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Classical-quantum correspondence for the scattering dwell time
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Using results from the theory of dynamical systems, we derive a general expression for the classical average
scattering dwell time€ 7). Remarkably(r) depends only on a ratio of phase space volumes. We further show
that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy
average of the quantum Wigner time delay.
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I. INTRODUCTION its geometric nature. Comparing this result with the semi-
classical limit for the energy-averaged quantum dwell time,
e find that the quantum-classical correspondence does not
old in general.

The present analysis does not contradict a previous study

The study of the time a quantum collision process takes t
occur is one of the most interesting chapters in scatteringl
theory. This problem turns out to be subtle and fascinating
due to the lack of a Hermitian operator to measure the tim f

as a quantum observable. Hence. one inevitably has to refy. OUrs [4 There we followed a different path, applicable
que Co - 1tably gnly to chaotic systems, and concluded that the classical-
on auxiliary constructions to quantify the time spent by a

. ; . .gquantum correspondence for the dwell time holds. Here, ap-
scattering process. To that end several ingenious strateglg

have been proposed over the past 50 ygHrsin a pioneer- ?oaching the problem in a way that is insensitive to the
ing work, Eisenbud and Wignd@] proposed measuring the details of the dynamics, we vastly expa#] and show that

. X ) o the correspondence fails in the more general case of systems
scattering delay time by recording the peak position of WaVE b mised phase space

packets scattered in one dimension. This simple construction, The paper is organized as follows. In Sec. Il we derive the

\éV; I(t:Sr él;stthg\(/j(;l;es ctgr?ngg{ilgre]pge?vagéﬁutﬂevzlr?gty’ 3gﬁsggcentral result of this paper, namely, a general expression for
P P 9y e classical average time delay in terms of the system phase

gfmtirt]ﬁ [g]c atLetr;r;gr;Wp;?;\saen S:I!tférﬁggvéhicﬂglrii t'g‘e'”égbg?gspace volume. Key to our analysis is the formulation of the
P » app Fattering process as the first return of a measure-preserving

b e sl llo s 1 bt fom elinonn restsof e
P Y %30dic theory. In Sec. lll we discuss the semiclassical limit of

Ilf?r((j)llrj]ghthi?S p:;?gi;ns_l'_?fstge s::oaatgahrlr;]%lsre?rllzn ;jnvigt]: Zu ﬁge energy-averaged Wigner time delay. We conclude by pre-
eIimir?atin the necéssit of v?/gve ackets and can be gasi?senting, in Sec. IV, a comparison between the classical and

g essity P uantum dwell times. We show that, in general, these two
generalized to multichannel scattering. As a result, the dwel

time n,(E) is expressed as quantities do not coincide.

. N
ih 2 S dSpa (1) Il. THE CLASSICAL DWELL TIME

wB =y = Vb e
a,b=

Poincaré sections are extremely useful tools for the analy-
sis of phase space structures in bounded low-dimensional

where the scattering matri®, which encodes all accessible ST ) ;
. . ) ; Hamiltonian systems: These surfaces of section allow us to
information about the scattering process, is taken at the en-

ergy E. The sums in Eqcl) run over allN open asymptotic reduce the continuous time evolution of dynamical systems

scattering channels. The timg\(E) is usually called the to discrete mappings, much S|mpl.er to work with. I
. ] Surfaces of section are essential for the proper definition
Wigner time delay.

; . . . of a scattering problem. Consider the scattering of a particle
Is 7w(E) in correspondence with the classical dwell time gp 9 P

¢ | teri : o7 thi " by a potential. The description of the scattering process re-
or general scattering systems=« 10 answer this qUESTIon W,ires two control surfaces for detecting the state of the par-
approach the problem from the classical side. We use th

h fd ical btai kablv Simpl cle before and after the scattering event. The description of
theory of dynamical systems to obtain a remarkably sImple, qsihle scattering processes demands the control sur-

and general expression for the classical dwell time, revealingaces to be chosen so as to enclose the scatterer completely.
In this case we can consider just one surface for registering
the states of both incoming and outgoing particles.

*Electronic address: caio@uerj.br; Let us illustrate these concepts by discussing a generic
URL: http://www.dft.if.uerj.br/usuarios/caio scattering process in three dimensions. We choose a spherical
"Electronic address: vallejos@cbpf.br; control surface enclosing the region where the potential is

URL: http://www.cbpf.bi7vallejos non-negligible. A point on the associated Poincaré surkace

1539-3755/2004/13)/0362145)/$22.50 70036214-1 ©2004 The American Physical Society



C. H. LEWENKOPF AND R. O. VALLEJOS PHYSICAL REVIEW EO0, 036214(2004)

has coordinate&q,p,), whereq represents a position on the q
sphere ang, the conjugatéangulay momentum. An incom-

ing state is completely specified by giving its coordinates on
3 together with the condition that the momentum normal to
the spherep,, must point inward(the modulus ofp, is
fixed by energy conservatipn The incoming state then
evolves inside the scattering region, along a trajectory given
by Hamilton equations. It eventually interse@tsgain at the
exit point(q’,p,) and escapes. Hence, any scattering process
can be essentially viewed as the first return mag ¢b],

s
SZ—3, (q,p)—(",p)). 2

As a consequence of the Poincaré-Cartan theorem, this map

is volume preserving6]. C r
The structure of the classical scattering problem has a

clear quantum mechanical counterpart. The quantum analog

of the classical Poincaré surface is the Hilbert spate B

associated with%. The quantum scatterin§ matrix is a

linear operator ofHy, mapping incoming states into outgo-

ing ones. The Poincaré mdgp) is the classical limit ofS.

Conversely, the scattering matr$& can be thought of as the q
quantization ofS [7]. The unitarity of S is the quantum
counterpart of the classical volume conserva(ig$]. FIG. 1. (Top) Billiard with attached pipe. The Poincaré section

This parallel between classical and quantum scattering (dashed ling defines an auxiliary closed billiardBottom)
processes serves to facilitate the determination of somgoundary phase spadeof the scattering billiard. The phase space
quantum-classical correspondences. For instance, and vegyordinates are, the position along the boundary, apdits con-
useful for what follows, it becomes clear that the classicajugate momentum. The shaded rectan@leorresponds to the clo-
analog of an average over “channegla’complete basis set of sures.

Hs) is an average oveX weighted by its Liouville measure.

Let us now discuss in detail a very simple scattering SySgpacel’. The dynamics inside the scattering region is given
tem: a two-d|men5|or_1al b_||||ard with an attgche(_j pipe. Theby the Birkhoff (or boundary map T that propagates a par-
case of a smooth cavity with sevetamooth) pipes in two or  ticle between successive bounces, i.e., from a phase space
three dimensions, or even the scattering of asymptotlcallboim(q,p) I to the one where the next bounce takes place.
free particles by a smooth potential, is conceptually equiva- now we “close” the billiard by adding a straight segment
lent to the two-dimensional billiard with a single pipe, and norma| to the pipe axigs]. The Poincaré section associated
will be discussed later. _ _ with this segmenty, closes the Birkhoff sectioRi. Thus, the

_ The physical process we analyze is the following. A clas-gcattering process can be identified with the first-recurrence
sical particle propagates along the pipe and eventually Almap toS, now considered as a part 6F the dwell time
rives at the billiard, where it elastically bouncedimes at  ocomes the first-return time th. Figure 1 shows the
the walls before escapirigee Fig. J. A Poincare sectio,  poyndary phase spate namely, a rectangle of length equal

transverse to the pipe, separates the scattering régi®  (; the perimeter of the closed billiard and heigipi,2,, with

rior, billiard region, interaction regionfrom the asympto.tlc zmaX: 2mE, wherem is the particle mass an its energy.
region (exterior, pipg. We seek the average number of imesThe shaded vertical strip corresponds to the cloyrand is

(n) & particle bounces before escaping, or the average dwellonoted byC. The inclusion of more pipes to the billiard is
time (7) of a particle inside the billiard. As already men- accounted for by adding the correspondidgjoint) vertical
tioned, the appropriate measure for averaging gives equakripes. This construction can easily be extended to higher
weights to all points or®, having the same enerdy. dimensions.

_ In what follows we show that the answers to these ques- e recall thatn is the return time measured in units of
tions are given by very simple ratios between phase spadsounces against the billiard walls. Its average is
volumes. Then we argue that our results are also applicable

to more general geometries. Eﬁzln,u(cn)

= u(©C)

A. Birkhoff maps whereC,,C C is the subset of initial conditions that first re-
Let us consider a Birkhoff section taken along the billiardturn to C after n iterations of the boundary map, and u
walls (see Fig. L The coordinategq,p), whereq is the refers to the volume measure ifi. Using measure-
particle position on the billiard boundary apds its conju-  preservation arguments, it is not difficult to show that
gate momentum, entirely characterize the particle phasg;_;nu(C,)=u(U;-,T"C) [10]. Hence, Eq(3) becomes

3
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U= trajectories starting at the secti@ The variablesE andt,

Iu’( n:1T C) . . .

=, (4)  together with the coordinates dn, form a local canonical
w(C) set. WhenC grows in “thicknesses” bAE and At, we have

which now expresses the time delay as a quotient of twdhe simple relation between measures

measures: The denominator is the measure of the closure; the —

numerator represents the measure of the inner phase space #(C) = n(C)AEAL. (8)

that is explored by the ensemble of scattering trajectorie L .

For an ergodic dynamics the sef_;T"C clearly coincides The dwell time is then given bja4]

(n)

with the full phase spac€&'. Remarkably, even nonergodic M(F)
Birkhoff’'s maps very often satisfy theveak ergodicitycon- (m) = lim At——, (9
dition a0 (€

* where

uT"C=T1'"=T. (5)

n=1 e _

I — n

For instance, it is simple to verify that the circle billiard r _nL:Jl(TAt) c. (10

[5,11], an archetype of integrable dynamics, satisfies(ky. e .
for any straight closurg.. The quantityl’ represents the inner phase space for the con-

As a result, for weakly ergodic billiards we find thaty ~ tinuous dynamics that can be accessed from outside. It has an

= u(I")/ u(C). The weak-ergodicity condition is not satisfied €Nergy thicknesak. _

by systems containing stable islands that cannot be reached By construction, the se€ has the important property that
from the outside, such as, for instance, the cosine-shapedll its points enter the scattering region after one time step
billiard [12]. In these cases we replafeby I'’, the phase At, hamely,

space that is effectively explored by the scattering orbits, to

write ,u(Eﬂ TAtE) =0. (11
(I This avoids the problem of having to subtract spurious con-
(= w(C) ®)  tributions to the dwell time arising from nonscattering orbits
[14].

The expression above shows that for both ergodic and non- Let us now express Eq9) in terms of more appealing
ergodic systemgn) is finite. Thus, the probability of first quantities. Defing) to be the phase space volume contained
returning aftem iterations, by the energy shel within the scattering regiotas before,
u(C) primes will indicate “accessible from outsigeThen
n

w(C)’

must decay faster than 7. In some cases numerical simu-
lations may suggest a divergent average return time. Notcwe

. recall thatu(C) is the phase space volume contained by
however, t_hat the true asymptotic decay may settle only aftetrhe energy shelE within the sectiork. We now switch to a
very long times[13].

more standard notation and, from now on, we callli.
Gathering everything and substituting into E8) we arrive

P(n) )

—
I')=—AE. 12
ul) =2 12

B. Continuous time at
The real, continuous, time-delay problem is addressed in 1o
analogy with the simple one presented above. To make a link (n= Q_EE (13

between continuous dynamics and maps we invoke the stro-
boscopic maf,,, i.e., a discretization of the continuous evo- This remarkable formula is exact and holds irrespective of
lution into time steps of lengtlAt. The continuum limit is  the dynamics being chaotic, regular, or mixed. After making
obtained by makingAt— 0. The mapT,; acts on the full the proper identifications, Eq13) can also be applied to
phase space of the scattering system, namely, a foubilliard systems in thre¢or highe)y dimensions.
dimensional space for a planar billiard. For the sake of illustration, let us, for instance, use Eq.
In order to adapt Eq6) to the present context, we note (13) to calculate the mean time between collisions for a
that the set of incoming stateS has zero measure when closed billiard. In this case, we have to choasas the phase
thought of as a subset of the full phase space: It has to bgpace corresponding to the full bounddryThe weak ergod-
substituted by a properly defined set having finite measurdgity condition is obviously satisfied and the average bounce
which we call C. The simplest way of choosing@ is by  time readsr,=(d€/JE)/€Q for any billiard, truly ergodic or
letting C acquire two extra dimensions: in the direction nor-not. For the two-dimensional cas&),.=2mvL and ()
mal to the energy surface, and in the direction parallel to the mp2A=27mEA (v=velocity, L=perimeter, A=area.
phase space flow. The corresponding additional canonical cd-hen we arrive at the well-known resufi=m.A/v L, as heu-
ordinates are the ener@yand the time measured along the ristically shown in Ref[15] and proven in Ref[16].
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C. Smooth systems In order to relatg 7y to the classical results, we take the

The extension of our findings to smooth systems is immeSemiclassical limit of Eq16). We first use the Weyl formula
diate. The boundary that so far defined the system billiardi® express the mean resonance densify). For that pur-
plus-pipe now is thought of as the level curve of a smoothPose, we consider the corresponding closed sysseatter-
potential. The motion in the waveguide is free in the longi-ing region closed by), to write

tudinal direction(X). In the directions transverse to the wave- 190
guide(y) the dynamics is governed by a smooth Hamiltonian PE)=—5—, (17
H. (Y. py). " oE

The analysis of Sec. Il B applies equally well to this casewhered is the dimension of the system. The wide tilde is
Thus, the formula for the dwell time is also EG.3), withthe  used to indicate that the semiclassical limit was taken. By the
following definitions.()y is the measure of the phase spacesame token, the number of states in the pipes is given by
in the Poincaré section lying inside the energy shkli=E,

—~ O
N= hd—zl (18)
Qs = f dy dp,. (14
H<E We then arrive at
Q) is the volume of the inner phase space with energy less 100
than E. Assuming that the scatterer lies in the regior 0, (tw) = O« oE (19)
we have >
Remarkably, as in the classical case, the average Wigner time
0= dx dy dp dp,. (15) delay is a purely geometric quantity, and does not capture
dynamical features.
H<E and x>0

The case of a particle scattered off a smooth potential in

three di_mensions can be accoun_ted for by enc!osinq the scat- IV. CONCLUSIONS
terer with a large enough spherical shghie Poincaré sec-
tion ). Then one defines the delay time as {lawerage The most striking result of our semiclassical analysis is

return time toX minus the return time when there is no that the Wigner time delay of Eq19) is not in correspon-
potential. Both return times are special instances of(ES), dence with the classical dwell time of E¢L3). The corre-
the free-flight time being just the average bounce time of spondence holds only in the case of weak ergodicity, where

spherical billiard. the phase space volunt¥ equals(). The two quantities are
different in the more general situation of a mixed phase
space.
. AVERAGE WIGNER TIME DELAY This result can be interpreted as follows. In general,

mixed systems have phase space domains in the interaction
The Wigner time delay(E), given by Eq.(1), fluctuates  region which are not classically accessible from the outside.
as a function of the energy. Large time delays are due t@hese regions, if larger tha, will support quantum states.
resonant scattering, whereas off-resonance scattering corrguch states correspond to resonances, which can be very
sponds to direct processes that spend short times in the ifkin, depending on the height of the dynamical tunneling
teraction region. This picture becomes particularly clear inbarriers. As we showed, they contribute ¢@,) with the
the regime of isolated resonances: Long time delays occur &ame weight as other quantum states predominantly localized
narrow energy windows around each resonance; in the ren classically accessible regions.
maining energy interval scattering processes are(¢astcy. In a broader picture, we speculate that the lack of
The important energy scale that emerges from this picture ig|assical-quantum correspondence for the dwell time is an-
the mean resonance spacing. When the resonances are ovgiher manifestation of the noncommutativity between the
Iapp_ing, the separation of time scales is less clear, and flugong time limit (t— =) and the semiclassical limith — 0).
tuations are much smallgt7]. _ Tunneling into(or out from) localized states at islands of the
By averaging the Wigner time delay over an energy win-mixed phase space takes a very large time scale to occur, and
dow AE containing many resonances, fast and slow prois gpsent in the classical limit df=0.
cesses concur to give a very simple expression: We conclude by stressing that our results are rigorous and
do not depend on the interpretations presented here.

h
(rw(B))y = 3P(E). (16)

where p(E) is the mean resonance densjtue to the scat-
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