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The dimension(D) of aircraft trajectories is fundamental in interpreting airborne data. To estimate D, we
studied data from 18 trajectories of stratospheric aircraft flights 1600 km long taken during a “Mach cruise”
(near constant Mach number) autopilot flight mode of the ER-2 research aircraft. Mach cruise implies corre-
lated temperature and wind fluctuations so thatkDZl<DxHz whereZ is the (fluctuating) vertical andx the
horizontal coordinate of the aircraft. Over the range<3–300 km, we found Hz<0.58±0.02 close to the
theoretical5/9=0.56 and implyingD=1+Hz=14/9, i.e., the trajectories are fractal. For distances,3 km
aircraft inertia smooths the trajectories, for distances.300 km, D=1 again because of a rise of 1 m/km due
to fuel consumption. In the fractal regime, the horizontal velocity and temperature exponents are close to the
nonclassical value 1/2(rather than 1/3). We discuss implications for aircraft measurements as well as for the
structure of the atmosphere.
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I. INTRODUCTION

A fundamental goal of atmospheric science is a statistical
understanding of the extreme variability of the atmosphere
over the entire range from planetary down to small viscous
scales; some nine orders of magnitude. Since there are sev-
eral competing theories, a major difficulty is in obtaining
appropriate data. This is particularly true in the mesoscale
range where aircraft wind and temperature measurements are
essential. Clearly the interpretation of aircraft data depends
on the dimensions(D) of the trajectories.

Standard data, whether remotely sensed or from meteoro-
logical networks(even if sparse[1], D,2), are independent
of the state of the atmosphere. In comparison—except in an
ideal 2D atmosphere—aircraft measurements will be sensi-
tively dependenton the observed medium. This is because
aircraft, no matter how well controlled, cannot fly in per-
fectly flat horizontal lines; wind fluctuations and thermal
plumes cause systematic deviations. Under manual control
the operator intervenes over periods of minutes to hours so
that the behavior is not so easy to analyze; in contrast auto-
pilots act over time scales of seconds, so that the structure of
the trajectories at kilometer scales or larger will be the result
of the combined action of the control algorithm and the long-
range scaling properties of the atmosphere. Indeed, for the
ER-2 aircraft discussed here, analysis of manually flown seg-
ments confirmed that they had quite different statistics(no
clear scaling behavior) compared to the scaling followed in
the “Mach cruise mode.” In this mode, the autopilot acts to
maintain the Mach number(Ma) fixed to ±2% –3% so that
the control algorithm introduces correlations in the velocity,
temperature, and vertical position via the iso-Mach condition
as follows:

vg = vlong + sgRTd1/2 Ma s1d

with Ma=0.7, vg is ground speed,vlong is the longitudinal
wind speed(in the direction of the aircraft), g the specific
heat ratio,R is the gas constant, andT the absolute tempera-
ture (see Sec. III).

In order to understand how control algorithms affect tra-
jectories, we must consider the turbulent statistics. The stan-
dard model of the atmosphere(e.g., [2]) involves a quasi-
isotropic 3D turbulence at scales smaller than the “mesoscale
gap” s<10 kmd, and a quasi-isotropic much smoother 2D
turbulence at large scales where aircraft trajectories would
remain approximately smooth and flat.A priori this is no
longer possible in the framework of the “unified scaling
model” [3], which involves a unique but strongly anisotropic
turbulent regime and where verticalsDzd and horizontal
scalessDxd of atmospheric structures are related through

Dz< DxHz. s2d

The effective “elliptical” dimension of this model isDel=2
+Hz; Hz=0, 1 for isotropic 2D and 3D atmospheres. At
scales smaller than a criticalDxi, the aircraft inertia smooths
out the fractality. However for larger scales, one may expect
that the scaling relation[Eq. (2)] will also hold for the(ran-
dom) altitude fluctuations of the aircraft(denotedDZ). In this
case, the aircraft trajectories will be fractalsHzÞ0d.

The unified scaling model originated as an alternative to
the increasingly implausible “mesoscale gap” near 10 km.
Indeed the horizontal wind spectrum is continuous from ki-
lometers to thousands of kilometers[4–10]. In addition, ra-
diosonde studies have consistently found much steeper
power spectra in the vertical than in the horizontal the atmo-
sphere is anisotropic over much of its range[11–15]. Radar

PHYSICAL REVIEW E 70, 036306(2004)

1539-3755/2004/70(3)/036306(5)/$22.50 ©2004 The American Physical Society70 036306-1



[16] and lidar[17] have also been used to draw similar con-
clusions; see also[18,19]. On the empirical side, the current
debate is whether the spectrum in the vertical is close tok−3

(Lumley-Shur, gravity waves) or to k−11/5 (Bolgiano-
Obukhov, buoyancy driven). If in addition, the horizontal
spectrum isk−5/3, then these competing models have “ellip-
tical dimensions” =7/3, 23/9 respectively, either of which
will likely yield fractal trajectories(note that elliptical di-
mensions are primarily of interest when the structures are
localized). Lilley [20] concludes that all the available data is
compatible withDel=23/9, and Lilleyet al. [17] provides a
direct empirical estimate using passive scalar lidar backscat-
ter, obtaining 2.55±0.02.

II. THE DATA AND STATISTICAL ANALYSIS
OF THE TRAJECTORIES

We use data from the NASA ER2 high-altitude aircraft
taken from the AASE(Airborne Arctic Stratospheric Expe-
dition) during a campaign based in Stavanger, Norway, from
January to February 1989. AASE was designed to study
stratospheric polar ozone concentrations and their relations
with other meteorological variables[10,21]; data were taken
at 10 Hzs<20 md. The aircraft position was measured par-
ticularly accurately in the verticals<±6 md. Due to the par-
ticular aerodynamic characteristics of the ER2 aircraft, it
must fly within 2% –3% of Mach 0.7s<200 m/sd over
much of the flight path[21].

We chose segments from 18 flights in which the aircraft
was flying (nearly) along a great circle route using Mach
cruise, each of which was over 1600 km long. Fig. 1 shows
a vertical cross-section of six representative flights. With the
exception of the vertical drift of roughly 1 m/km, caused by
the slow lightening of the aircraft due to its fuel consump-
tion, the segments appear to be random walks.

In order to test Eq.(2), we calculated structure functions
(i.e., statistical moments of the increments) as follows:

kuDZuql = AqDxzzsqd, s3d

wherekl indicates ensemble averaging,q is the order of the
structure function,zzsqd its scaling exponent, andAq is a
prefactor. Note that we ignore the(relatively) small random
horizontal fluctuations and treatDx as a sure variable. Before
looking at the data, let us consider the theoretical predictions
of the unified scaling model for the logarithmic derivative
zzs1d of kuDZul. At scales,Dxi, aircraft inertia will overcome
the turbulence, the trajectory will be smooth and, if not per-
fectly flat will have zzs1d=1. For the wind and temperature
we expect Kolmogorov statistics;zvs1d=zTs1d=1/3 [note:
whenever noise dominates the signal,zzs1d=0]. Similarly, at
scales.Dxf the trend imposed by the linear 1 m/km rise
again implieszzs1d=1, we expect to recover the vertical
exponents zvs1d=zTs1d=3/5 (see below). For scales
Dxi ,Dx,Dxf the inertia is not enough to smooth out the
fluctuations, and the effect of the fuel consumption rise is
negligible; this is the fractal region.

Turning to the data in Fig. 2, we have indicated the vari-
ous theoretical slopes discussed above by thin reference
lines. We see that the above simple theory reasonably ac-
counts for the extremes. In addition, over the intermediate
rangeDxi ,Dx,Dxf with Dxi <3 km,Dxf <300 km, we see
scaling withzzs1d=Hzt=0.58±0.02, implying fractal trajec-

FIG. 1. This shows six representative flight segments, each us-
ing “Mach cruise,” and each about 8000 s long(corresponding to
about 1600 km). A reference trend of 1 m/km is shown.

FIG. 2. First-order structure functions for the mean of the 18
flights. The top reference line has slopeH=Hz=5/9; it corresponds
to ls=4 cm [Eq. (3)]. f represents the field(z, v, or T). The units of
z (top, open circles) are m, for v (middle, longitudinal squares,
transverse circles), are m/s, forT (bottom, diamonds), K. Thick
reference lines have slopesH=1/2. From the amplitude of the
small v, T fluctuations, we can estimate the noise as ±7 m,
±0.7 m/s, ±0.15 m/s, ±0.08 K for altitude, longitudinalv, trans-
versev, T, respectively.
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tories with D=1+Hzt. Over the same range, we also find
zvs1d=0.50±0.02, zvlongs1d=0.52±0.03, zTs1d=0.45±0.02
for v transverse(orthogonal to the aircraft direction), v lon-
gitudinal (parallel) and T, respectively[zvlongs1d is only for
3,Dx,10 km; see below]. The corresponding energy spec-
tra are Eskd=k−b with b=1+zs2d; zs2d=2H−Ks2d where
Ks2d is a multifractal (intermittency) correction estimated
here as<0.1 so that over the fractal rangebT<bv<1.9. To
within errors and possibly small intermittency corrections,
thezs1d are sufficiently close to each other and to 1/2 that a
corresponding reference line was added. However, detailed
analysis showed that these values are definitely smaller than
zzs1d, which is close to the theoretical 5/9 value discussed
below. The exponentzs1d=1/2 is a classical exponent,
which is ubiquitous in physics, e.g., the Lorentzian, normal
diffusion etc. However here, this apparently “normal” value
is, in fact, anomalous with respect to the classical Kolmog-
orov 1/3. In any case, as indicated,T, v are multifractal and
so cannot be modeled by “normal” diffusion.

The (aircraft) inertial scale Dxi =3 km corresponds to
<15 s; it limits the maximum vertical accelerations to
<1% –2% of g which are not too noticeable. For scales
below 400 m, although the trajectory is smooth, thez, T
signals are dominated by measurement errors(±6 m,
±0.07 K, respectively), while the velocity shows evidence of
Kolmogorov 1/3 scaling.

The usual assumption is either that aircraft altitude is con-
stant to within a fixed amplitude noise(implying Hzt=0) or
that it is deterministic(with negligible vertical fluctuations),
but with a nonzero slopesHzt=1d. Figure 2 shows that nei-
ther is valid over the fractal range. By comparing the curves
for the transverse, longitudinal velocities and temperature,
we see that it is plausible that the nonscaling variations in
these structure functions can be explained by measurement
errors and by variations in aircraft altitude. Recalling that the
standard isotropic 3D and 2D values forzvs1d are H=1/3
and H=1, respectively, we see that the observed value
s<1/2d is nonclassical. Finally, thevlong fluctuations seem to
“saturate” at about 7–8 m/s, which is about 2% –3% of the
mean 200 m/s. This saturation is presumably the result of
the autopilot feedback, which keeps the Mach number within
exactly this tolerance(otherwise the aircraft stalls or experi-
ences Mach buffet). Since the transverse velocity is little
affected by this mechanism, it shows wider-range scaling and
will be used below.

Additional analyses show that over the range of reliable
statisticss0,q,3d, zsqd is nearly linear. Equation(3) with
zzsqd<qHzt can be written as:

Tl„DRsDxd…=
d

DRsDx/ld;

Tl = l−Gt;

Gt = S1 0

0 Hzt
D , sd4d

whereDRsDxd=(Dx,DZ sDxd) is a random vector displace-

ment,l is an arbitrary scale ratio, and =
d

means equality in
probability distributions.Tl is a generalized(anisotropic)

“zoom” (contraction) by factorl, andGt is the generator of
this scaling anisotropy[3]. The interpretation of this is that
the fluctuations in thez direction over a small horizontal
flight segmentl−1Dx have the same probability distribution
as those over a long segmentDx, as long as they are rescaled
by l−Hzt. This anisotropic scaling property of the trajectory
will be useful below.

The value of the exponentHzt s<0.58±0.02d was found
to be very close to the theoretical valueHz=5/9 in the
23/9 D model of the atmosphere[3]. This model is moti-
vated by the fact that, theoretically and empirically, the fluc-
tuations of the horizontal windsvd in the horizontal direction
follow Kolmogorov skh

−5/3d, while in the vertical Bolgiano-
Obukhov statistics(kv

−11/5, kh, kv are horizontal and vertical
wave numbers). The model, therefore postulates:(a) in the
horizontalDv~«1/3Dx1/3 with «= energy fluxes and(b) in the
vertical Dv~f1/5Dz3/5 with f= buoyancy force variance
fluxes. A single law valid for an arbitrary displacement vec-
tor DrI =sDx,Dzd is obtained by introducing a physical “gen-
eralized” scale functioniDrIi such thatiTlDrIi=iDrIi /l. A
simple example is

iDrIi = lsSUDx

ls
U + UDz

ls
U1/HzD ; ls = f−3/4«5/4, s5d

where ls is the “sphero-scale” andHz=s1/3d / s3/5d=5/9 is
the stratification exponent(for passive scalars, Lilleyet al.
[17] obtain Hz=0.55±0.02). From Eq. (5) we see that for
scales.ls, structures are flattened in the horizontal, whereas
at scales,ls, they are vertically aligned;ls is the scale at
which horizontal and vertical shears inv are equal; the struc-
tures are “roundish”[3]. With the scale function, the full
horizontal velocity statistics(any vector displacementDr)
are

DvsDrId < «1/3iDrIi1/3, s6d

which reduces to the Kolmogorov and Bolgiano-Obukhov
scalings forDrI =sDx,0d andDrI =s0,Dzd, respectively.

The key physical idea underlying this model is that the
dynamics determines the mean structures and that the mean
structures in turn determine the “physical scale.” In all sta-
tistical laws, the isotropic(Euclidean) distance function
should be replaced by the(anisotropic) scale function. A con-
sequence is that atmospheric dynamics are governed not by
isotropic cascades, but rather by anisotropic cascades leading
to anisotropic multifractal fields. Any isotropic results are
translated in to the equivalent anisotropic ones by changing
Hz from 1 to 5/9.

III. THE HORIZONTAL AND VERTICAL SCALING
ALONG A TRAJECTORY

The 23/9 D unified scaling model predicts that the hori-
zontal statistics as functions ofDx should be the same as
vertical statistics as functions oflssDz/ lsds1/Hzd [estimated as
lsskuDZsDxdul / lsds1/Hzd] with ls=4 cm estimated from the
equationkuDZslsdul= ls solved by graphical extrapolation in
Fig. 2. In Fig. 3 we directly test this prediction forq=1. Over
the fractal range the theoretically rescaled vertical statistics
are remarkably close to the horizontal ones. UsingDz
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=kuDZsDxdul, we calculated the moments forqÞ1. We found
thatzsqd is nonlinear, indicating that the fields are multifrac-
tal. However, the horizontal-to-vertical exponent ratio was
always close toHz as expected.

Before continuing, let us briefly comment on the empiri-
cal value of ls. First, it is not a constant, but varies from
trajectory to trajectory(by at least an order of magnitude for
the cases studied here); this is not surprising since from Eq.
(5), we see that it depends on two highly variable(multifrac-
tal, intermittent) fluxes. The mean value 4 cm is in the range
of direct measurements of vertical cross sections of passive
scalars obtained from lidar data[17]. Larger structures are
flattened in the horizontal, smaller ones elongated in the ver-
tical. The fact thatls is the same for both the velocity and
temperature follows because, dimensionally, the two fluxes
«, f yield a unique scalels [Eq. (5)].

We can now consider the statistics of aircraft flying in a
linear trajectory over distanceDx, slope s, i.e., Dz=sDx.
From Eq. (5) we see that there will be critical slopesc
=sDx/ lsdHz−1. If s,sc, then we obtainiDri<Dx, if s.sc

iDri~Dz~Dx1/Hz. With Dxi =3 km, Dxf =300 km, ls=4 cm,
we find si =6.8310−3, sf =8.9310−4. The interpretation is
that up to 3 km, the aircraft inertia keeps it flat to within
<0.4° leading to(sufficiently) smooth trajectories andH
=1/3 for v. At scales.300 km, the linear<1 m/km rise
s<sfd dominates the turbulence leading again to a linear tra-
jectory, withv, T exponentss1/3d /Hz=3/5 (see Fig. 2). The
intermediate fractal range has a randomly varying
s:si ,ssDxd,sf. In this way the degree to which the autopi-
lot can keep a flat course influences the extent of the fractal
regime.

Over the fractal scale range,zvs1d, zTs1d are both close to
H=1/2, which suggests that it ought to be possible to ex-
plain them on the basis of some simple physical argument

combined with dimensional analyses. Knowing that the con-
trol algorithm introduces correlations betweenv andT [Eq.
(1)], over the same scale range(and for 0,q,2), we cal-
culated the “Yaglom moments”ksDT2uDvudql finding they
were nearly proportional toksDTd3ql. This implies thatDv,
DT are indeed highly correlated(this is also confirmed by
“cross-extended self-similarity” analyses). This high correla-
tion may be the key to explaining the nonclassical exponent
1/2.

IV. CONCLUSIONS

Aircraft data are used in many branches of atmospheric
science and a knowledge of the dimension of their trajecto-
ries is fundamental, classically D=1. However, if the turbu-
lence is scaling, then we expect aircraft trajectories to have
long-range structures, which imply fractal trajectories and
nonclassical exponents; we find D<14/9. In comparing our
results to the two main tropospheric campaigns—“GASP”
[7] and more recently “MOZAIC”[22]—both of which used
large numbers of commercial aircraft trajectories, several dif-
ferences should be borne in mind. First, the altitude: both
Kolmogorov and Bolgiano-Obukhov statistics have been re-
ported in the stratosphere and troposphere(see the review
[20]). Theoretically, we expect the main difference to be
weaker stratospheric buoyancy forces. However, this does
not imply a change in dynamical mechanism(or Hz). Sec-
ond, due to the far greater mass of commercial aircraft, the
inner scale of the trajectory(below which the wind follows
Kolmogorov statistics) may be significantly larger than the
3 km found for the single seat ER-2. Third, commercial air-
craft travel at around Ma=0.9 and use a different control
law; hence, we may expect to find different nonclassical
spectral exponents. Both of these predictions are indeed ob-
served in the GASP and MOZAIC statistics. Both show Kol-
mogorov statistics for scales,200 km, and,50 km, respec-
tively. For larger scales, the MOZAIC data hasH<3/5 a
result that our theory explains very readily; for example, if
Dxf =50 km, for ls=4 cm, this corresponds to an average
slope ofsf <2 m/km, which seems a plausible average for
these short-haul European flights. Also relevant is[8] who
found Kolmogorov statistics on horizontal legs of 12 km col-
lected by an instrumented IL-18 D aircraft(heavier than the
ER-2).

Although we did not have a quantitative explanation for
the nonclassical valuezs1d<1/2 (v, andT), by comparing
statistics in the horizontal and vertical, we argued that these
results can be understood if there exists a physical-scale
function characterized by exponentHz=5/9. Wetested this
directly by showing that the horizontal and vertical statistics
of v, T are the same if we replaceDx by
lsskuDZsDxdul / lsds1/Hzd (with ls<4 cm). If these results are
confirmed in other studies(including a reanalysis of
MOZAIC data), then we may need to reappraise aircraft
measurements.
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FIG. 3. The mean first-order(transverse) velocity and tempera-
ture structure functions. The hollow symbols are forv, the solid
for T. Circles indicate functions ofDx, squares indicate functions
of the theoretically predicted compensated vertical scale
lsskuDZsDxdul / lsds1/Hzd with Hz=5/9, ls=4 cm. The reference lines
have slopes 1/2.
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