrons participate in
the fast dynamics. Since this assumption is based on the
small electron-to-ion mass ratio, it may break down in ex-
treme relativistic situations. We emphasize that our study

does not assume any ordering between the energy densities
of the plasma, the radiation, and the background field. Thus
our equations pertain for arbitrary plasmab, the ratio of
plasma pressure to background magnetic pressure, and for
arbitrary magnitudes of the ratio(plasma pressure)/(radiation
pressure).

Magnetized plasma

Including radiation in the energy-momentum balance of
an optically thick plasma is straightforward and not new. In
this work the modifications due to radiative effects, including
radiation reaction, are systematically included in a closed set
of fluid equations for a magnetized plasma. Thus the small
gyroradius in the background field plays an essential role.
The generalization of previous closure arguments, based on
small gyroradius, to the case of multiple time scales is not
entirely trivial.

Because of its rapid variation—generally including oscil-
lation faster than the gyrofrequency—the radiation field
plays no role in magnetizing the plasma. Yet in some cases
this field is larger than the magnetizing background field,
complicating the standard procedure for computing the
plasma stress tensor,Tmn, in the small gyroradius limit. The
point is that the limit of infinite electronic charge, which in
the conventional case yields a simple formula forTmn [2],
now includes a host of terms involving the radiation field. In
the absence of a tractable,local evolution equation for the
radiation, we must use a different scheme to computeTmn.

We adopt the simplest solution to this difficulty, taking the
energy momentum tensor to be given by its thermal equilib-
rium form. In other wordsTmn is assumed to be diagonal in
the appropriate rest frame, and determined by the pressure
and enthalpy. The resulting closed set of fluid equations,
while strictly justified only in the collision-dominated limit,
is usefully simple, while still containing such key physical
processes as radiation reaction, radiation pressure, and their
effects on plasma flow, in a covariant way.

The form of the most general energy-momentum tensor
for a magnetized plasma is known[2]; it differs from the
thermal equilibrium version used here in two ways. First, it
allows for anisotropy of the stress,piÞp', wherepi andp'

refer to pressures parallel and perpendicular to the magnetic
field. Second, it includes parallel heat flow,qi, a quantity
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whose evolution is determined by high-order moment equa-
tions. Examination of the third-order moment equation re-
veals that heat flow is strongly modified in the presence of
radiation; since it can be the dominant energy transport
mechanism, especially at low collisionality, its absence in the
present system is particularly regrettable. For this reason we
intend to develop, in future work, a fluid closure which in-
cludes the radiative version of parallel heat flow.

Notation

Greek indices vary from 0 to 3; we occasionally use Ro-
man indices for the three spatial components(1, 2, 3). Our
convention for the Minkowski metric is

hmn = diagh− 1,1,1,1j.

The Faraday tensor(or electromagnetic field-strength tensor)
is denoted byFmn. With regard to the plasma fluids, we use
the notation of Ref.[2] in which Ga

m is the four-vector par-
ticle flow (rest-frame density times fluid four-vector flow) of
speciesa and Ta

mn is the corresponding energy-momentum
tensor. Thea subscript is suppressed when it is not essential.
The four-momentum moment of the collision operatorC is
denoted by

Ca
m =E d3ppmCa,

wherepm is the four-momentum coordinate in phase-space.
The corresponding moment of the radiation reaction force,
that is, the rate of momentum change of speciesa due to
radiation reaction, is denoted bySa

m. Then energy-momentum
evolution of plasma speciesa is governed by

] Ta
mn

] xn − eaF
mnGan = Ca

m + Sa
m. s1d

Here the second term on the left-hand side is the electromag-
netic four-force, while the two terms on the right-hand side
give the momentum change due to collisions and radiation
reaction. It is often convenient to use an abbreviated notation
in which tensor indices are omitted and Eq.(1) becomes

] ·Ta − eaF · Ga = Ca + Sa. s2d

Collisional momentum conservation implies

Ci + Ce = 0. s3d

On the other hand the small electron-ion mass ratio allows us
to neglectSi. Thus the two single-species equations con-
tained in Eq.(2) become

] ·Ti − eF · Gi = − Ce, s4d

] ·Te + eF · Ge = Ce + S. s5d

The rest-frame particle density of each plasma species is
denoted bynR; a species subscript is omitted on the rest-
frame density since we assume the plasma to be quasineutral.
The pressure, as a Lorentz scalar, is denoted bypa=nRTa,
where Ta is the temperature.(The fact that temperature is

denoted by the same symbol as the index-free energy-
momentum tensor should not cause confusion.) As discussed
in the Introduction, we assume that the energy-momentum
tensors of both species have the well-known(see, for ex-
ample, Ref.[6]) thermal equilibrium form

Ta
mn = pan

mn + haUa
mUa

n, s6d

whereUa
m=Ga

m /nR is its four-vector flow velocity,

ha = manRK3szad/K2szad s7d

is the enthalpy density,Kn are MacDonald functions andza
=ma/Ta with ma the particle mass.

II. PLASMA CURRENT

A. Temporal average

The simplification that allows straightforward incorpora-
tion of radiative effects into our fluid description is that the
radiation frequencies are large compared to interesting rates
of fluid evolution. Evidently this statement cannot hold in an
arbitrary Lorentz frame. Rather it is based on the existence of
a family of frames, connected by rotations and moderate Lor-
entz boosts, in which the two time scales are distinguishable,
and in which the plasma is magnetized; for most astrophysi-
cal phenomena, this family includes the frame at rest with
respect to neighboring stars. The use of this special family of
reference frames does not preclude the derivation of fluid
equations that are fully Lorentz covariant.

Thus we lettr be a typical wave period of the radiation
spectrum andts be the time scale for processes described by
the fluid equations; we assume that there is an intermediate
time periodti such that

tr ! ti ! ts. s8d

It is then natural to define the temporal average of a physical
quantityA,

kAl = Ā = ti
−1E

0

ti

Astddt, s9d

and to use the conventional decomposition,

A = Ā + Ã s10d

with

kÃl = 0. s11d

An example is the Faraday tensor(or electromagnetic field
strength tensor) denoted byFmn. Suppressing tensor indices,

we associateF̄ with the background electromagnetic field

and F̃ with the radiation.

B. Ion-electron plasma

The remainder of this work studies for simplicity a
plasma consisting of electrons and a single species of ions.
The current densityJm is

R. D. HAZELTINE AND S. M. MAHAJAN PHYSICAL REVIEW E 70, 036404(2004)

036404-2



Jm = esGi
m − Ge

md s12d

=J̄m + J̃m. s13d

A key simplification of our analysis, discussed in Sec. I, is
that only the electrons can respond quickly enough to par-

ticipate in J̃:

J̃m = − eG̃e
m. s14d

Equivalently, we assume that

Gi
m = Ḡi

m. s15d

III. ENERGY-MOMENTUM EVOLUTION

A. Total energy-momentum evolution

We use ap subscript to distinguish the energy-momentum
tensor of the entire plasma:

Tp ; Ti + Te.

It is evident from Eqs.(4) and (5) that

] ·Tp − F ·J = S. s16d

We recall that Maxwell’s field equations imply that

F ·J = − ] · Q, s17d

where

Qmn = − F a
m Fan −

1

4
hmnFabFab

is the energy-momentum tensor of the electromagnetic field.
Thus Eq.(16) has the familiar expression in terms of the
total tensorTp+Q. However, a distinct approach is needed to
obtain a closed set of fluid equations. Thus we first consider
the temporal average

kF ·Jl = F̄ · J̄ + kF̃ · J̃l s18d

and then notice that

kF̃ · J̃l = − k] · Qrl = − ] · kQrl, s19d

where Qr is the energy-momentum tensor of the radiation
field alone. In this way we express the average of Eq.(16) as

] · sT̄p + Q̄rd = F̄ · J̄ + S̄. s20d

This equation differs from the energy-momentum tensor
without radiation in very simple ways and is therefore ame-
nable, in the magnetized case, to the previously described[2]
closure procedure. Before reviewing the closure scheme we
turn to the energy-momentum conservation of the separate
plasma species.

B. Energy-momentum tensors of individual species

The average of the ion equation, Eq.(4),

] · T̄i − eF̄ · Ḡi = − Ce s21d

does not involve the radiation field. It is effectively the same
as the ion equation considered in previous work and requires
no special discussion here.

The electron equation,

] · T̄e + eF̄ · Ḡe + ekF̃ · G̃el = Ce + S̄

can be written as

] · T̄e + eF̄ · Ḡe − kF̃ · J̃l = Ce + S̄

or

] · sT̄e + Q̄rd = − eF̄ · Ḡe + Ce + S̄. s22d

The same result is obtained by subtracting Eq.(21) from Eq.
(20).

While radiation effects are prominent in Eq.(22), both of
the single-species equations are used to advance the pres-
sures and parallel flows in a familiar way.

C. Field-strength ordering

It is convenient here to make our previous assumptions
about the relative strength of the radiation field explicit. Our
orderings are maximal in the sense that

(1) The electromagnetic energy-momentum tensor(radia-
tion pressure) is allowed to be comparable to the plasma
energy-momentum tensor:

Q̄r , T̄. s23d

(2) The radiation field strength is allowed to be compa-
rable to the strength of the slowly varying, background field:

F̃ , F̄. s24d

The small parameter associated with our assumed scale-
length separation may be identified with the ratio of a typical
radiation wavelength,l, to the scale-lengthL associated with
the dynamics under investigation. Notice that the rapidly
varying part of the energy-momentum evolution law requires
that

T̃ ,
l

L
T̄. s25d

In other words, the response of the plasma to the rapidly
varying components of the field is relatively small. It is eas-
ily confirmed that the three basic orderings(23)–(25) are
mutually consistent.

IV. RADIATION REACTION

A. Energy-momentum loss

The energy-momentum loss due to radiation reaction was
computed, using Rohrlich’s expression for the force[7], in a
previous work[5]. For Maxwellian electrons the loss term
has the form
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Sm =
2

3

e3

m2Fs]lFk
mdTkl +

2eW

m

K3

K2
TGmG s26d

with

W; B2 − E2.

Recall that the radiation reaction is needed only for elec-
trons; the species subscript is suppressed.

Notice that Eq.(26), like the energy-momentum evolution
law Eq. (1) which it enters, consists of terms linear inTkl

and inGm. Upon inserting Eq.(26) into (the electron version
of) Eq. (1) and by appropriately grouping terms, we obtain
the result

F]nhk
m −

2

3

e

m
r0s]nFk

mdGTkn + SeFmn +
4r0

2

3

TK3

mK2
WhmnDGn

= Cm, s27d

where

r0 = e2/m

is the classical electron radius.
The law, Eq.(27), shows that radiative reaction has two

effects.
(1) It corrects the gradient of the stress tensor with an

additional term involving the field, analogous to a gauge cor-
rection.

(2) It corrects the Faraday tensor in the force term with
an additional, symmetric tensor.

B. Relative magnitude

It is convenient to measure the electromagnetic field
strength through a representative gyrofrequency,

Vp , efFmng/m

wherefFmng,E,B is the magnitude of a typical nonvanish-
ing element of the Faraday tensor, including both the radia-
tion and background fields. The true electron gyrofrequency

Ve=eB̄/m can be considered a special case ofVp. Recall
that we allow the radiation field to be comparable to the
background field.

Inspection of Eq.(27) now shows that each of the two
corrections from radiation reaction contains a factorVpr0
compared to the term it corrects. The Faraday correction con-
tains in addition a relative factor ofsT/mdsK3/K2d. In cgs
units,

r0 = 2.823 10−13 cm

corresponding to a time interval

te = r0/c < 10−23 s.

The caseVr0,1 is close to the limits of validity of classical
and quantum electrodynamics[8]. At much smaller values,
Vr0,10−3, pair production, which our fluid model omits,
becomes a dominating process. Therefore we assume

Vpr0 ! 1 s28d

and neglect the stress-tensor correction.

The correction to the Faraday tensor, containing the addi-
tion factor of sT/mdsK3/K2d, could be significantly larger,
because

TK3

mK2
→ 2T2

m2

in the limit of largeT/m. On the other hand very large values
of T/m would imply massive pair production. Therefore we
consider the productVpr0sT/md2 to be smaller than unity,
but not negligible.

Thus Eq.(26) is replaced by the approximate form

Sm =
4

3
r0

2ssTdWGm, s29d

where

ssTd ;
T

m

K3

K2
s30d

is a dimensionless function of temperature. In view of Eq.
(25), the average ofSm is easily computed:

S̄m =
4

3
r0

2ssT̄dW̄Ḡm. s31d

Notice that

B̃ = Ẽ

implies

W̄= B̄2 − Ē2, s32d

determined entirely by the background fields.

V. CLOSED FLUID DESCRIPTION

A. Plasma current density

Now we construct a closed set of fluid equations for the
plasma and the slowly varying part of the electromagnetic
field. Since the argument is almost identical to that in previ-
ous work[2–4], it is presented with minimal discussion.

The starting point is equation Eq.(20), which is inter-

preted as an equation for the plasma current densityJ̄. From
here on we deal exclusively with the temporally averaged
fluid variables and fields, suppressing the overbar; thus all
variables in the sequel have implicit overbars:

J̄ → J,etc.

We then introduce the perpendicular projector

emn ; −
Fk

mFkn

W

and multiply Eq.(20) by Fk
m to obtain

emnJn =
Fk

m

W
F ]

] xn sTp
kn + Qr

knd − SkG s33d

for the two components ofJm that are transverse to the mag-
netic field. For the remaining components we use charge
conservation
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] Jn

] xn = 0 s34d

and the quasineutrality condition,

UnJ
n = 0, s35d

whereUn;Gn /nR is the four-vector flow velocity.
At this point we recall that the radiation energy-

momentum tensor is presumed known, and that the radiation
reaction is given in terms ofGe

m by Eq. (31). Hence Eqs.
(33)–(35) determine the current in terms of the four-vector
particle flow and the plasma energy-momentum tensor. In
other words, closure of the electromagnetic field equations
depends upon calculation of the energy-momentum tensors
for the individual plasma species.

B. Ion dynamics

As we have noted, ion evolution is not affected by radia-
tion. In the magnetized limit,e→`, Eq. (21) implies the
familiar relation

FmnGin
s0d = 0

which forces the lowest order ion flowGin
s0d to have the mag-

netohydrodynamics(MHD) form

Gin
s0d = gsVdnRs1,V ii + VEd. s36d

HereV =V ii +VE is the conventional MHD flow, withV ii an
ion flow along the magnetic field andVE=E3B /B2 the
usual electric drift. In what follows the(0) superscript will be
suppressed:

Gin
s0d → Gin.

The ion energy-momentum tensor is given by Eqs.(6) and
(7) in terms of the ion pressure and the parallel flow. To
determine the evolution of these quantities, we must elimi-
nate the dominant, electromagnetic term in Eq.(21). There
are two linearly independent four-vectors that “annihilate”
this large term: the flow vectorUin,

GimeFmnUin = 0

because of the antisymmetry of the Faraday tensor, and the
four-vectorkin defined by

kim ;
FmnU

in

ÎW
.

HereFmn is the dual Faraday tensor, defined by

Fmn ;
1

2
emnklFkl,

where emnkl is the unit antisymmetrical tensor. The four-
vectorkim is an approximate annihilator because of the famil-
iar identity,

kimeFmnGin = W−1/2nREiB s37d

and because the parallel electric fieldEi=E ·B /B is small
(first order in the gyroradius). This annihilator choice is
slightly different from that of previous work[2] because of
our use of a Maxwellian distribution.

From the first annihilator we find

Uim

] Ti
mn

] xn = − UimCe
m. s38d

This can be seen to yield an equation for the evolution of ion
pressure. From the second(approximate) annihilator we find

kim

] Ti
mn

] xn + W−1/2nREiB = − kimCe
m, s39d

an equation for the evolution of the parallel flow. Hence the
ion contribution to the plasma current is determined.

C. Electron dynamics

The electron flowGe
m=nRUe

m is determined in the same
way asGi

m and has the same MHD form; it can differ only
because we allow

Vie Þ Vii .

The electron pressure evolves according to the electron ver-
sion of Eq.(38),

Uem

]

] xn sTe
mn + Qr

mnd = UemsCe
m + Smd s40d

obtained from Eq.(22). BecauseSm is proportional to the
electron flow, and becauseUmUm=−1, the radiation reaction
enters Eq.(40) in an especially simple way:

UemSm = −
4

3
r0

2nRssTdsB2 − E2d. s41d

Finally the evolution of electron parallel flow is deter-
mined by the electron version of Eq.(39). BecausekmUm

=0, the radiation reaction does not enter this equation at all.
ThusSm affects fluid evolution only through its effect, given
by Eqs. (40) and (41), on electron pressure evolution. We
have

kem

]

] xn sTe
mn + Qr

mnd = UemCe
m. s42d

Recall that Eqs.(33)–(35) provide the four-vector current
density in terms of the energy-momentum, or stress tensors,
of the two plasma species. Hence the electrodynamical evo-
lution of the system is determined once the stress tensors are
known. Since these tensors are determined by Eq.(6) and by
Eqs. (38)–(42), together with Eq.(36) for the ion flow, we
have a closed set of fluid equations for a magnetized plasma
that includes both radiation pressure and radiation reaction in
a systematic way.
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