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Kelvin-Helmholtz instability for relativistic fluids
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We reexamine the stability of an interface separating two nonmagnetized relativistic fluids in relative mo-
tion, showing that, in an appropriate reference frame, it is possible to find analytic solutions to the dispersion
relation. Moreover, we show that the critical value of the Mach number, introduced by compressibility, is
unchanged from the nonrelativistic case if we redefine the Mach numbettas$B/(1-p2)Y2)[ B/ (1
- ﬂﬁ)l’z]‘l, whereg and B; are, respectively, the speed of the fluid and the speed of qoundits of the speed
of light).
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[. INTRODUCTION Our starting points are the equations of relativistic hydro-
The stability of the interface between two fluids in rela- dynamics for a relativistic perfect fluid in flat Minkowskian

tive motion is a classical problem of fluid dynamics dating to9eometry[9,10]
the end of nineteenth century, and to the work[bf] for 3 (yp)
incompressible fluids. In this limit, any relative tangential LAV/ZAN
motion between two uniform fluids is found to be unstable. Jat
These classic studies were successively extended to include
important additional physical ingredienf8]. For example, au c? udp
the inclusion of compressibility makes stable all modes E“J ' VUZ_W Vp+§z : 3
whose effective Mach number is larger than a critical value,
the effective Mach number being defined using the projec-
tion of the velocity on the wave number direction. The rela- y@ + U - J (yph) +V - (yphu) (4)
tivistic version of the instability has been studied extensively at at '
in the astrophysical context, most prominently [#,5,6, ) , L ) )
where numepricyal solutions to the di‘;persion r{eIE:ltiorfi wergvhereu is the fluid velocity,c is the speed of lighp is the
found. In this note we reexamine the Kelvin-Helmholtz in- Proper rest mass density, is the specific enthalpy, angl
stability for relativistic flows, showing that, in the appropri- denotes the Lorentz factor,
ate reference frame, the dispersion relation has a form that

V - (ypu) =0, 2

. " 1
can be solved analytically. Moreover, we show that the criti- Y= —.
cal Mach number, introduced by compressibility, is un- vl-u“c

changed from the nonrelativistic case if we use the relativis

fic Mach number definition M=[8/(1-8) 2] /(1 The system(2)—(4) is closed by an equation of state

- BH)Y2]71 introduced in[7,8] in the context of steady solu- h=h(p,p), (5)
tions. . .
In Sec. Il we present the relevant equations and the disf_rom which the speed of sound can be evaluated according to
persion relation, while in Sec. Ill we analyze its properties. 19p
In Sec. IV we summarize our results. C;=C -—, (6)
hdpls

1. EQUATIONS AND DISPERSION RELATION o
where the derivative has to be taken at constant entropy. In

what follows we do not make any particular assumption on
the choice of the equation of stat®; we do, however, recall
that for a relativistic(nondegenerajeperfect gas the sound
Qpeed cannot be larger than the limiting vatue3 [11-13.
The relativistic character of Eq$2)<4) enters in two
(+U,0,0 for y>0, distinct ways. The first effect is purely kinematical and be-
u= (~U,0,0 for y<0 (1) comes important when the relative bulk motion of the fluids
T ’ is close to the speed of ligkt(i.e., y>1). On the other hand,
where U is positive. Furthermore, we assume that the twowe can have thermodynamically relativistic fluids where suf-
fluids are initially in pressure equilibrium and that they haveficiently high temperatures lead to microscopic relativistic
the same proper densipy velocities; in this case the specific enthalpycan signifi-

We study the linear stability of a planar interface separat
ing two fluids in relative motion. Without loss of generality,
we assume the interface to be located instke plane, and
describe the system in a frame of reference in which the tw
fluids move with equal and opposite velocities, that is,
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cantly exceed the rest mass energy of the fllig- c?). #B%\2 P
L= k[ (b + M)2—< + ) (11)

In order to obtain the dispersion relation we must first find 1+ ™/ W
the perturbative solutions of the linearized version of the

relativistic equationg2)—(4). For this purpose, we start by Notice thatl, will be, in general, complex numbers; there-
observing that these solutions may be easily found in thdore in order to satisfy appropriate boundary conditions at
reference frames in which the fluids are at rest: in thesénfinity, Im(l,) must have positive sign foy>0, while
frames, in fact, we have sound wave solutions. Denoting &m(l_) must be negative foy< 0. Furthermore, perturbations
generic three-dimensional perturbation of the flow variablesnust be carried by outgoing wavesyas: «: this is known

by &q (hereq is one ofp, u, p) we have as the Sommerfeld radiation condition and has to be applied
o in the frame in which the fluid is at re§B].
&G o exp{i(k§<+ L.y+mzZ- Z)iT):I, The dispersion relation can now be obtained by substitut-

ing Eq.(10) into Eq.(9), with |, given by Eq.(11); after a bit
where the tilde denotes quantities in the rest frames and the gf algebra we find the following equation fef:
and - subscripts refer, respectively, to the fluid initially in the

regiony>0 (with positivex velocity) andy< 0 (with nega- V(p+M)2=(1+pB2AM)? - (1 - B2
tive x velocity). In the rest frames, the components of the (+M)2
spatial wave vectotk,, |, andim,) and the frequencip, are ] 5 —— >
connected by the dispersion relation for sound waves = Vg-M)"-(1-¢8 /'\g) —a’(1-5) (12)
(¢=M) '
2= (I +12 + i) c2. (7 wherea=mik.

Equation(12) represents the desired dispersion relation.
Following [7,8] we introduce the relativistic Mach number,
defined asM =yM/y,, with ys=(1-c/c?)~2 the disper-

In the laboratory frame, where the fluids have the initial con-
figuration given by Eq(1), the two solutions will still have

the form sion relation(12) can then be squared to obtain the fifth-
50, o expi(kx+ Ly + mz— wt)], order polynomial
4 2
this time with w, k, andm equal on both sides of the inter- ¢|:<i> (M?+2B%) - 2<£> (M2+1+a?- B
face. However, sincé, 1., m, and » are, respectively, the M M
spatial and temporal components of the wave four-vector 5 5
K¢=(k,l.,m, ), we can find their relationship te, I, M., *(M7-2-20% | =0. 13
and w, by means of a Lorentz transformation. Using this , ) )
result, we can write the dispersion relatigh in the labora- Notice thata is related to the anglé between the fluid
tory frame as velocity and the wave number projection in thez plane by
1
U2 .
Plo kU2 M"I °g) +'i+m2}05- ®) Ry

) _ which allows us to write the solutions to E(L.3) as
The pressure has to be continuous at the interface between

the two fluids, i.e.,8p./,=0=p_|y=o=dp; furthermore, the $=0, (14)
fluid displacements¢, (t,x) need to match at this interface.
Since the Langrangian derivative of the lattdgé,/dt, is e M2+1-pB2+ \/4M§(1 —B)+(1+p)?

equal to the transverse velocit, of the fluid element, , (15

2~ 2 2
matching the displacements is equivalent to M M+ 2B,

where the effective relativistic Mach numhe#, and effec-

Sy+ - vy~ (9)  tive fluid velocity (in units ofc) 3. are defined as
w-kU w+kU’

Mg=Mcosh, B.=pcosh.
where the tangential velocit§v, can be expressed as

A,

- 10 Il. DISCUSSION
(0 F kU)phyzéb’ (10

Oys =

The solutions of Eq(13) form a two-parameter family,
a result which follows upon properly linearizing the trans- which we will describe in terms of the effective Mach num-
verse component of Eg3). ber M, and the effectivg3,. Sincecs/c=8/M, an equivalent
Let us now introduce the dimensionless phase velocitchoice may be given by any combination of two parameters
¢=wl(c3k), the classical Mach numbev=U/c;, and 8 amongM (or M), 8 andc,/c; when the Mach numbeiei-
=U/c, so that Eq(8) can be solved in order to expressn ther classic or relativistjds used, the restrictiony/c< 1/_\@
terms of ¢, k, m, M, and g: corresponds to the requirement that only the redion 348
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substitute the classical definition with the relativistic defini-

T - tion.
“ i Stoble Region The previous results can be easily reformulated in terms
L8 Eeio of the classical Mach numbéfn=U/c,, by simply recalling
o342 i that, according to its definition, we have
:—04439 :
1.0 i
%" : 0.501! /// M = \J'Mz(l _ﬂZ) + ﬂz. (16)
8 > We remind the reader that both the classical and relativ-
05E ] > istic Mach numbers as previously introduced refer to either
' : one layer or the other as seen in the laboratory frame. To find
e %, A the relative Mach numbers between the two layers, we have
0.0 A N VA VR to apply the correct relativistic velocity composition, that is,
0.0 0.2 0.4
Be
FIG. 1. Growth rate contours for the unstable mode discussed in U.= + 2U 17)
the text as a function of the relativistic effective Mach numbég 7 +,32’

and B.. The allowed range foM, and 3, is restricted by the un-
physical region, where the sound speed exceeds the limiting value
c/y3. The three curves represent the upper boundaries of such u
physical regions for three different anglg€g=0, solid line; 0
=/4, dashed linep=97/20, dash-dotted line For M> 2 this
mode becomes stable.

Where, again, the tilde denotes quantities measured in their

rest frame. In other WOI’dS:h. is the velocity of the upper
(y>0) layer as measured from the rest frame of the lower

(or, equivalently, M > \s“Ey,B) be physically accessible. (y<0), and similarly foru.. S_"_‘C‘? ther_modynamic qua_m.ti—
Returning to the solution€l4) and(15), we thus find that t!es such ag, f'ind v, are relativistically mvarl_ant by defini-
the first rooté=0, which corresponds to a neutrally stable tion, the classical Mach number transforms in the same way

mode, is valid only forM =1. This neutral solution be- as U, while the relativistic Mach number become$t
comes important when one considers the stability properties 2y M.

of a smooth shear layérather than a vortex sheetvhere it The stability conditions for the first and second modes
has been showiisee[14] for the classical cagethat this  [given, respectively, by Eq$14) and(15)], as seen in these
mode is destabilized. rest frames, are obtained simply by using EL7) together

~ Of the remaining root¢15), only the one with the minus  with its inverse relation at cutoff. This yields
sign is_valid and gives an unstable mode in the range

M<+2 as¢ (and thereforan) becomes purely imaginary;
for My>+2 the solution is stable. In addition, since the
physically allowed region has to satisfyt > \2yg, pertur-
bations with3> (1+cog6) 2 are always linearly stable, re-
gardless of the value of the Mach numiiand therefore of
the sound spegdThe growth rate for this mode is shown in where
Fig. 1 as a function ofM, and B.. In the same figure the
three curves represent the boundaries of the physically al-
lowed regions for three different anglése., the condition _ y+1 1-5 -
M >\2yB is satisfied only above these curyes X="; 1+ 1 +~COS2 0, (19

We note that with this definition of the Mach number the Y
stability conditions for the two modes in this reference frame
are the same ones found in the classical case. This can be - )
understood by recalling th4?,8] have shown that the rela- With Mc=1, M:=+2 for the two modes, respectively. In Eq.
tivistic steady equations for an ideal fluid can be transformed19) we have introduced the relative Lorentz factor between
into an equivalent Newtonian form by a suitable set of transthe two layersyy=(1-£?)%2 and the angl@=tar* m/k.
formations, one of which is the substitution of the relativistic ~ The relativistic critical Mach number is now a monotoni-
Mach number for the classical one. In our case, when Wga)ly increasing function of the relative velocify between
consider the neutral mode or the unstable mode at cutoff, Wghe “two fluids, reaching its minimum value in the limit of
have $=0 and therefore we are dealing with steady S‘:)I'“"vanishingﬁ where Eq(18) reduces to the well known clas-
tions. Thus all the relations that are valid for them in the " - e ~
Newtonian case still hold in the relativistic case, provided weSical stability conditions, i.eM cos¢>2 for the neutrally
make the suitable transformations and, in particular, the critistable mode and\f cos#> 8 for the unstable mode. The
cal values of the Mach number remain the same when weritical classical Mach number, however, decreases with

M cosf>2M ¥, (19)

036304-3



BODO, MIGNONE, AND ROSNER PHYSICAL REVIEW EO, 036304(2004)

TABLE I. Stability conditions for the two modes described in the text in terms of the effective relativistic
and classical Mach number$t, and M,=M cos6. For clarity of exposition we seh={2+[(1-7)/(1
+?)]co§§}1’2, while Me:M cosé and IT/I;IT/I cosf are the effective relativistic and classical Mach num-
bers in the rest frame. The Newtonian limit is recovered by letiing— 1, 8,— 0, andy— 1.

Mode Laboratory frame Rest frame
¢=0 Me>1, Me>\1/ ¥+ Me>2%, Me> y+11y
$=¢- Me>\2,M>\2/ 2+ 83 Me> 8%, M>[(7+1)/7]7

increasingB. The stability criteria for the two modes interms ~ (2) Using the definition of relativistic Mach number
of M and M are summarized in Table . given by [7,8] we have shown that in the laboratory frame

the stability criteria are the same as those found in the clas-
sical case.
(3) We find that, for a given perturbation whose wave
IV. SUMMARY number makes an angtewith the flow direction, there exists
a critical velocity above which the fluid is always stable,
Our results can be briefly summarized as follows. regardless of the value of the Mach number. In the laboratory
(1) We have derived the dispersion relation for theframe, this value is conveniently expressed in terms of the
Kelvin-Helmholtz instability for relativistic flows, showing Lorentz factor agy=1+1/co$ ¢, while in the rest frame we
that it can be solved analytically. havey=1+2/co$ 6.
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