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We study the reaction dynamics of active particles that are advected passively by 2D incompressible open
flows, whose motion is nonhyperbolic. This nonhyperbolicity is associated with the presence of persistent
vortices near the wake, wherein fluid is trapped. We show that the fractal equilibrium distribution of the
reactants is described by affective dimensiongg, which is a finite resolution approximation to the fractal
dimension. Furthermoreales; depends on the resolutianand on the reaction rate £/As 7 is increased, the
equilibrium distribution goes through a series of transitions where the effective dimension increases abruptly.
These transitions are determined by the complex structure of Cantori surrounding the Kolmogorov-Arnold-
Moser(KAM) islands.

DOI: 10.1103/PhysReVvE.70.036216 PACS nuni)erd7.70.Fw, 83.80.Jx, 47.52]

I. BACKGROUND AND MOTIVATION theory does not encompass this more general kind of flow.
) ) ) The aim of this work is to address this issue. We will see that
In this paper we study the dynamics of active processegere are many new phenomena due to nonhyperbolicity hav-
taking place in a nonstationary opefnboundedl two- g no counterpart in hyperbolic flows. The moral is that
dimensional flow. A well-known example is the plane flow onhyperholicity cannot be neglected if one wants to under-
incident on a cylindrical obstacle, which is one of the para-giznd the dynamics of real flows.
digms in fluid mechanics. By “active process” we mean Tnhe dynamics of chemical and biological activity taking
_chem_lcal reactions or biological processes, for example. ThBIace in nonstationary flows is of great importance in many
idea is that particles are advected by the flow and, at thgeas of fundamental and applied science. Two illustrative
same time, undergo changes due to some int¢m@insic)  gxamples are the series of complex chemical reactions in-
dynamics—chemical transformations or biological reproducy,glved in the depletion of the Earth’s ozone layer, and the
tion, for instance. Instead of talking about particles, one camopulation dynamics of plankton in the oceans. In these pro-
also describe this process in terms of advected concentrati%sse& the intrinsic dynamics of the reactive process is
fields of the substances involved. In this case, the dynamic§oup|ed to the dynamics of the fluid by the fact that the
is given by a partial differential equation on the concentra—reacting substanceghemicals or micro-organisms, for ex-
tions, coupled to the velocity field of the flo@n advection- amplg are being carried along with the flow. In many cases,
reaction-diffusion equation Either way, the overall dynam- he reactants can be considergassive meaning that their

ics of the reactive system depends strongly on the underlyinge|qcity at a given point is always equal to the velocity of the
advection dynamics of the flow. In most interesting situa-jo\y at that point. In other words, their inertia is negligible.

tions, open flows involving obstacles are expected to geneli frthermore, the reactants are present in low concentra-
ate a chaotic Lagrangian transient dynanjitls This means  tjons and if their reactions do not involve too much heat

that the motion of a fluid particle typically displays very long production, it is usually a good approximation to consider

transients, during which the motion is chaotic. This is @ phethat they do not affect the flow significantly. With these ap-

nomenon known as chaotic scattering, and it is a generig oyimations, the reaction dynamics is described by an
feature of open flows with obstacles. Chaotic scattering irhqyection-reaction-diffusion equatiowhich is a partial dif-

the flow with a cylindrical obstacle has also been observegg ential equation for the reactants’ concentrations involving
experimentally{2]. The question of how this chaotic dynam- explicitly the fluid velocity fieldu.

ics affects the reaction dynamics unfolding in the flow has A particularly important class of reaction is that atito-
been addressed by a number of previous wdgksdl, and  catalytic reactions{6,7], of particular importance to biology
many important results have been derived on the relatiofg) The simplest kind of autocatalytic reaction corresponds
between the parameters characterizing chaos and the dynagg- ihe spontaneous growth of the reactant due to a chain
ics of the reaction. However, these results have all been o action, such as the spreading of a flame, or the growth of a
tained by making the assumption that the flow's chaos is ofopylation of micro-organisms by self-replication. A simple

the simplest kind, namelyryperbolic This means that the ogel for this process is the advection-reaction-diffusion
flow is assumed to be unstable everywhere. It is k”OW”equation[g]

however, that manymaybe mostflows found experimen-
tally are nonhyperbolic, showing stable regions which corre- Jc
spond to the presence of trapped vortices. The previous PRl Vc=f(c) + «kVZc. (1)

Here, c denotes the concentration of the autocatalytic reac-
*Email address: amoura@if.usp.br tant, « is the diffusivity, andu=u(r,t) is the flow’s velocity
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field, which is determined from the Navier-Stokes equationthere in a possibly complicated trajectory, and finally leaves
with the appropriate boundary conditions. The intrinsic dy-towards the downstream region. This transient dynamics is
namics of the reaction is determined Big), which is usu- chaotic if the scattering process is very sensitive to initial
ally a nonlinear function o€. conditions. Thus, small changes(iior examplg the position
Sincec does not affect the flow dynamics, in this work we of the particle before entering the mixing region can affect
consider that theusually hargl task of solving the Navier- the final state of the particle tremendously after scattering
Stokes equation is done, and that the velocity figld,t) is  (that is, after leaving the mixing regianThis phenomenon is
given. We are interested here in how a nonstationary flow calledchaotic scatteringand it is very common in dynami-
affects the overall dynamics of the reaction. We make the&al systems with transienfd3,14. The stream function of
simplifying assumption that the flow can be considered two-typical open flows is likely to display chaotic scattering.
dimensional (2D), u=(ux(x,y,t),u,(x,y,t)). This can be Chaotic scattering is associated with the presence in the
physically justified by the fact that in many important casesmixing region of a highly complex set of nonescaping orbits,
this is a good approximation. For example, the Iarge-scaléhe chaotic saddleThis set is composed of orbits that never
dynamics of the atmosphere and the oceans is approximatel§ave the mixing region, fot— o andt— —o. The chaotic
2D, becaus¢among other thingsof the stratification caused saddle is a fractal set in phase space, with nonsmooth struc-
by the Earth’s rotation. Furthermore, in most situations theure on arbitrarily small scales. Thstable and unstable
fluid velocities are much smaller than the speed of sound. Iinanifoldsof the chaotic saddle are the sets of initial condi-
this case, we have a 2D incompressibliscous flow. As is  tions which tend to the chaotic saddletas« andt— -,
well known [10], this kind of flow can be described by respectively. Initial conditions on the stable manifold never
means of a stream functian=(x,y,t), in terms of which leave the mixing region after having entered it, and corre-
the velocity field is given by u=dy(x,y,t)/dy;u, spond to orbits with a diyerging escape time. Because phas_e
=-ai(x,y,t)/dx. As a result of the assumption of negligible SPace is contracted by time evolution along the stable mani-

inertia, the trajectory(x(t),y(t)) of a particle of reactant is fold, and expanded along the unstable manifold, advected
the same as that of a fluid particle particles leave the mixing region near the unstable manifold.

Therefore, an open set of initial conditiosorresponding
. . hysically to a cloud of advected particlesaces out the
X=Xy 0ldy; Y ==Xy, nlox. ) En)s/tableymanifold after being scattered. The fractal structure
The pair of equationg2) has a Hamiltonian structure, Of these sets is thus directly observable, and their fractal
with the stream functiony playing the role of the Hamil- dimension is a quantitative measure of the sensitivity of the
tonian, whilex is the coordinate any is its associated “mo- dynamics to the initial conditions.
mentum.” The dynamics of a particle passively carried by the The simplest nontrivial flow dynamics is for a periodic
flow is thus equivalent to the dynamics of a generally time-time dependence af, with y(x,y,t)=¢(x,y,t+T), whereT
dependent one-degree-of-freedom Hamiltonian system, witi$ the period. In this case, the dynamics of an advected par-
a phase space corresponding to tkgy) physical space. We ticle can be described by a stroboscopic two-dimensional
know that, since the “Hamiltoniani is time dependent, in discrete map\M given by
general the{Lagrangial)_ dynamics is ch_aotic. This can be so MxY) = (X1, Y7), (3)
even for very simple time dependencies. For example, cha-
otic motion generally ensues if is time periodic with some where (x7,y7) is the position of the particle given by the
periodT, #(X,y,t)=(X,y,t+T). forward integration of Eqs(2) for a time intervalT, for an
In this work, we consideppenflows, such as the para- initial condition (xg,Yg)=(X,y). Time periodicity arises natu-
digmatic channel flow with a cylindrical obstacle. In openrally in open flows. In the case of a cylindrical obstacle, the
flows, there are unbounded trajectories, corresponding tflow becomes periodic above a critical Reynolds nunfRer
particles that come from the upstream region, stay in thet which the steady regime becomes unstable. Although the
wake for a while, and then leave downstream. We notice thadetails may vary, the loss of stability of the steady flow to a
even flows which are in reality confined can be consideregeriodic flow is a very common phenomenon in open flows,
open if the time it takes for a typical particle to return nearso our theory has a wide range of applicability. Given that
the obstacle is much greater than the other relevant timehe flow is periodic, the reduction of the dynamics to the map
scales. Thus, we can consider the flow of the ocean around in (3) is completely general for two-dimensional incom-
an isolated island as an open flow, even though the ocean gsessiblgviscoug flows. We note thatM preserves the area,
a whole is of course bounded. Such 2D open flows modehnd is thus asymplecticmap.
important environmental flows in the atmosphere and in the The simplest kind of chaotic scattering ligperbolic In
ocean[11,12. the hyperbolic case, all orbits in the chaotic saddle are un-
Equations(2) describe ascatteringdynamics. There is a stable, meaning that initial conditions starting arbitrarily
bounded region in space, near the wake, in which the dynantlose to one of these orbits lead to trajectories that separate
ics of fluid particles is nontrivial. This is thmiteraction re-  exponentially from it, eventually escaping the mixing region.
gion, or mixing region Outside this region, the velocity field The hyperbolic assumption simplifies the analysis consider-
is (approximately stationary, and the particles follow simple ably, but it excludes the possibility of stakfelliptic) orbits,
trajectories. Typically, an advected particle comes from thevhich are generic for Hamiltonian syster@nd symplectic
upstream region, enters the mixing region, moves around imap3. The dynamics of chemical reactions and other active
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rocesses has been extensively investigated in chaotic op&indamental importance for understanding the dynamics of
p . y gau ( p . mp _ g the dy
flows, under the assumption that the chaotic saddle is hypereactions taking place in these flows. For a finite lower scale
bolic [3,4]. In the case of autocatalytic reactions, after a tran-, dy is equal tod in the limit ase— 0. For nonhyperbolic
sient time, the reacting particles settle down to an equilibsystems, it is known that=d,, wheredy, is the phase-space
rium distribution in space which is concentrated around tthimension[]_B] (in our Casej:Z)_ In nonhyperbo"c systems,
unstable manifold of the chaotic saddle. The equilibrium disthe convergence ady to d=d,, ase—0 is very slow, and
"t'bglt'on ca_r; ?; re_?r?rded as a fa:;enl(ed—up vreTrsLog of thg URye show thatde(e) is the relevant physical quantity for a
stable manifold, with an average thickness which depends op.;: ;
the reaction rate and on the a%vection dynanses Sgc 1] it resolutlor_1 < We further show thatles depend_s nqt

' only on the minimum scale, but also on the location in

fﬁr details. In par'ﬂcular, the Obﬁer\&‘?d fragtal difmthension Ofb?hase space. This dependence arises because of the presence
the reactants is the same as the dimension of the unstal ' . . .
manifold. Moreover, the fractal structure of the chaotico(? a complex structure of Cantori surrounding the KAM is-

saddle accelerates the reaction and acts as a dynamic ca@ods' In Sec. V, we investigate the consequences of these

lyst, due to the large surface-volume ratio of the equilibrium'€SUlts for the dynamics of reactions taking place in the flow.
distribution, which is a result of its fractal structure. This W€ argue that, since the reaction introduces naturally a lower
dynamical catalysis manifests itself as a singular productio§c@l€€ in the dynamics, the observed dimension of the fila-
term in the equation for the reaction rate. Some examples dpentary structure of the equilibrium distribution of the par-
issues that can be studied within this framework are thdicles isdes(e€), and not the true fractal dimensial¥2. The
depletion of ozone in the polar stratosph¢t®], plankton reaction also introduces a new time scal@ the dynamics,
population dynamics on the sea surfd@é], and even the given by the inverse of the reaction rate. We show that, as a
origin of life [17]. consequence, the observed dimension of the particles’ equi-
All the results mentioned above have been obtained folibrium distribution depends on As ris increased, the equi-
the case when the dynamics of the advected particles is hytorium distribution undergoes a series of metamorphoses
perbolic. However, in general Hamiltonian systems are nonwhere the observed dimension increases. We test our theory
hyperbolic, having stabl¢elliptic) periodic orbits which are Wwith a particular system and with a particular kind of reac-
surrounded by Kolmogorov-Arnold-MosgKAM) tori of  tion (catalysig, but our results are valid in general. These
quasiperiodic orbits, making UgAM islandsin phase space. results show that the nonhyperbolic dynamics results in a
No orbit starting from the outside can enter a KAM island, reaction dynamics that is fundamentally different from the
and the fluid in one island never leaves. In fluid mechanicahyperbolic case.
terms, the KAM islands correspond to trapping vortices in
the flow. Such vortices are very common in 2D flows, and

they have been observed in environmental flows, such as in Il. REACTION AND DIFFUSION
the atmospheréhe stratospheric polar vortex, which plays a . _ . _ .
crucial role in the process of ozone deplet{dd]), and also In this section we define our reaction model, and we in-

in ocean circulatiori12]. In this article, we study the dynam- Vestigate the influence of the diffusion, and under what con-
ics of reactions when the advection dynamics of the particleglitions it can be neglectef®7].
is nonhyperbolic. We shall see that striking new effects take From now on, we will consider only autocatalytic reac-
place because of nonhyperbolicity, and since, as we meriions. A particularly simple autocatalytic reaction is de-
tioned above, many important flows are expected to be norscribed by a singlésuitably normalizegiscalar concentration
hyperbolic, we expect our results to be relevant for underfield c=c(r,t). We assume that the intrinsic chemical dynam-
standing realistic systems. ics is such that has two equilibrium values, one of them
The rest of this paper is organized as follows. We firstbeing stable and the other one being unstable. Without loss
investigate the importance of diffusion in the reaction dy-of generality, we take=0 to be the unstable value, aod
namics, and derive the condition under which it can be ne=1 to be the stable one. Consider now a stationary fluid
glected(Sec. ). We show that in most cases we can neglect=0), with initially c(r,0)=0 throughout the fluid. If we in-
diffusion, and consider only advectigalong with the reac- troduce a localized “chemical perturbation” by making
tion itself). We apply our condition to the Fischer autocata-# 0 in some regiong¢ will clearly tend to the stable value 1
lytic reaction, as an example. Nei@&ec. Ill), we introduce a in that region. If there is a spatial coupling, such as the La-
simple 2D symplectic map we use throughout the paper, angdlacian term in Eqg.(1), the concentration in neighboring
we review briefly the relevant concepts about the phasepoints will also move towards 1. As a result, the initial per-
space structure of nonhyperbolic Hamiltonian systems. Irurbation will propagate, and will end up changing all the
Sec. IV, we introduce the concept of and define what we calfluid to c=1 (if it is at res). If the time scale of the reaction
the effective fractal dimension.g(e) for a general Hamil- is fast enough, there is an abrupt boundary between the
tonian system, which can in particular be applied to 2D in-stable(c~1) and unstabléc~0) regions, with only a neg-
compressible flows. Heral.s; is an approximation of the ligible region with intermediate values af In other words,
fractal dimensiord of the stablgland unstablemanifold of  the stable regions “invade” the unstable regions, much like
the chaotic saddle of an open system, for a finite resolwtion an infection, in a well-defined front, similar to a shock front.
We show that; is a very important quantity for nonhyper- This reaction front propagates with a constant velocity
bolic systems in general, and in particular for 2D flows with which depends on properties of the fluid and on details of the
vortices. It turns out that the effective dimensidg; is of  reaction.
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A very important example of an autocatalytic reaction of
this type is given by Fischer’s reaction-diffusion equation
[8,19,2Q

Jc

— =ke(1-c) + DV, (4) :

ot /
wherek is the reaction rate, arid is the diffusivity ofc. This
equation is valid for a stationary flow. Without the diffusion :
term, Eq.(4) is just the logistic(Verhulsy growth equation. ! *J
The Fischer equation is then seen to be the model for &
“population” which grows locally by the familiar logistic ~ \,
law, and is coupled spatially by diffusion. Equati@) is the
simplest possible generalization of the logistic growth model
to include spatial effects. It has been extensively studied due
to its importance in biology, and it has been shown that its
reaction front velocity is given by

v =2vkD. ®) FIG. 1. Schematic illustration of the hierarchical structure of

We now ask what happens when the flow is nonstationary<AM islands and cantori, generic in nonhyperbolic flows. Solid
and moreover when the flow is open. In this case, it is ngircles represent KAM islands, and cantori are represented by
longer true that the stable “phase 1 will invade the whole ~ circles with “gaps.”
space, as there is competition between the spreading caused
by the reaction and the escape caused by advection of the We now consider the effect of a diffusidh on the above
fluid to the downstream region. Rigorously, the dynamics isconsiderations. For a purely diffusive dynamiegthout ei-
then given by Eq(1), with f(c)=kc(1-c). However, we can ther_advection or reactigneach strip would spread as
use the existence of a well-defined reaction front to avoid=2y2Dt, starting from an infinitesimally thin strip. This time
considering explicitly the convective term in Ed). As the  evolution arises from the equation
flow moves, both the stable and unstable regions, as well as
the boundary separating them, are advected. The boundary is €= @_
the reaction front, which is spreading from the stable to the €
unstable regions with velocity, while, at the same time, it is _ L e
advected by the flow by Eq&2). Hence, the velocity of each _Of course, th|_s description qf the_effe_c_t of_ diffusion as an
point of the front is a result of the composition of the local INcréase ofe given by Eq.(8) is a simplification of the real
flow velocity and the intrinsic front velocity, directed along Process. In reality, diffusion causes a continuous spreading of
the normal to the front lingremember, our flow is 2p  &n initial distribution, without sharp boundaries. To simplify

Advection tends to concentrate the particles near the unstabf!l @nalysis, however, we will continue to work with the
manifold of the chaotic saddle, as we mentioned beforeStIP Width €, which is sensible iD is not too large.

From this we can expect the stable regianclose to 3 of Addlng_ Eq.(8) FO the rlghF-hand side of Eqﬁ).’ we find
the open time-dependent flow to be concentrated on thiff® €quation for time evolution of the mean strip width due
strips around the fractal unstable manifold. If there were nd® @dvection, reaction, and diffusion

reaction, the width of each strip would contract at a mean 2D

rate given by the Lyapunov exponeht(since the flow is e=—he+—+2v. 9

Hamiltonian, its positive and negative Lyapunov exponents €
are equal in modulysand the total area of the stable region 1,4 equilibrium conditione=0 gives a quadratic equation

would go to zero, as a result of the escape of flow t0 thgq, e stationary widther. Only the positive solution is
downstream region. The tendency of the front to Sprea?)hysically meaningful

counteracts this shrinkingsee Fig. 1
To model this dynamics, we first consider the simple case v v\2 2D
without diffusion. Lete(t) be the average width of the strips er=—+ (H) Y (10)
containing the stable region. Advection tries to shrin&x-
ponentially, while reaction tries to expand it with a constantFrom Eq.(10), we see that the effect of diffusion on the
speedv. The time-evolution equation for is then equilibrium width of the strips can be neglected if the second
term in the square root is much smaller than the first one,
(6) . . .
which yields the condition
where the factor 2 comes from the fact that on each strip the
reaction acts oriwo fronts. In equilibrium, we have=0, 2Dh <v”. (11
which using Eq(6) gives us the equilibrium value*

(8

e=—he+2v,

This condition involves the parameters characterizing the ad-
e* =2v/h. (7 vection(h), the reactior(v), and the diffusionD). If (11) is
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FIG. 2. (a) Orbits of the mag13) for A=6. The inset shows a magnification of a small region. Complex structures of stable orbits and
Cantori can be seerb) Equilibrium distribution forA=6 and r=1; (c) same agb), with 7=50; (d) same agb), with 7=200. The
magnification in the inset shows the filamentation of the region lying between the two KAM islands.

satisfied, we can forget about the diffusion, and only consideformer case, all orbits comprising the chaotic saddle are un-
the advection and the reaction. stable, and the set of nonescaping orbits has null measure
In generalp depends om. In the case of Fischer’s equa- (volume). This is the case studied in previous wofB4]. If
tion (4), we can use the expressith) for the front velocity.  the flow is nonhyperbolic, besides the unstable orbits, there
The condition(11) then becomes are also elliptic orbits with purely imaginary eigenvalues.
These orbits are surrounded by KAM islands, complex struc-
h<2k. (12) tures of tori made of quasiperiodic orbits separated by open

Surprisingly,D dropped out of the condition. Physically, this reégions of chaotic motiot“chaotic seasf. Large KAM is-
happens because the reaction front spreads diffusively in thignds are surrounded by smaller “satellite” islands, which are
model, as can be seen by inspecting &j. Since 1k gives themselves accompanied by even smaller islands, and so on
the time scale of the reaction, E@_Z) |mp||es that(for the |nf|n|te|y This hierarchical structure of KAM islands, ex-

Fischer autocata|ytic procesgiﬁusion can be Safe|y ne- tending throu.gh arbitrarily Sma” ScaleS., is depicted in Flg 1.
glected if the reaction time scale is much shorter than th&esides the islands, there is also a hierarchical structure of

time scale of separation of nearby trajectorigiven by  Cantori, which are invariant sets with a fractal distribution of
1/h). gaps(see Fig. 2. One may think of a cantorus as an invariant
In what follows, we shall assume that conditicil) [or  torus riddled with holegin a fractal way. Contrary to the
(12)] is satisfied, and so we do not have to take the diffusiorinvariant tori, particles can cross from one side of a cantorus
into account. This is known to be true for many importantto the other, although this may take a long time. Cantori act
applications, such as the dynamics of the depletion of théhus as transport barriers. For example, points started in re-

ozone layer and the plankton population dynamics. gion R, in Fig. 2 take on average much longer to escape than
those started in regioR,, and those started in regidty take

even longer to escape, and so on.
Because of the presence of this structure of KAM islands
We are interested in studying the reaction dynamics imrand cantori, the phase space of nonhyperbolic systems is
nonhyperbolic flows. We showed in Sec. | that if the flow is much more complex than their hyperbolic counterparts, and
time periodic, the advection dynamics is reduced to awe shall see that this has important consequences for the
discrete-time 2D area-preserving map, given by Eq.(3). reaction dynamics.
Since the flows we are interested in are op&n,has un- From the theory of 2D symplectic magBirkhoff's theo-
bounded orbits which go to infinity as—. The dynamics rem and KAM theory [21] we know that, although the de-
of M can be either hyperbolic or nonhyperbolic. In the tails may change from system to systeime overall phase-

Ill. ADVECTION, KAM ISLANDS, CANTORI
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space structure shown in Fid. is completely generaland  enough. But, if for some physical reason one has a finite
shows up in any nonhyperbolic md@and therefore in their resolutione (given, for instance, by the size of the advected
associated 2D incompressible flows as Wgl1]. This uni-  particle, or by the resolution of our viewing apparafube
versality allows us to choose a particularly simple nonhyperdimension that is effectively seen is given by the effective
bolic map as an example, since the results will hold in gendimensiond.;, defined as an approximation dbfor finite e
eral. One of the simplest 2D symplectic nhonhyperbolic with

escapes i$23] 2 —dgi(€) = dinf(e*) :jnlf(é ) (15)
n E* e
Xns1 = NXn = (%0 + Yn)?/4], L
{yr:ll: )\_1[:/“ (;n+;n)2/4]’ (13 We haved,,=2 in our case. Obviouslye; depends on the

minimum scalee, and satisfiesl.¢(e) —2 ase — 0 [26].

where\ is a real parameter. The m&p3) has an open dy- A most important property of the effective dimension is
namics, with trajectories coming from infinity, and being the following: for nonhyperbolic systemsl depends not
scattered towards infinity again after a transient time. X-or only one, but also on the location in phase space. This is due
=6.5, the map is nonhyperboljd8]. We fix A =6 throughout to the presence of cantori in phase space, which act as trans-
this paper. In Fig. @), we show the Poincaré section for this port barriers: particles inside a cantorus take a much longer
system, found by plotting many iterations of a few initial time to escape than those that start outside it. This means that
conditions. There is a stable period-2 orbit, which is the centhe piece of the chaotic saddle’s stable manifold that is
ter of a KAM island composed of two pieces. This KAM within the cantorus is more stretched and folded than on the
island is surrounded by a cantorus, which can be seen by thmutside. At finite resolution, its filamentation appears more
long time it takes for a particle in its interior to escape, asinvolved and, as a result, the effective dimension in the inner
made evident by the outermost orbit, shown in the figure as eegion should be higher than in the outer region. We test this
cloud of points surrounding the islands. Orbits initializedidea in the systenil3), using the uncertainty methg@4] to
within the cantorus have an average escape time much largealculatef(e), and Eq.(15) to find the effective dimension.
than those initialized outside it. There are smaller cantorie first calculatedgs; outside the cantorus, and we filg;;
embedded within the big one, corresponding to even larget1.54[Fig. 3a), circleg. Inside the first cantorus, we find a
escape times, and so on, in a hierarchical structure similar toonsiderably greater valuk=1.91[Fig. 3b), circleg. This

that of the KAM islands themselveglimpses of this “fine  shows thatd.s; indeed depends on the location in phase
structure” can be seen in the inset of Figa)2 We stress space, and is greater inside a cantorus. We have also verified
again that, although we are looking at the particular case othis result for other systems. There is, however, an infinite
map(13) for convenience, this self-similar structure of KAM number of cantori, organized hierarchically around the KAM
islands and cantori is a general feature of any nonhyperbolislands. As we go deeper and deeper within the cantori struc-

Hamiltonian system. ture, the typical escape time increases, and so dggsin
fact, we were able to find regions in systéfB8) whose ef-
IV THE EFFECTIVE ERACTAL DIMENSION fective dimension is numerically indistinguishable from 2.

We point out that, even though in this work we focus mainly

We now introduce the basic concept of effective dimen-on the chemical dynamics, this is a general result, valid for
sion for the purgnonreactivg dynamics[22]. In open cha- any Hamiltonian system with two degrees of freedom.
otic systems, the stab{and unstablemanifold of the invari-
ant set is fractal, with thébox-counting fractal dimensiord
defined by the limid=lim,_n N(g)/In(¢7%), whereN(e) is V. NONHYPERBOLIC REACTION DYNAMICS
the number of boxes of sizeneeded to cover the unstable
(or stablg manifold [24,25. Since fore sufficiently small
N(e) is in most cases a power law, this is equivalent to th
limit of the following derivative:

The consequences of the above findings for the reactive
edynamics are many and fundamentally relevant. We use au-
tocatalytic reactions as an example, but we expect many of
our results to apply more broadly. In order to numerically
dinf(e) implement reactions in this system, we perform a discretiza-
' (14) tion of space and time, following Ref3]. We initially

choose a rectangular regiéhsuch that all the KAM islands

wheref(e) is the fraction of boxes of size needed to cover and cantori are contained in (that is, R covers the mixing
the fractal se{compared with the total number e %n). In region. We then partition thex—y plane inton? rectangular
generald satisfiesdy,—1<d=dy, For nonhyperbolic sys- cells, corresponding to the division of tlxeand they axes
tems, it is known thatl always assumes the maximum value into n equal segments. A given particle in an arbitrary posi-
d=dph (dpr=2, in our casg The limit (14), however, con- tion in R is considered to be located in the center of the
verges very slowly and is only attained feery small values  corresponding cell. When a particle evolves in time through
of e. In fact, in nonhyperbolic systems, a log-log plotf¢é) (13), this particle is mapped to another cell. If the mapping
versuse is typically, to a very good approximation, a straight takes a particle outside the allowed regiRnit escapes, and
line with a nonzero slope over anrange of many orders of is discarded in the simulation. After advection, the particles
magnitude, even though from E@L4), the slope is zero for undergo the reaction. We assume that all particles undergo a
£—0. The slope in fact does approach zero forsmall  catalytic reaction, which acts as an infection: if a given cell

—d=1li
dph d EILTE) dine
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FIG. 3. () f(e) outside the cantorus; the slope givks=1.54+0.01(b) f(e) inside the first cantorusles;=1.915+0.003(c) Number of
reacting particles in the filamentary component of the equilibrium distribution as a function of the inverse of the grid sizé, tbe slope
gives directlyd,,=1.53+0.01.(d) Same agc), with 7=200;d,,=1.92+0.03.

contains a particle before the reaction, all surrounding cellgantorugcompare with Fig. @)], and a filamentary compo-
will also contain particles after the reaction. If an infectednentF, surroundingB [see Fig. 2b)]. The existence 0B is
cell already has a particle, it remains unaltered. This is @lue to the presence of the KAM islands: if a particle is ad-
coarse-grained approximation of the reaction front propagavected sufficiently near the boundary of an island, during the
tion, discussed in Sec. Il. The complete dynamics of theinfection” phase of the dynamics, one of the produced par-
system is thus composed of advection and reaction. This iécles may be inside the island, and then, as the dynamics
clearly a discrete version of an autocatalytic procé®s  progresses, the whole island ends up being taken over by the
where both space and time are discretized. We assume thparticles. In fact, not only the islands are taken over, but, in
condition(11) is satisfied, so that we do not have to concernour case, also their surrounding cantori. Although particles
ourselves with diffusion. To fully define the dynamics, we from within the cantori can escape, their typical escape time
define thereaction timer, which is the number of times we is much larger than the reaction time 1 of Fig. 4b). As a
iterate the mag13) before applying the reaction. The reac- result, the number of particles inside the cantori increases
tion rate is given by 14 The parameters in this discrete faster than the loss caused by escape, and the cantorus seen
system are related to the reaction front velocityby v in Fig. 2a) becomes one single massive concentration of
=0/ 1, whereo is the size of a cell. To recover the continu- particles, where every cell is occupied, as shown in Fil).2
ous dynamics, we go to the limit—o, 0—0, 7— 0, with In the case of a hyperbolic dynamics, there is no bulky re-
o/ 7=v kept constant. gion B. This is an important difference between the hyper-

Using the above procedure, we simulate numerically théolic and nonhyperbolic cases.
advection-reaction dynamics. We initially fix=1. After an For hyperbolic dynamics, the equilibrium distribution has
initial transient time, we find that the space distribution ofa fractal structurédown to the grid sizg with an observed
the reacting particles settles down to an equilibrium that idractal dimensiond,, equal to the dimensiod of the un-
independent of the initial condition@xcept for those that stable set in the underlying Hamiltonian dynamj8$. No-
lead to the empty equilibrium, corresponding to all particlestice that the reaction introduces a minimum lengtho,
escaping after a finite timeThe equilibrium distribution is where o is the grid size. This suggests that, for nonhyper-
plotted in Fig. Zb). This distribution represents a dynamical bolic systems, the filamentary pdtof the distribution must
equilibrium, when particles are produced by the reaction ahave an observed dimensidg, equal to the effective dimen-
the same rate with which they escape through advection. sion dgs(€) (with & equal to the grid size and notd. We

The equilibrium distribution of Fig. @) is made up of have calculated the box-counting dimension of the distribu-
two components: a bulky componet which includes the tion shown in Fig. 2b), after excluding the bulky compo-
region corresponding to the KAM islands and the outermostient. This is shown in Fig.(8) (squares We have obtained
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dop=1.53£0.01, which is to within numerical error equal to culation of d,, confirms this[see Fig. 8)], and gives the
des=1.54, calculated previously for the region outside theresultd,,=1.92, in excellent agreement with;=1.91, cal-
first cantorus. culated previously for the nonreactive dynamics. Thus, our
From the fact thatlyt; depends on the location in phase theory is supported by the simulations. Increasirigrther,
space, we might expect the measured dimensigrof the  we should in principle see other transitions, but the numeri-
equilibrium distribution to also depend on the location in thecg| limitations does not allow us to resolve them.
same way asler, and to assume a greater value inside the e note that for arbitrarily large, nonhyperbolic systems
cantorus. However, we have to take the reaction im0 4yays have a nonempty equilibrium distribution, because
account: ifT is smaller than the typical escape timenside the KAM islands correspond ta=2. This is another differ-

the cantorus, empty cellslcreateq by escape W.i” bg imrne<j|énce with hyperbolic systems, which always have a critical
ately infected by neighboring particles, and the interior of th alue of r above which the system emptiethe so-called
cantorus will always be a homogeneous block of partidesemptying transitior{3]) Y P

such as seen in Fig(l®). In this case, the effective dimension
dess Of this inner region does not manifest itself. If, on the

other handr=t,, the reaction is not able to fill all the holes, VI. FINAL REMARKS
and the distribution within a region of the cantorus becomes o
filamentary, with an observed dimension equatifg. At the Summarizing our results, we have found that the dynam-

same time, since the escape time outside the cantorus igs of nonhyperbolic incompressible-flow advection-reaction
much smaller than inside, the equilibrium distribution out-Systems is qualitatively very different from that of hyperbolic
side the cantorus is depleted to almost nonexistence. Frogystems. In particular, the structure and observed dimension
the above, we conclude that for-t,, the equilibrium distri- ~ of the equilibrium distribution of reacting particles depend
bution undergoes a structural transition, with regions thaPn both the lower length scale and on the reaction rate. The
were formerly in the “bulky” zone becoming filamentary, equilibrium distribution undergoes an infinite number of
and the observed dimension changing to a larger value. Bétructural transitions as is increased(and v decreasey
cause of the hierarchical organization of the cantori, thigvhich are due to the presence of nested cantori in phase
transition happens for an infinite number of values,afach ~ space. As a final remark, we note that if many reactions take
transition corresponding to inner cantori, with larger escap®lace simultaneously in a floythis is the case in the atmo-
times. In terms of the continuous dynamics, a region is exsphere, for instangethey may see different effective dimen-
pected to be bulky iy <L/t,, whereL is a characteristic Sions, depending on the values of the front veloeitgor, in
(macroscopigsize. An increase in means a decrease in the the discrete dynamics;). Since different dimensions imply
reaction front velocity. different production rategsee Ref[3]), the dependence of
To test our theory, we simulate the system’s dynamics foflers On location may have important consequences for the
increasing values of. The result forr=50 and7=200 can Production rates of competing chemical reactiosbiologi-
be seen in Figs.(2) and 2d). As 7 is increased, the region cal processgs
outside the cantorus is depleted, and above a critical value
part of the_ region Wit_hin the cantorus_is “b_reached,” and ACKNOWLEDGMENTS
becomes filamentaryFig. 2(d)]. Comparing Fig. @) and
Fig. 2b), the former’s structure does look more involved, This research was funded by FAPESP and CNPqg. We
suggesting a larger observed dimension. A box-counting caWwould like to thank Tamas Tél for many fruitful discussions.
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