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We present experimental results for patterns of Rayleigh-Bénard convection in a cylindrical container with
static sidewall forcing. The fluid used was methanol, with a Prandlt numbers=7.17, and the aspect ratio was
G;R/d.19 (R is the radius andd the thickness of the fluid layer). In the presence of a small heat input along
the sidewall, a sudden jump of the temperature differenceDT from below to slightly above a critical valueDTc

produced a stable pattern of concentric rolls(a target pattern) with the central roll(the umbilicus) at the center
of the cell. A quasistatic increase of«;DT/DTc−1 beyond«1,c.0.8 caused the umbilicus of the pattern to
move off center. As observed by others, a further quasistatic increase of« up to «=15.6 caused a sequence of
transitions at«i,b, i =1, ... ,8, each associated with the loss of one convection roll at the umbilicus. Each loss of
a roll was preceded by the displacement of the umbilicus away from the center of the cell. After each transition
the umbilicus moved back toward but never quite reached the center. With decreasing« new rolls formed at the
umbilicus when« was reduced below«i,a,«i,b. When decreasing«, large umbilicus displacements did not
occur. In addition to quantitative measurements of the umbilicus displacement, we determined and analyzed the
entire wave-director field of each image. The wave numbers varied in the axial direction, with minima at the
umbilicus and at the cell wall and a maximum at a radial position close to 2G /3. The wave numbers at the
maximum showed hysteretic jumps at«i,b and«i,a, but on average agreed well with the theoretical predictions
for the wave numbers selected in the far field of an infinitely extended target pattern. To our knowledge there
is as yet no prediction for the wave number selected by the umbilicus itself, or by the cell wall of the finite
experimental system.
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I. INTRODUCTION

When a temperature differenceDT exceeding a critical
valueDTc is applied across a thin, horizontal layer of fluid,
convection occurs[1]. This phenomenon is known as
Rayleigh-Bénard convection(RBC). The fluid flow then
forms a pattern. The onset of convection is determined by the
Rayleigh number

R= agd3DT/kn. s1d

Here a is the isobaric thermal expansion coefficient,g the
acceleration of gravity,d the thickness of the sample,k the
thermal diffusivity, andn the kinematic viscosity. Linear sta-
bility analysis for a laterally infinite system shows that con-
vection will occur with a critical wave numberkc=2p /lc
=3.117 (l is measured in units ofd) when R exceedsRc
=1707.8[1]. For the laterally infinite system the patterns that
evolve beyond the onset of convection and their stability are
determined byR and by the Prandtl number

s = n/k. s2d

Weakly nonlinear theory predicts that immediately above on-
set, a laterally infinite uniform system should yield a pattern
consisting of parallel, straight rolls[2]. For real experimental
systems the patterns are influenced by the lateral boundaries
which contain the fluid. Even in these finite systems excel-
lent approximations of the predicted ideal straight rolls of the
infinite system can be found under some conditions[3–5].
However, the boundaries can also lead to patterns of different
symmetry. Thus by heating a thin cylindrical convection cell
gently from the side in addition to heating primarily from

below, a pattern ofconcentricrolls can be stabilized. A con-
centric pattern can also be the result of horizontal tempera-
ture gradients near a cylindrical sidewall which are intrinsic
to the particular construction of the sample cell. The concen-
tric pattern will consist ofn rolls, wheren is an integer. Of
these, the one in the middle really would be more properly
viewed as a convectioncell, with either up flow or down
flow in its center. It is often referred to as the umbilicus. This
type of pattern, known also as a target pattern, was studied
extensively by Koschmieder and Pallas[6] for relatively
large s. The rolls have a mean dimensionless wavelength

l̄=2G /n whereG=R/d (R is the sample radius) is the aspect
ratio of the sample and wheren is the number of rolls along

a radius. The corresponding wave number isk̄;2p / l̄
=pn/G. Koschmieder and Pallas found that the wavelength
of the rolls away from the center and the sidewall increased
with increasingDT. They also observed a sequence of tran-
sitions with increasingDT, each of which involved the loss
of a roll at the sample center.

Later work for smallers showed that at a certain value
«1,c of «;R/Rc−1 the target pattern becomes unstable
[7–11]. The instability is known as the focus instability[12].
How this occurs in detail depends ons, G, and on the nature
of the confining sidewalls. Here we describe what happens
for our particular sampless=7.17,G=19d, where the side-
walls fixed the phase of the pattern at the radial positionr
=G (r is scaled by the cell thicknessd). For the work of Ref.
[8] ss=6.1,G=7.5d the observed phenomena were similar.
As « is increased in small steps from small values, the um-
bilicus shrinks. The result is a gradual decrease of the local
wave numbers of the rolls away from the center. When« is

PHYSICAL REVIEW E 70, 036313(2004)

1539-3755/2004/70(3)/036313(10)/$22.50 ©2004 The American Physical Society70 036313-1



increased beyond«1,c, the umbilicus breaks the cylindrical
symmetry by moving off center. This transition is continuous
and the off-center patterns are stationary in time, but the
radial umbilicus position is« dependent. As« is further in-
creased, the umbilicus becomes even smaller, and then dis-
appears at«=«1,b. At that point the pattern once more ap-
proaches a state of cylindrically symmetric rolls, although
perfect rotational invariance is not fully recovered. With fur-
ther increase of«, this process repeats itself, with another
roll loss at«2,b.«1,b, and so forth. The net result is a gradual
reduction with increasing« of the wave numbers of the rolls

between transitions and a discontinuous change ofk̄ at each
transition. The transitions are hysteretic, occurring at
«i,a,«i,b whenDT is decreased.

We studied target patterns for 0,«,15.6 in a sample
with G=19.0 using methanol withs=7.17. We developed
high-resolution numerical umbilicus-detection algorithms
and determined quantitatively the umbilicus displacementd
with increasing as well as decreasing«. At small« the results
revealed the location of the focus instability, at«.0.8. Pre-
vious measurements[11], for s=0.93 and a largerG=43,
had found the instability at lower values, near«.0.1. Over
the whole« range of our experiment the data ford, together
with measurements of an average wave numberkkl away
from the center and the sidewall, revealed eight hysteretic
transitions. We observed large umbilicus displacement only
for increasing«; for decreasing« the hysteresis yielded tran-
sition points«i,a which were sufficiently low to avoid the«
range over which the umbilicus displacement was large.

For «.5.6 cross rolls[13,14] formed at the outermost
roll when the system was close to a transition at«i,b. This
was particularly pronounced on the side opposite to the um-
bilicus displacement where the local wavelengths were ex-
ceptionally large whend was large. Nonetheless, the general
nature of the pattern was maintained up to our largest«
values. For«*14 periodic time dependence associated with
the oscillatory instability[13,14] developed in the region
near the cross rolls.

A complete characterization of the pattern involves a

knowledge of the entire wave-director fieldkWsr ,ud whereu is
the angular andr the radial position in the sample. Rather
than simply measuring an average wave number along a cell
diameter(as was done in previous work), we implemented a

local wave-director analysis[15–17] and determinedkWsr ,ud.
From kWsr ,ud we could then determine various averaged
quantities, includingkkl. The results forkkl, determined over
a radius range that excluded the rolls near the center and the
sidewall, were discontinuous at the transitions. The hyster-
esis loop of each transition was traced out quantitatively. We
found that the azimuthal averagekusrd;kklu had interesting
structure as a function ofr, showing different selection at the
umbilicus, in the bulk of the sample, and at the cell wall. The
competition between the selection mechanisms yielded a
broad maximum ofkusrd nearr =2G /3. For our experimental
conditions it did not yield any radially traveling waves, as
predicted by Tuckerman and Barkley[18,19] for the case of
conducting sidewalls. As was found in previous work
[7–9,11], the values ofkkl selected in the bulk were in good

agreement with the predicted wave numbers for the far field
of infinitely extended concentric rolls when the discontinui-
ties at the transitions were smoothed out. We also report
results for the wave numbers selected at the umbilicus and at
the sidewall; but for these there seem to be no theoretical
predictions.

In the next section we shall review theoretical predictions
for the selection by concentric rolls and relevant previous
experiments. Then. in Sec. III, we shall discuss the experi-
mental apparatus and procedures, as well as the image-
analysis methods. Section IV gives our results. It consists of
a discussion of the patterns observed in various« ranges, of
a presentation of the umbilicus-displacements results, and of
a presentation of our wave-number results. A brief section
summarizing this work ends the paper.

II. THEORETICAL PREDICTIONS AND PREVIOUS
EXPERIMENT

Theoretical predictions of the wave numberskBs«d se-
lected in the far field of infinitely extended target patterns
have been made by several authors[12,20–23]. For the infi-
nite system wave-number adjustment can take place by ex-
pansion of the pattern to large distances. Finite laboratory
systems differ from this in an important way. The sidewall,
under typical experimental conditions, pins the phase of the
pattern and prevents this expansion. Thus a change of the
average wave number with changing« is possible only at the
umbilicus. However, also at the umbilicus unhindered phase
slip is not possible. Instead, a discontinuous and hysteretic
process involving the destruction or creation of a convection
cell occurs and leads to a discontinuous change of the wave-
number field at the transition. The discontinuous effect on
the average wave number decreases as the aspect ratio of the
sample increases because the loss of a single cell in the cen-
ter is a smaller perturbation for a larger sample. Thus even
for the sample with a boundary one expects, in the large-G
limit, a continuous curvekBs«d as a function of«. Theoreti-
cally the location of this curve is determined by the rota-
tional symmetry of the target pattern which does not permit
the mean flow that is induced by roll curvature under less
symmetric conditions. Thus the horizontal force induced by
the roll curvature must be balanced precisely by a pressure
gradient [20–22]. This condition leads to a unique wave
numberkBs«d. Initial predictions of the selected wave num-
bers were applicable only for small« and are given by
[21,22]

kB/kc − 1 =SB« + Os«2d s3d

with SB=−N8 /R2, N8=0.1659+1.426/s−1.220/s2, and R2
=10.76−0.073/s+0.128/s2«. Herekc=3.117 is the critical
wave number at the onset of convection. In Fig. 1 we show
SB as a function ofs. For the present work we haves
=7.17 andSB=−0.0317. The measurements to be described
below yielded the experimental value −0.0285±0.001. This
result is shown as the circle in the figure. It falls slightly
above, but is generally in good agreement with, the predic-
tion. For the work of Ref.[7] ss=14d the theory yieldsSB

=−0.0243, but no corresponding result has been extracted
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from the data. Measurements fors=0.93 were reported in
Ref. [11] and yielded a value forSB close to zero, but a
precise number was not quoted. For that case one obtains the
prediction SB=−0.0266, butSBssd changes rapidly withs
and passes through zero ats=0.79.

Calculations valid at larger« were made by Buell and
Catton[23] and by Newellet al. [12] using a combination of
analytic and numerical methods. Buell and Catton gave re-
sults for a few values ofs andR, and we shall compare our
measurements with interpolations between these predictions.
We show their results for a Prandtl number close to that of
our experiment in Fig. 2. Also shown in that figure are the
nearby stability boundaries of infinitely extended uniform
straight rolls[13,14]. Although in the large-s limit it is ex-
pected that the zigzag instability will coincide with the se-
lected wave number[20–22], it is clear from the figure that
s=7 is still far from that limit.

To our knowledge there is as yet no prediction of the
wave-number selection at the umbilicus itself, although in
principle the theoretical framework developed in Ref.[12]
should lend itself to such a calculation. The results to be
presented here show that the wave number selected there is
smaller than the one in the far field.

Aside from the phase pinning mentioned above, the side-
walls of experimental cells have an additional influence on
the pattern. The boundary conditions imposed by the walls

can yield a separate and competing selection mechanism
[18,19,24]. This mechanism is expected to depend on the
conductivity of the sidewalls relative to that of the fluid, and
it is not understood quantitatively for typical experimental
conditions. For perfectly conducting sidewalls, Tuckermann
and Barkley[18,19] predicted a pattern of radially traveling
waves. The traveling nature of the pattern can be understood
in terms of the competition between the selection by the
curved rolls on the one hand and by the wall on the other
which can lead to a wave-number gradient which in turn can
lead to a nonzero time derivative of the phase of the pattern
[25,26]. However, to our knowledge such radially traveling
waves have not yet been observed in experiments[27,28].

For s values not too small the wave numbers predicted
for curved rolls do not depend very strongly ons. In this s
range the wave numbers of target patterns have been deter-
mined before[6–9], but to our knowledge they were never
compared quantitatively with the predictions of Buell and
Catton. Koschmieder and Pallas[6] determined a weighted
average of the wavelengths of all rolls except for the outer-
most one. In Fig. 3(a) we show their results forG=13.28,
and for s=511 and 916. The solid line is the prediction of
Ref. [23] for s=`. Aside from a lateral shift, the overall
shape of a curve passing through the data is very similar to

FIG. 1. The theoretical prediction forSB=skB/kc−1d /« in the
limit of small « as a function of the Prandtl numbers. The circle is
the result of the present work to be discussed below.

FIG. 2. Stability boundaries of infinitely extended straight rolls
for a Prandtl numbers=7.0. Dashed line: zigzag instability[14].
Solid line: cross-roll instability[14]. Also shown, as a dotted line,
are the wave numbers predicted for the far field of infinitely ex-
tended concentric rolls[23]. The two solid circles correspond to our
experimental observation of the cross-roll instability near the
sidewall.

FIG. 3. Previous wave-number measurements for patterns of
concentric rolls.(a) From Ref. [6] for s=511 (circles) and 916
(squares), and for G=13.28. For(b) and (c) open (solid) symbols
were taken with increasing(decreasing) «. (b): From Ref.[8] for
s=6.1 andG=7.5. (c): From Ref. [7] for s=14 andG=20. The
solid lines in all figures are the predictions from Refs.[23] and[12]
for the relevants values.
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the theoretical curve. Since the data do not extrapolate to
kc=3.117 as« vanishes, the shift presumably is due to ex-
perimental uncertainties of the length scales involved in the
determination ofl.

In Fig. 3(b) we show results from Ref.[8] which were for
s=6.1 andG=7.5. These data were obtained by measuring
the average wavelength of 2 rolls nearr .2G /3. They seem
to show considerable scatter, but actually this is due to the

discreteness of the values ofk̄ which is noticeable in the
figure and which becomes more apparent for this relatively
small G where the system contains only a small number of
rolls. In this system hysteretic transitions were clearly ob-
served. The theoretical curve[23] for this s value(solid line)
is a good smoothed representation of the data.

Finally, in Fig. 3(c), some of the results reported by Cro-
quette and Pocheau[7] are shown. Those measurements
were fors=14 andG=20, and were obtained by measuring
the average roll width along a diameter in a region away
from the center and sides where the roll width appeared con-
stant. The solid line is the numerical result[23] for s=14.
The agreement clearly is very satisfying. The data do not
reveal much difference when« is increased(open symbols)
or decreased(solid symbols). The authors report observing
hysteretic transitions, and thus it is somewhat surprising that
this hysteresis does not manifest itself in the wave-number
measurements.

All of the previous investigations revealed that the roll
adjacent to the sidewall was exceptionally wide, but none of
the prior investigations made any attempt to determine quan-
titatively the wave number selected at the wall or at the cell
center.

III. EXPERIMENT

A. Apparatus

We used a Rayleigh-Bénard convection apparatus de-
scribed in detail elsewhere[29,30]. The top plate was a
single-crystal-sapphire disk, and the bottom plate was a pol-
ished aluminum disk with a metal-film heater mounted under
it to provide uniform bottom-plate heating. Temperature-
controlled water was circulated over the top plate. The
bottom-plate temperature was controlled to create the desired
temperature difference. The mean temperature was main-
tained at 22.0 °C. For both the top and bottom plate, the
temperature varied about the set temperature by less than
10−3 °C.

The cell wall was made of Lexan(thermal conductivity
0.23 W/m K) with an outer diameter of 9.6 cm and an inner
diameter of D=8.89 cm. A 0.012-cm-diameter manganin
wire was embedded in the cell wall to provide the sidewall
heating. This wire had a resistance of about 13V, and typi-
cally dissipated 0.26 W.

The height of the sidewall was 0.229 cm, though the ac-
tual fluid heightd depended on the compression of an O ring
which sealed the cell. The actual fluid height was determined
by measuringDTc and then inferringd from the fluid prop-
erties and the measuredDTc=0.873±0.005 °C. We found
d=0.234 cm, giving an aspect ratioG=19.0.

The fluid used was methanol which, at 22.0 °C, had a
Prandlt numbers=7.17 and a thermal conductivity of
0.20 W/m K. The vertical diffusion time wastv=54 s.

The convection rolls were imaged using the shadowgraph
method [31,32]. At large «, strong spatial variation of the
refractive index caused nonlinear optical effects in the im-
ages[32], but the general features of the pattern could still be
discerned. This effect limited our ability to do wave-number
measurements for«*4. Nonetheless, the location of the um-
bilicus could still be measured.

In order to obtain concentric rolls,DT was set to zero and
the sidewall heater power was set to 0.26 W. After waiting
2 h, we increased the temperature difference toDT
=0.78 °C s«.−0.1d and allowed the system to equilibrate
for 1 h. After this the temperature difference was abruptly
increased toDT=1.3 °C s«.0.5d and the system was al-
lowed to equilibrate for 2 h. The jump ofDT was necessary
because defects typically formed in the interior when the
temperature difference was raised gradually. Once concentric
rolls were obtained, the temperature difference was adjusted
in small steps(typically between 0.05 and 0.01 °C) and the
system equilibrated for 1 h before taking an image at each
temperature step. The power supplied by the sidewall heater
was kept constant throughout the run.

B. Image analysis

Shadowgraph images of some of the patterns are shown in
Figs. 4 and 5. All images were divided by a background
image taken atDT=0. They were filtered by setting to black
(white) all pixels that fell below(above) a certain threshold.
A Gaussian blur was then applied to the chopped image.

We developed an algorithm to determine the local wave-

director fieldkW. This method will be described in detail else-
where. First the orientation fieldusx,yd at each point of the

FIG. 4. The central 11.4d311.4d section of the pattern for«
values near the transition at«4,b. They are from a run in whichDT
was increased with 0.05 °C stepssD«=0.057d. The system was
equilibrated for 1 h after each temperature step before taking a pic-
ture. The images were divided by a background image, and then
processed numerically so as to greatly enhance their contrast. They
are for (a) «=3.139,(b) «=3.244,(c) «=3.301, and(d) «=3.359.
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image was calculated using a method similar to one intro-
duced by Crosset al. [16], but higher angular resolution was
employed. The wave-number fieldksx,yd was then calcu-
lated at each point by moving orthogonal to the the roll ori-
entation at that point and determining the number of pixels
which falls within one wavelength, assuming a locally peri-
odic structure.

Determinations of the wave number 2pd/l from the im-
ages require a knowledge ofd and of the horizontal distance
dx between adjacent pixels. The uncertainty ofd yielded an
uncertainty of only a small fraction of a percent. We deter-
mined dx by counting the number of pixels which spanned
the sample diameter. This yieldeddx=0.095±.002 and led to
a combined uncertainty of about 2% fork. An extrapolation
of the measuredk values with decreasing« to «=0 gavekc

=3.166, which is within the experimental uncertainty of the
value 3.117 for the infinitely extended set of straight rolls.

We measured the location of the umbilicus by using a
24d324d square section surrounding the center. The loca-
tion of the umbilicus was estimated by computing the maxi-
mum of the cross correlation of the measured orientation
field usx,yd and the orientation field for perfectly centered
rolls ucsx,yd. This estimate was used only to identify the
rough location of the umbilicus. Once the umbilicus was
identified, we used an edge-detection algorithm on the um-
bilicus to determine its position with a resolution of about
70 mm or 0.03d.

IV. RESULTS

A. Patterns: Increasing «

We covered the range 0,«,15.6 and with increasing«
observed eight transitions at«i,b, i =1, ... ,8 under quasistatic
conditions. A closeup view of images near the third transition
is shown in Fig. 4. At each transition a roll was lost at the
umbilicus. For all but the first transition the umbilicus first
moved away from the center as« grew. The angle of the
umbilicus displacement did not have a preferred value, as
can be seen from the examples in Figs. 4 and 5. This indi-
cates that the cell was sufficiently uniform. At the transition
the umbilicus collapsed, reducing the number of rolls in the
system by one. After a roll was lost, the new umbilicus im-
mediately moved back toward the center of the sample but
never quite reached it. This process was analogous to that
observed in Refs.[7,8]. The umbilicus displacement before
each transition produced a noticeable azimuthal variation of
the wave number.

Close to but before the sixth transition, for«.5.4, a
patch of cross rolls[13,14] formed along the outermost roll
on the side opposite the direction of umbilicus displacement.
At that point the local wave numberk of the concentric rolls
was the smallest of the entire wave-number field, and was
about 1.95sk/kc−1=−0.39d. The corresponding point in the
« -k plane is shown as a solid circle in Fig. 2. The wave
numberb of the cross rolls that formed was about 4.3. The
value of k is somewhat larger than the prediction[14] kCR
=1.67 (kCR/kc−1=−0.46) for laterally infinite straight rolls
at this value of«. This suggests that the roll curvature or the
sidewall reduces the stablity of the rolls against the cross-roll
perturbation. The wave numberb of the cross rolls that
formed is larger than the predicted value[14] bCR.3.5. The
cross rolls disappeared when« was increased further, the
pattern lost the middle roll, and the umbilicus returned to-
ward the center. At that point all parts of the pattern had
returned to wave numbers safely in the stable Busse balloon.
Before the next(seventh) transition, near«.6.9, cross rolls
appeared again. In this case we foundk=1.86 sk/kc−1=
−0.41d and b=4.3. This point is shown as well in Fig. 2.
Again the value ofb is somewhat larger than the prediction
b.3.9 for infinitely extended uniform straight rolls. After
this transition the cross rolls fanned out to cover the entire
outer roll. Images near the two transitions are shown in
Fig. 5.

The cross rolls remained along the outer roll, and after the
eighth transition, spread to the inner rolls as« was further
increased. Despite the cross rolls, there was still a discernible
pattern of nearly concentric rolls, with the cross rolls super-
imposed on these. Around«.11.5 the focus began to move
off center but did not complete a ninth transition. This is
illustrated in Fig. 6(a) for «=12.75. Cross rolls spread to the
inner rolls, and as« was further increased, the umbilicus
returned to the center without losing a roll, as seen in Fig.
6(b) for «=15.56.

The pattern became time dependent near«=14.2, where
small patches of traveling waves developed. These were su-
perimposed upon and orthogonal to the concentric roll, and
traveled along the axes of the concentric rolls. The traveling

FIG. 5. Images near the transitions at«6,b and«7,b. The optical
effects that distort the roll patterns can be seen in images(b) and(e)
in the rolls that are being compressed by the off-center umbilicus.
These images are from the same run as those in Fig. 4. The values
of « are(a) 5.649,(b) 5.707,(c) 5.821,(d) 6.910,(e) 7.368, and(f)
7.482.
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waves occurred first on the third or fourth roll from the wall,
and with increasing« spread throughout the cell. We associ-
ate this phenomenon with the oscillatory instability predicted
by Clever and Busse[13,14], although for our Prandtl num-
ber the cross-roll instability precedes the oscillatory instabil-
ity.

The cross rolls observed here had been previously seen by
Croquetteet al. [7], though there are differences in the way
they appeared. Croquetteet al. observed that cross rolls
moved in from the sidewall only after« became larger than
about 10. They did not observe a relationship between the
umbilicus transitions and the cross-roll formation. Despite
nearly identical Prandlt numbers and aspect ratios(s=7, G
=20), Croquetteet al. could produce off-center patterns near
transitions comparable to those shown in Fig. 5 with no cross
rolls [10]. In our system cross rolls permanently covered the
outer roll for «=7.48, well before Croquetteet al. first ob-
served any. This difference can perhaps be explained by a
difference in the strength of sidewall forcing. A future study
of the influence of various levels of sidewall heating should
shed some light on this issue.

B. Patterns: Decreasing«

The nature of the patterns for decreasing« depended on
the initial state. When starting above the oscillatory instabil-
ity (say «*14), decreasing« broke up the concentric rolls.
Wall foci evolved, displaced the umbilicus, and emitted new
rolls as« was further decreased. However, the sidewall forc-
ing was strong enough to re-orient the outermost rolls paral-
lel to the sidewall for«&0.21. By«.0.09 the outer roll had
returned to being completely parallel to the sidewall. How-
ever, defects remained in the interior of the pattern, and the
system did not return to concentric rolls as« was decreased
below zero.

Starting from «.6 with concentric time-independent
rolls, new rolls were generated at the umbilicus for distinct
values«i,a,«i,b as « was decreased quasistatically. During
these transitions the umbilicus stayed close to the center, as
illustrated in Fig. 7. We did not determine the maximum« at
which we could start decreasing« without losing the concen-
tric pattern.

C. Umbilicus displacement

With increasing« we measured the displacementd of the
umbilicus from the center of the cell as a function of« for
0.5,«,12. Results over the entire« range are shown in
Fig. 8. A more detailed plot of the results for«,4 is shown
in Fig. 9. Seven transitions, at«i,b, i =2, ... ,8, are apparent
from these data. At the first transition, at«1,b, we did not

FIG. 6. Images for(a) «=12.75 and(b) «=15.56 from the same
run as the one used for Figs. 4 and 5. The pattern in image(a) was
stationary, while in image(b) the cross rolls oscillated along the
axis of the main rolls. At these large« values the images are
strongly influenced by nonlinear effects in the shadowgraph
method.

FIG. 7. The central 11.4d311.4d sections of images obtained
with decreasing« near the transition at«4,a. This is from a run
where « was first increased to 3.49 and then decreased in steps
D«=−0.01. The values of« are(a) 3.49,(b) 2.94,(c) 2.67, and(d)
2.65. Note how the size of the middle roll changes from image(a)
to (c), and how in(c) the umbilicus remains close to the center even
for an « value only just above«4,a.

FIG. 8. The umbilicus displacementd away from the sample
center as a function of« for increasing«. These data are from the
same run as the images in Figs. 4 and 5, where we increased« in
steps ofD«=0.057 and waited 1 h after each temperature step for
the system to equilibrate before taking a picture.

FIG. 9. An expanded view at relatively small« of the results
shown in Fig. 8. The thin solid line shows the umbilicus displace-
ment for decreasing«.
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resolve any discontinuity ind. Prior to each observable tran-
sition there was a large displacement, followed by a relax-
ation back toward a centrosymmetric pattern when the um-
bilicus collapsed.

Figure 10 shows the data ford over the range«,2. Here
we see that the pattern is, within possible systematic errors of
d, accurately centered for«,«1,c.0.8. Above«1,c the in-
crease ofd is consistent with an initially linear dependence,
and thus we fitted the results to

ds«d = d0 + d1s« − «1,cd + d2s« − «1,cd2 s4d

over the range«1,cø«ø1.7 and tods«d=d0 for «,«1,c.
Hered0 corresponds to the small offset, well within our pos-
sible systematic errors, which is found even at small epsilon.
The parametersd0,d1,d2, and «1,c were least-squares ad-
justed. The fit gave«1,c=0.86±0.13,d1=0.077±0.075, and
d2=0.12±0.05. It is shown as the dashed curve in Fig. 10.
The statistical error ofd1 indicates that a fit to a quadratic
equation[i.e., Eq.(4) with d1=0] should be equally good. It
yielded«1,c=0.66±0.08 andd2=0.14±0.02. We identify«1,c
as the focus instability, i.e., as the first instability of the cen-
trosymmetric pattern with our aspect ratioG=19.0 and
Prandtl numbers=7.17.

When« was decreased, transitions involving the addition
of a roll at the umbilicus occurred at«i,a, but were not asso-
ciated with large displacements of the umbilicus. Experimen-
tal results ford with decreasing« are shown by the thin solid
line in Fig. 9. This difference between increasing and de-
creasing« was observed also by Steinberget al. [8].

D. Wave-number measurements

We measured the averaged wave numberskkl for
0,«,4 for both increasing and decreasing«. For compari-
son with theoretical predictions one would like to make this
measurement well away from the umbilicus; in practice there
is a limit set by the aspect ratio of the sample and by a
competing selection mechanism associated with the sidewall.
As we shall discuss below, the local wave numbers have a
maximum at a radial position in the range 10, r ,14
s0.53G, r ,0.74Gd. Thus we selected an annular region ex-
tending over this radial range as illustrated by the highlighted

region in Fig. 11 to computekkl. In Fig. 12 the results ob-
tained with decreasing and relatively small« are shown. The
solid line is a fit of the equation

kkl/kc − 1 =SB« + S2«2 s5d

to the data over the range«,0.6. The fit yieldedkc=3.167,
SB=−0.0285±0.0010, andS2=−0.027. The result forkc,
within thea priori estimate of the experimental uncertainties,
agrees with the theoretical valuekc=3.117 for infinitely ex-
tended straight rolls. The result forSB is shown in Fig. 1 as
an open circle. It falls slightly above the predicted value
−0.0317.

Results forkkl /kc−1 over the entire« range are shown in
Fig. 13 for both increasing(open circles) and decreasing
(solid circles) «. Within experimental uncertainties they are
consistent with previous measurements for similars [7,8].
The jumps in the wave number correspond to the loss or
creation of a roll at a transition. The hysteresis in the wave-
number selection, previously observed by others[7,8], is
clearly visible in our results. It indicates partial pinning of
the phase of the pattern at the umbilicus. We believe that this
phase pinning is responsible also for the difference between
experiment and theory for the value ofSB. On average the

FIG. 10. A very expanded view at small« of the results shown
in Figs. 8 and 9. This graph reveals the initial focus instability of the
centrosymmetric pattern at«1,c. The points«1,a and «1,b are the
limits of the hysteresis loop associated with the transition which are
revealed by the wave-number measurements to be discussed below.
The dashed curve is a fit of Eq.(4) to the data.

FIG. 11. A chopped and blurred image obtained with increasing
« at «=2.61. The highlighted section covers the range 10ø r ø14
and shows the annulus over which we averaged the wave numbers
to obtain the valueskkl shown in Figs. 12–14 below.

FIG. 12. Results forkkl obtained with decreasing«. The solid
line is a fit of Eq.(5) to the data.
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data are in excellent agreement with the calculations by
Buell and Catton[23] which are given by the solid line
through the data.

In order to illustrate the relationship between the first hys-
teretic transition at«1,a and «1,b and the focus instability at
«1,c, we give an expanded view of the selected wave numbers
at small« in Fig. 14. One sees that the discontinuities at«1,a
and «1,b are quite sharp, and that«1,c is located near the
middle of this first hysteresis loop. Values of«i,a and«i,b for
all eight transitions are given in Table I.

The top part of Fig. 15 gives an example for the radial
variation of the shadowgraph intensity. In the bottom part we
display the radial variation of the azimuthal averageku of k
for three « values. Also shown for comparison(bottom
curve, downshifted by 0.1) is the result of our analysis for a
synthetic pattern of concentric rolls with a radial wave-
number distribution shown by the solid line which represents
a smooth curve through the results for«=2.614.

Our analysis yields results forkusrd which oscillate as a
function of r. This is particularly noticeable forr below the
maximum ofkusrd. These oscillations are not present in the
analysis of a synthetic concentric pattern with a uniform
wave number, but as shown by the lowest set in Fig. 15, they
do appear in the analysis of a concentric pattern with a radial
wave-number distribution equal to the smooth curve through

the data for«=2.614. Thus we regard them to be an artifact
of the numerical procedures. We note, however, that the am-
plitude of the oscillations is only about 0.5% ofk, and that a
smooth curve through them is a good representation of the
actual wave numbers.

From Fig. 15 one sees that the experimental data forku, as
mentioned above, have a maximum in the range 10, r ,14,
and this range was used to computekkl. For r .14 the data
were fitted by straight lines as shown in the figure, and these
fits were used to extrapolate the selectedkusrd to kusr =Gd.
The results forkusGd are shown in Fig. 13 above. They show,
as noted by others[6–8], that the outermost roll has an
anomalously large wavelength(small wave number). We
note thatkusGd is not influenced significantly by the transi-

TABLE I. Location of the hysteretic transitions with decreasing
s«i,ad and increasings«i,bd «. For «i,a, i =1, . . . ,4 the uncertainty
d«=0.006. For«5,a and«6,a, d«=0.11. For«i,b, d«=0.029.

i «i,a «i,b

1 0.598 1.154

2 1.217 1.841

3 1.858 2.528

4 2.660 3.330

5 3.6 4.437

6 4.8 5.759

7 7.368

8 9.552

FIG. 13. Circles: the average selected reduced wave numbers
kkl /kc−1 vs «. Squares: the reduced wave numberskusGd /kc−1
selected at the sidewall. Open symbols: increasing«. Closed sym-
bols: decreasing«. Solid line through the data forkkl /kc−1: the
prediction of Refs.[23] and [12]. Lower solid line: the zigzag in-
stability for s=7.

FIG. 14. A detailed view of selected wave numberskkl near the
focus instability at«1,c and the first hysteretic transition at«1,b and
«1,a. The symbols are as in Fig. 13.

FIG. 15. Top: an azimuthal average of the shadowgraph inten-
sity (arbitrary scale) as a function of radial position for«=2.61.
Bottom: azimuthal averages of the local wave numbers. The vertical
dashed line shows the location of the sidewall, and the two vertical
dotted lines show the inner and outer edge of the annulus high-
lighted in Fig. 11 and used to compute the average wave numbers
kkl shown in Figs. 12–14. From top to bottom, the first three data
sets are for«=0.077, 1.297, and 2.614. The lowest set is for a
synthetic concentric pattern(downshifted in the figure by 0.1) with
a wave-number distribution(shown by the solid line) given by
straight-line representations of the experiment for«=2.614. The
solid straight lines through the experimental data at larger are fits
to the data withr ù14 and were used to findkusGd. The dashed
straight lines through the experimental data at smallr are fits for
5ø r ø10 and were used to determineks0d.
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tions at the umbilicus. We looked for a dependence ofkusGd
on the applied wall current, but found none for instance at
«=1.1 over the range from 0.02 to 0.66 W. Interestingly, the
wall-selected wave number does not extrapolate tokc as «
vanishes. Instead, it crosses the zigzag instability line of the
laterally infinite system; but in the experiment for this finite
system no instability was observed. We are not aware of any
quantitative previous measurements or predictions forkusGd.

The experimental results at smallr suggest that yet an-
other unique wave number is selected by the umbilicus itself.
Fits of straight lines to the data, this time with 5, r ,10,
could be used to estimate the selected valuesks0d at r =0.
The results are given in Fig. 16. For comparison we show in
that figure also the prediction for the concentric-roll selection
[23] (smooth solid line) and the experimental results for
kusGd (jagged line). One sees thatks0d is influenced strongly
by the hysteretic transitions at the umbilicus. At large«, ks0d
is on average close to the result forkusGd, but as« decreases,
ks0d is somewhat larger and tends toward an intermediate
value somewhere betweenkusGd and kkl as «→0. Also for
ks0d there appear to be no previous measurements or
predictions.

V. CONCLUSION

We studied Rayleigh-Bénard convection of a fluid with a
Prandtl numbers=7.17 in a cylindrical container of aspect

ratio G=19 in the presence of static sidewall forcing. Pat-
terns of concentric rolls were obtained, and we studied the
quasistatic evolution of these patterns for both increasing and
decreasing«.

For increasing«, over a range 0.4,«,15.6, the pattern
underwent eight transitions where the middle roll moved off
center and then disappeared as« was increased quasistati-
cally. We measured the displacement of the umbilicus for
0.5,«,12. Above«.14 the pattern became time depen-
dent with oscillating rolls traveling along the axis of the
concentric rolls.

For decreasing«, the concentric-roll pattern was lost
when the initial« was too large. When« was decreased from
a moderate initial value, the concentric-roll pattern remained
and new rolls nucleated at the umbilicus. Any umbilicus dis-
placement preceding the nucleation of new rolls was modest,
in sharp contrast with the behavior of the pattern for increas-
ing «.

Using image-analysis techniques discussed in Sec. III B,
we determined the wave-number field for 0,«,4. From
this we computed the azimuthal averageku. There was a very
noticeable radial gradient ofku both near the sidewall atr
=G and near the center atr =0. Averaging the wave-number
field over the annulus 10, r ,14 whereku was relatively
constant, we obtained an average wave numberkkl. We
found thatkkl was discontinuous and hysteretic at the tran-
sitions where new rolls were formed or disappeared at the
umbilicus. Nonetheless, a smooth curve through the data
agreed well with predictions[12,23] for the wave-number
selection in the far field of concentric rolls. These average
wave numbers were also consistent with previous work by
others[7,8]. Near the wall and near the center the measured
ku were extrapolated tor =G and tor =0 to obtain the wave
numberskusGd andks0d selected by the wall and the umbili-
cus. We are not aware of previous measurements or predic-
tions for these quantities.
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