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In buoyancy-driven flows, another dimensional quantity appears in addition to the energy flux. Classically,
this leads to the prediction that at large scales, isotropic Bolgiano-Obukhov(BO) scaling can dominate isotro-
pic Kolmogorov scaling. We investigate this in the atmosphere by using state-of-the-art high-powered lidar
data. We examine simultaneous horizontal and vertical sections of passive scalar surrogates over the ranges
100 m to 120 km and 3 m to 4.5 km, respectively. Overall, this spans the crucial “mesoscale” and involves
nearly 1000 times more data than the largest relevant experiments to date. Rather than a transition from one
isotropic regime to another, we find that the two regimes always coexist in an anisotropic Corrsin-Obukhov law
with the Kolmogorov holding in the horizontal, and the BO holding in the vertical. The stratification is
quantified by an elliptical dimensionDel found to be equal to 2.55±0.02. This anisotropic scaling is very close
to that predicted by the 23/9 dimensional unified scaling model of the atmosphere and is consistent with
observations of the horizontal wind.
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I. INTRODUCTION

Practically all theories of turbulence assume isotropy or at
least local isotropy. In many dynamically driven laboratory
flows, this may indeed be justified. However, in buoyancy
driven flows, the justification is not obvious because gravity
breaks the isotropy and acts at all scales. In such flows, the
classical assumption is that gravity(and perhaps rotation)
leads to a basic stably stratified state. The perturbations—
usually treated with the Boussinesq approximation—are nev-
ertheless assumed to be statistically isotropic. When consid-
ering the buoyancy driven atmosphere, there is a further
challenge to isotropic theories. This comes from the fact that
the scale height for the mean pressure is about 10 km, so that
no isotropic three-dimensional turbulence can extend to the
large “synoptic” scales. However, even in atmospheric appli-
cations, the now mostly outdated classical view(see, e.g.,
[1]) clings to isotropy by postulating an intermediate “me-
soscale gap” followed at larger scales by qualitatively differ-
ent, (quasi) two-dimensional—but still isotropic—
turbulence. This isotropy is postulateda priori, and a
mesoscale break(or “dimensional transition”[2]) is a purely
theoretical consequence, inferred in order to save the isot-
ropy hypothesis.

Today, although we still lack consensus about the full
horizontal atmospheric statistics, the mesoscale gap is no

longer taken seriously. Practically all the relevant experimen-
tal campaigns in the last 20 years(see the review in[3] of
Refs.[4–11]) agree that(to within intermittency corrections)
the horizontal wind is scaling in the horizontal direction with
(Kolmogorov) exponentbh=5/3 out to atleast several hun-
dred kilometers. In addition, the statistics of horizontal wind
fluctuations along the vertical are also generally taken to be
scaling but with a spectral exponentbv.bh. The scaling in
the vertical direction and the value ofbv are explained in the
existing literature predominantly by either buoyancy-driven
bv=11/5 (e.g., Bolgiano[12] and Obukhov[13]) and bv
=3 (e.g., Lumley[15] and Shur[14] gravity waves[16,17]).
Note also the existence of quasigeostrophic[18] and shallow
water equation[19] approaches, and other(quasi) two-
dimensional(2D) theories in which there are no vertical
shears.

If we take two different scaling relations to hold simulta-
neously in the horizontal and vertical directions, the atmo-
sphere is anisotropic at all scales and, ifbv.bh, it effec-
tively becomes progressively flatter and flatter at larger and
larger scales. The flattening can be characterized by an inter-
mediate “elliptical dimension”:Del=2+sbh−1d / sbv−1d with
2øDelø3. The elliptical dimension quantifies the rate of
increase in volume of nonintermittent structures[2]. In this
framework, the atmosphere is therefore neither 3D isotropic
at small scales nor 2D isotropic at large scales.Del=3 and 2
are the 3D and 2D isotropic cases, respectively. In terms of
Del—from the point of view of these anisotropic theories—
the atmospheric debate is thus between buoyancy-driven
flows with Del=23/9 and a gravity wave mechanism leading
to Del=7/3. Of course, if the gravity wave explanation is
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correct, then the structures will not be spatially localized so
that this characterization will not be so useful. In 2D theories
based on quasigeostrophy[19] or in the shallow water equa-
tions (e.g., [20]), there is no vertical variability, so that, al-
thoughbh can take various values(notablybh=3 for quasi-
geostrophy, or 8/3 and 13/3 for the shallow water
equations), we havebv=` so thatDel=2.

The valuebv=3 is justified on the basis of gravity waves.
However, this explanation is hardly fundamental since it re-
quires the dynamics to be weakly nonlinear in order for a
meaningful dispersion relation to be defined and, at the same
time, to be strong enough for a horizontal turbulent forcing
to exist. In addition, it requires a separate mechanism of
unclear origin for the forcing. In fact, it is not well supported
by existing data. In Ref.[3], a dozen or so empirical studies
from Refs.[14–30] are reviewed and it is concluded that all
the available atmospheric evidence(including the largest ver-
tical sounding study to date[28]) are more compatible with
the Bolgiano-Obukhov(BO) valuebv=11/5 which emerges
from the conservation of the buoyancy variance flux in
buoyancy-driven flows and is discussed further below.

In buoyancy-drivenlaboratory (e.g., Rayleigh-Bénard)
flows, there is a corresponding debate about the scaling ex-
ponents. While this debate also involves BO scaling, to date,
it has been between isotropic Kolmogorov and isotropic BO
scaling. In this view, although the latter should theoretically
be dominant at scales larger than the Bolgiano scalelB (the
scale at which, in the Boussinesq approximation, the buoy-
ancy forcing dominates the viscous damping), there is still
no concensus. For instance, in numerical convection model-
ing, there is no strong evidence for BO scaling[31], although
Ref. [32] and Ref.[33] give it some support in 3D and 2D,
respectively. According to Ref.[31], the problem may lie in
the use of the Boussinesq approximation, although it is sig-
nificant that the crucial statistics—of the horizontal velocity
in the vertical direction—do not seem to have been consid-
ered carefully enough. On the empirical side, progress has
been hampered due to experimental difficulties in measuring
velocities in the presence of large temperature gradients. For
example, the well-known “helium in a box” experiment[34]
obtains Kolmogorov statistics for temporal temperature fluc-
tuations for scales both smaller and larger than the Bolgiano
scale [35]. However, recent technological advances(e.g.,
[36,37]) have led to improved data that apparently favor BO
scaling although over short ranges of scale and for the verti-
cal velocity in time.

II. THE UNIFIED SCALING MODEL

Although there are obvious differences between atmo-
spheric and laboratory flows, fundamental anisotropic theo-
ries unifying horizontal and vertical statistics based on ki-
netic energy and buoyancy force invariants should apply—at
least in some measure—to both cases. The anisotropicDel
=23/9 “unified scaling model”[2] is the simplest and physi-
cally most appealing such unified theory. This model was
proposed on the basis of(a) the observed atmospheric statis-
tics of vertical shear of horizontal wind and(b) an aniso-
tropic modification of the classical BO buoyancy subrange

theory. This anisotropic model does not assume stable strati-
fication nor does it require that any reference states(e.g.,
mean density or temperature profiles) play physical roles.
Rather, it assumes that the buoyancy force variance fluxf
=sgD ln ud2/t (u is the potential temperature,t is a time
scale for the transfer, andD ln u is the difference over a layer
thicknessDz) dominates the vertical statistics, while the stan-
dard energy flux(«=Dv2/t, t=Dx/Dv) dominates the hori-
zontal statistics. From dimensional analysis, the scale corre-
sponding to the classical Bolgiano lengthlB (see[13]) is the
“spheroscale”ls:

ls = f−3/4«5/4. s1d

However, unlike the Bolgiano scale—which is a transition
between two different isotropic regimes—in thes23/9dD
model,ls simply denotes the scale at which the amplitudes of
typical vertical and horizontal fluctuations are equal. Con-
trary to the case oflB, at ls, there is no qualitative change in
behavior.

In the s23/9dD model, a scale functionirIi is introduced,
which is now the physically relevant notion of scale. In all
the usual isotropic turbulent laws,irIi is used in place of the
usual Euclidean distanceurIu. This physical scale satisfies

il−GrIi = l−1irIi, s2ad

whereG is the generator of the group scale changing opera-
tors. In the simplest case of linear general scale invariance
[2], G is independent of position; it is a matrix. Note that the
anisotropic contraction property[Eq. (2a)] allows us to de-
fine in a straightforward manner anisotropic fractional differ-
ential operators[46] and therefore a fractional differential
stratification. Consider a 2D verticalsx-zd cross section so
that we may take

G = S1 0

0 Hz
D s2bd

where Hz characterizes anisotropy. A simple example of a
scale function for vertical stratification satisfying Eqs.(2a)
and (2b) is

irIi = lsFS x

ls
D2

+ S z

ls
D2/HzG1/2

. s3d

The theoretical exponentHz=Hh/Hv=s1/3d / s3/5d=5/9,
whereHh andHv are the theoretical real space scaling expo-
nents in the horizontal and vertical directions, respectively,
corresponding tobh and bv (within intermittency correc-
tions). We can write a general anisotropic law for the hori-
zontal velocity shear as a function of a separationiDrIi in an
arbitrary direction:

DvsDrId < «1/3iDrIi1/3 s4d

As required, in the horizontal whereDrI=sDx,0d, it reduces
to Kolmogorov scaling and in the vertical whereDrI
=s0,Dzd, it reduces to BO scaling.

The balance of existing empirical evidence is—in our
view—in favor of the unified scaling model, based on the
review in Ref.[3] of the experimental results in the horizon-
tal and vertical given in Refs.[4–11] and Refs.[14–30],
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respectively. However, it has come almost exclusively from
measurements made independently in the horizontal and in
the vertical(a partial exception[28,38] involved both bal-
loon and aircraft data from the same field experiment and
provided the first multifractal characterization of horizontal
wind anisotropy, however, it still did not use vertical cross-
sections). Up to now, no direct measure of the anisotropy has
been made on vertical and horizontal cross sections(the only
exception was radar rain data[47] which had only a factor of
8 in the vertical). In order to perform such a direct empirical
test, we analyzed high-resolution two-dimensional aircraft li-
dar data of the atmospheric aerosol backscatter ratio. These
data are a surrogate of aerosol density, itself a good approxi-
mation for a passive scalar(see[3] for details).

The s23/9dD model predicts that the aerosol density sta-
tistics should follow the anisotropic Corrsin-Obukhov(CO)
law for passive scalar advection, obtained from the isotropic
CO law by once again substitutinguDrIu by iDrIi:

DrsDrId < x1/2«−1/6iDrIi1/3. s5d

x is the passive scalar variance flux. Equation(5) reduces to
the standard CO law in the horizontal, but predicts a different
scaling law in the vertical:

DrsDzd < x1/2«−1/2f1/5Dz3/5. s6d

Although the lidar measures only a surrogate ofr, according
to thes23/9dD model, any physical atmospheric field should
have the same ratio of horizontal to vertical exponents. In
addition, if one can express the backscatter ratio as a power
of the aerosol density(see, for example, the treatment in
[39]), then, to within intermittency corrections, any power of
r will respect the anisotropic CO law. Therefore, a system-
atic comparison of the horizontal and vertical scalings of the
backscatter ratiowill still test the s23/9dD model, and the
ratio of horizontal to vertical exponents should beHz.

III. THE EXPERIMENT

This experiment was conducted using an airborne lidar
platform (the Meteorological Service of Canada’s AERosol
Imaging Airborne Lidar–AERIAL[48]) flown at constant at-
titude over a series of flight legs up to 120 km in length in
the Lower Fraser Valley, BC. Lidar remote sensing is a time-
of-flight technique that uses laser radiation backscattered
from atmospheric particulates to obtain range-resolved back-
scatter measurement fields. The commonly measured quan-
tity is the backscatter ratiosBd, which is the ratio of the
aerosol backscatter coefficient to that of the background mo-
lecular scattering. The airborne lidar platform is a simulta-
neous up-down system mounted aboard the Canadian Na-
tional Research Council Convair 580 aircraft. In this paper,
only the data obtained from the downward pointing system
were used. The downward laser operated at the fundamental
wavelength of 1064 nm, suited for the detection of particles
with diameter of the order of 1mm and had a pulse repeti-
tion rate of 20 Hz.

B was measured continuously in a 2D vertical planar sec-
tion bounded above at 4.5 km(the aircraft altitude). The data

extended up to 120 km in the horizontal with a correspond-
ing resolution of 100 m, leading to a total scale ratiol
=1200. This resolution was set by the aircraft speed, the laser
pulse repetition rate, and the 1 s pulse averaging required to
improve the signal-to-noise ratio. The vertical extent of the
data was typically 4500 m(i.e., the aircraft altitude) with a
resolution of 3 m(i.e., the pulse length) leading tol=1500.

IV. RESULTS

Figure 1 shows a typical data set. In the results presented
here, an ensemble average was taken over nine available data
sets, treating the horizontal and vertical directions separately.

Taking into account the intermittency of the flux of the
scalar variance and of the energy flux, defining the multiscal-
ing exponentKsqd for an arbitrary statistical momentq as
[40]

kxiDrIi
q/2 «iDrIi

−q/6l ~ iDrIi−Ksqd s7d

and taking the ensemble average of Eq.(5), one obtains for
any arbitrary vectorDr

kuDrsDrIduql = iDrIizsqd with zsqd = q/3 − Ksqd, s8d

whereDrsDrId=rsrI+DrId−rsrId andzsqd is the structure func-
tion exponent. SinceKs1d is small,zs1d<1/3. In the hori-
zontal, we haveDr =sDx,0d so that iDrIi<Dx, with zhsqd
=zsqd. In the vertical,Dr =s0,Dzd, such thatiDrIi<Dz1/Hz

with Hz=s1/3d / s3/5d=5/9 [see Eq.(3)]; therefore defining
the corresponding vertical scaling exponentzvsqd with re-
spect toDz we expectzhsqd /zvsqd=Hz=5/9.

Figure 2 shows the results forq=1. By regression, it was
found that Hh=0.33±0.03 andHv=0.60±0.04, while in
theoryzhs1d<Hh<1/3 andzvs1d<Hv<3/5 (“<” is used to
account for small intermittency corrections). Over the range
of roughly 200 m to 60 km along the horizontal, 6 m to 1 km
in the vertical, the anisotropic CO law thus holds remarkably
well.

The variation of the exponent ratioHz for each of the nine
data sets individually can also be checked. For the ensemble,
Hz=0.55±0.02. On a per realization basis, 0.31øHhø0.39,
0.59øHvø0.69, and 0.51øHzø0.58. By averaging the in-
dividual Hz estimates, the mean value isHz=0.55±0.02. A
regression ofzhsqd versuszvsqd for increasingq over the
range 0,q,3 also givesHz=0.55±0.02. We therefore con-
cludeDel=2+Hz=2.55±0.02.

By extrapolating the lines in Fig. 2 until they intersect, we
estimate the average spheroscalels at approximately 10 cm.
Recall that it is the scale at which horizontal and vertical
fluctuations are of equal amplitude. It was found to vary
between 3 and 80 cm. As previously pointed out, structures
larger thanls will be horizontally stratified.

Turning toq=2 statistics, we can compute the 1D energy
spectra(Fig. 3). Since the spectrum is the Fourier transform
of the correlation, and taking into account intermittency cor-
rections to second-order statistics, the spectral exponentb is
b=1+zs2d. This leads tobh=5/3−Khs2d and bv=11/5
−Kvs2d. Once again, the theoretical predictions are very ac-
curately followed. From log-log linear regression,bh
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FIG. 1. (Color online) This is the full data taken on 15 August 2001. The scale on the bottom is a logarithmic color scale: darker is for
smaller backscatter(aerosol density surrogate), lighter is for larger backscatter. In the first panel, the vertical is 4.5 km and the horizontal is
120 km. The horizontal resolution is 100 m and the vertical resolution is 3 m. The range of scales in this data set is 120031500. The black
shapes along the bottom are mountains in the British Columbia region. There are no bad pixels in the image. The second panel is a zoom of
the first panel; it is 30 km wide and 1300 m thick. This panel highlights the high spatial resolution and the wide dynamic range. There is no
saturated signal and high sensitivity to low signal return.
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=1.61±0.05 andbv=2.15±0.05. From the estimates made of
Khs2d and Kvs2d using the trace moment(TM) and double
trace moment(DTM) techniques[41], we found bh=5/3
−Ks2d=1.60±0.03 andbv=11/5−Kvs2d=2.10±0.04.

For small k, deviations occur from the reference line of
slope b because of poor statistics whereas for large k, the
spectrum flattens out due to instrumental noise. The real

space counterparts(the structure functions) give a less clear
separation of scales. The small deviations above and below
the reference line of slopeHv are therefore less localized but
can be explained in the same way.

In principle, a full characterization of the intermittency
would require knowledge of the entireKsqd functions for 0
øq,`. Fortunately, multifractal processes have stable, at-
tractive generators1 leading to the following universal form
[40]:

Ksqd =
C1

a − 1
sqa − qd s9d

where 0øC1ød is the codimension of the mean,d is the
dimension of space, and 0øaø2 is the Lévy stability index
characterizing the generator. If the cascade is indeed aniso-
tropic with a scale function such as Eq.(3), then it must be
that Kh/Kv=Hz such thatah=av and C1,h/C1,v=Hz. Apply-
ing the TM and DTM techniques onKh and Kv gives ah
=1.82±0.05,ah=1.83±0.04,C1,h=0.037±0.006, andC1,h
=0.053±0.007. The exponentsah and av are equal within
error bars, supporting the expectation thatKh/Kv=Hz. On the
other hand, the ratio of theC1’s is equal to 0.69±0.2, also
within the error bars ofHz. In addition, by comparing these
values with those of other estimates for passive scalars(e.g.,
SF6, H2O [43]; H2O [44]) for which the mean valuesa
=1.65±0.05 andC1=0.085±0.01 were obtained, we find that
a is a little larger whileC1 is a bit smaller. As a possible
explanation, if it is assumed thatB is a power of the aerosol
density[39], r=Bh wherer is the true passive scalar density,
andh is an exponent which accounts for the optical proper-
ties and particle size distribution, then for universal multi-
fractals with a fixeda, C1=haClidar [45], so that in the
present caseh=1.4.

V. CONCLUSION

Fundamental theories of buoyancy-driven turbulence in-
volve a quadratic invariant in addition to the energy flux. If
only on dimensional grounds, this leads to a buoyancy-
dominated Bolgiano-Obukhov scaling regime. Classically,
the Bolgiano-Obukhov regime has been assumed to be iso-
tropic, dominating the Kolmogorov scaling for scales larger
thanlB. In laboratory experiments—where isotropy is at least
tenable—the debate is indeed mostly between isotropic Kol-
mogorov and BO theories. Unfortunately, in spite of the fact
that gravity acts at all scales, standard theories are isotropic.
In the atmosphere the classical isotropic BO scaling has been
convincingly shown to not exist. However(for the horizontal
velocity), starting in the late 1960s, the BO scaling was con-
sistently observed in the vertical direction while Kolmogorov
scaling was observed in the horizontal. Nevertheless, due to
the difficulties (in both laboratories and the atmosphere) of
obtaining appropriate data, decisive evidence in favor of the
model have been lacking. In this paper, rather than to statis-
tically compare aircraft and radiosonde unsynchronized wind

1A log-Poisson model[42] is often used for fitting Ksqd, but it
does not possess stable, attractive generators.

FIG. 2. The lower trace is the first-orderq=1.0 structure func-
tion for the fluctuations inr as a function of horizontal distanceDr
(in meters), and its line of best fit has slopeHh=0.33. The upper
trace is the first-order structure function for the fluctuations inr as
a function of vertical distanceDr with a line of best fit with slope
Hv=0.60. An Hv=1.0 (corresponding to thek-space exponentbv
=3) was added for comparison with the prediction of gravity wave
theories.

FIG. 3. The lower trace is the Fourier spectrum for the fluctua-
tions in r as a function of horizontal wave numberk (in m−1) with
a line of best fit with slopebh=1.61. The upper trace is the Fourier
spectrum for the fluctuations inr as a function of vertical numberk
with a line of best fit with slopebv=2.15. A bv=3 reference line
was added for comparison with the prediction of gravity wave
theories.
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data, we use passive scalar surrogates from nine airborne
lidar cross sections, thereby accessing both horizontal and
vertical information virtually simultaneously. We consider
the ensemble average results of the analysis of data from
nine vertical cross sections, each spanning factors of over
1000 in scale in each direction. The overall data set is nearly
1000 times larger than the largest existing comparable ex-
periment[28,38]. This explains the high accuracy of the ex-
ponents found here. We interpret the results in the framework
of the unified scaling model(USM). In the USM, an aniso-
tropic physical scale is introduced to replace standard isotro-
pic scales, predicting a different anisotropic Corrsin-
Obukhov law for passive scalars. We find that the
theoretically predicted anisotropic extension of the CO law
for passive scalars holds extremely accurately(to within 5%
for the critical exponentHz=5/9). In confirming this
prediction—and this includes intermittency corrections—we
find Del=2.55±0.02, very close to the theoretical value 23/9
and effectively ruling out the other theories, including quasi-
2D turbulence or gravity wave dynamics. Contrary to the
assumptions of standard isotropic turbulence theories and
also contrary to meteorological parametrizations, passive
scalars are thus differentially stratified over this range, a fact
that has important consequences in the modeling of the at-
mosphere. In addition, the 23/9D model involves an aniso-

tropic “physical scale” which allows the standard isotropic
results(including cascades) to be mapped onto anisotropic
ones. This aspect should be relatively easy to test in the
laboratory.

Finally, since we find no scale breaks, it will be hard to
reconcile our results with those of the Boussinesq and other
related approximations, since they rely on postulating well-
defined(physically relevant) vertical profiles.
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