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Transient and stationary chaos of a Bose-Einstein condensate loaded
into a moving optical lattice potential
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Chaotic space-time evolution is investigated for the particle number density of a Bose-Einstein condensate
with attractive interatomic interaction loaded into a traveling optical lattice. Melnikov chaos is studied and the
weakly chaotic regime is presented analytically. Transitions from transient to stationary chaos in the space-time
evolution are illustrated numerically. The results show that, on increasing the strength of the optical potential,
the transient chaos falls onto several different attractors. Meanwhile, these attractors undergo a series of
period-doubling bifurcations when the optical potential intensity is increased continuously, and eventually
stationary chaos arises for a critical depth of the optical lattice. The obstructions to chaos caused by the
damping and the motion of lattice are also demonstrated.
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[. INTRODUCTION extensive interest. In many previous wofRg—27, the cha-
otic features in this system have been studied in the frame-
ork of the many-mode approximatigi2] (characteriza-
i1on of the lattice systei or its simplified form, the two-
mode approximatioridescription of a double-well or two-
state systepm[23]. In this scheme, integration over the spatial
coordinates is performed, so only the time evolutional prop-
rTgarties are presented, and the spatial behaviors of the system
are unclear. In order to research the space-time chaos in such
a system, we shall start the investigation from the time-
dependent Gross-PitaevskiGP) equation, which governs

Periodic optical lattices, formed by the interference of two
or more laser beams, have been extensively used in atom
physics[1-3]. The combination of the optical lattices with a
Bose-Einstein condensatéBEC) in recent experiments
opened up many new research aspgttd 2 and provided a
practically useful method to precisely manipulate BECS.
Correlated subjects include the observation of quantu
phase effectd4,14], superfluidity [15,16, atomic number
squeezing9,17], matter-wave transpof8], quantum com-

putation and quantum informatidqi8,19, detection of peri- . \ e
odic structure[20], phase transitions from superfluids to 3\1/2 %rgzﬁgsaoggﬁpigcééésﬁgz d:andTn(ignaﬂt?[advgl]iﬁgg%btical
Mott insulators[5,21,23, and so on. By using a periodic %attice. Under a deterministic perturbation, Melnikov chaos

laser standing wave, an array of Josephson junctions is crez . ; . g .
ated with the condensates trapped in the valleys of the per 39] in the space-time evolution of the BEC is investigated

odic potential[12]. In the tight binding approximatiof.e., analytically for the case of an atiractive atom-atom interac-
the many-mode approximatipir two-mode approximation tion. A homoclinic chaotic regime is obtained and _the sup-
(a simpler case of the formef23], many characteristics, for pression e_ffects of the damping and the propagation of the
instance, Josephson oscillating atomic currefitg] and optical lattice on the onset of chaos are discussed. The tran-

chaos[24-27, are revealed. In addition to extensive inves- séinéﬁigagoiz S?r%ilatl(t)ec;hneu rglesr?(;zﬁnvgo:oc;ieﬁe?fe ntthii t gr?srﬂggg
tigations in static lattices, moving optical lattices have also([) f t,he ontical potential. the evoIL)J/iionaI traiectories of the
been studied recently. For example, Rupresthal. [28] and P P ' J

: : : atomic number density fall onto different regular attractors
(?rri]vbee:ﬁ eag%gtggggf 9[])2223%?25 gf?ozgeaa/frl:gglglgg'ciﬁtéo after the transient chaos. These final attractors undergo a se-

a traveling lattice to study the physical properties in a receng.Ies of period-doubling bifurcations with increase of the op-

experiment30]. Fallaniet al. reported the lensing effect on vlgﬁllemt?ens&?gri\{\/hgp tthhee gtgrt:(ilolrnin(jsétgt:gaggejnz ttr;]reest?:rf
a BEC expanding in a moving one-dimensio(HD) optical 19 Y y

lattice, i.e., the optical lattice acts as a lens for the matte?’Ient chaos changes to stationary chaos.

wave, focusing or defocusing the atomic cloud along the
direction of the lattice[31]. IIl. ANALYSIS OF THE CHAOTIC DYNAMICS

It is well known that in the process of BEC collapse  the BEC system considered here is created in a harmoni-
[32,33, chaos will emerge. Chaos may play a destructivecq)ly trapped potential and then is loaded into a moving op-
role for the system. Therefore, predicting and controllingyjcq] |attice. The 3D combined potential therefore is given by
chaos are quite important in the formation and applications,, X,Y,2,1) =V, cof(kd) + m(w2X2+ w?y?+ w22?) 12, where the
of BECs. For the system considered, chaos has also attractgécond term is the harmon)i(cally ¥nagnétic potential with

being the atomic mass ang, oy, », the trap frequencies.
The periodic potential is a moving optical latti¢80] with
*Corresponding author. the space-time variabl€=x+ét/2k, where § is the fre-
Electronic address: adcve@public.cs.hn.cn quency difference between the two counterpropagating laser
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beams and the laser wave vector which fixes the velocity of  d?¢ _ do de ~ _, o~ )
the traveling lattice as, = 8/(2k). When the BEC is formed a2 +i(v + Za)d_g + wd_g - (B+ @) e +iyBe—glele
in the region near the center of the magnetic trap, the mag-

netic potential is much weaker than the lattice one and can be =V, co€({)¢ (5)

neglected. According to the experimental parameters of Ref. ) ) )
[30], w,= \ﬁwy:sz:erx 27 Hz, k=2m/\, A\=589 nm, With the dimensionless strengt+8mak and the functionp

and m the mass ofNa, we find that in the region of D€ing normalized by!'2 Writing the complex functiorp in
k\x2+y2/2+72]4< 100 the harmonic potential is of the or- te form of e=R(¢)é? and entering it in the above equa-
der of 102E,, which is much less than the lattice potential tion, we obtain two coupled equations between the real func-
Vo=14E,, whereE,=#2k2/(2m) is the recoil energy. There- tionsRand6 as

fore, the 1D optical potential plays the main role for the R (da

2
system and the quasi-1D approximation is valid in this re- — -R —) -(v+ 2"&)Rd—0 + wd_R_ (B+a?)R-gR®
gion. On the other hand, for a time-dependent lattice, the dg d¢ dZ dZ

damping effect should be considered. The damping effect =;/O CoL()R, 6)

caused by the incoherent exchange of normal atoms and the

finite temperature effed89—-41 has been analyzed in detail d & q d

for the two-junction Ilnkm_g of two BEC4$39]. For the sys- 2d_R_‘9 + R_‘Z +(v+ 2&)—R+ wR_‘9 + YER: 0. (7)
tem considered here, it is similar to the case of the linear dzd¢  d¢ dZ d¢

junction linking of many BECs. Thus, a damping effect ) . )
caused by similar elements or other factors may also exisC!€&rly, the square of the amplitude is just the particle

With these considerations, the system is governed by thBUMber density becaus|=|¢|=|y{, and@is the phase of.

following quasi-1D GP equatiopd2]: It is not difficult to observe that when the phase has~a linear
v ey relation with the space-time variable, i.edp/d{=-B/v
_ 0 __ ~ L
in(L—iy) = + Qol 24+ Vo cod(kd)y, (1) (v/2+a), Eq.(7) can be naturally satisfied. Consequently,

at 2max? Eq. (6) is changed to
where ¢ is the macroscopic quantum wave functiam, R 1 , - drR
=4mh?a/m characterizes the interatomic interaction strength d_§2 Y R-gR* =V, cog()R- wd_g' (8

with a being thes-wave scattering lengtta>0 denotes a
repulsive interaction and<0 corresponds to an attractive  Obviously, the particularly linear relation betweéand ¢
interaction, and the term proportional tp represents the taken here leads to the coefficient of tReerm on the left
damping effect which was used in R§#.2]. hand side of Eq(8) having a fixed negative sign. According
Due to the complexity of Eq.1), we focus our interest on to the general theory of the Duffing equation, underlying Eq.
only the traveling wave solution of this equation and write it (10) has a homoclinic solution only when the coefficients of
in the form the linear(R) and nonlineafR?) terms on the left hand side
_ : of Eq. (8) have opposite signpt3]. Therefore, in order to
¥= e(§)exili(ax+ po)], 2) stud)(/4 tﬁle) homoclinic chaos for the negatReerm we must
such that the matter wave is a Bloch-like wave. Hereand  consider the case of attractive atom-atom interactions, i.e.,
B are two undetermined real constants. According to thgy<<O; then the above equation is just the parametrically
definition of the space-time variable=x+v,t in the former,  driven Duffing equation with a damping terf43,44. The
the traveling wavep(¢) moves with the same velocity as the chaotic features of the Duffing system have been extensively
optical lattice. Inserting Eq(2) into Eq. (1), we can easily researched45,44. If the phased does not take a special

turn the partial differential equatiofi) into an ordinary dif-  linear relation with{, the dynamical behaviors of the system
ferential one: can be investigated from the coupled equati@®sand (7)
- 5 directly both for repulsive and attractive condensates, and the
ﬁ_d_¢’+i<ﬁ_a+ﬁ s >d_<P chaotic behavior becomes more complex; this will not be
> v —ihyoL .
2mdé§ m dé discussed here.
5202 For the case of a weak optical lattice potential and damp-
- (ﬁ,3+ —_— iﬁﬁy) o- go|<P|290 =V, cog(ké) . ing, a perturbational treatment is permitted. It is well known
2m that the Melnikov-function methofB5,44 is a valid analyti-

(3)  cal one under the first order approximation. Making the per-

L . . . , turbational expansion
For simplicity, using the dimensionless variables and param-

eters R(0) = Ro(9) + Ry(2), Ry <Ry, 9)
{=k¢E v =2mou /hK, E:hﬁ/Er, and inserting it into Eq(8), we obtain the leading and first
order equations as
w=alk, Vo=VyE,, (4) ?rR, 1
. ' 4R _yRe-gRi=0, (10)
we have Eq(3) in the form de 4
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Ry 1 0.6
2 = 0RO - 3gR(ORy(0)
d¢ 4
_ dRy(0) o 0.4
=V C0S(ORy(Q) — = = (19) S
4 0.2
Starting from Eq.(10), the leading order equation has the
homoclinic solution 0
v v 0 1 2 3
Ro(§) = ,—secf<—(§ + éo)), (12) (@) k
V=29 2
where {; is an integration constant. Obviously, under weak 1.75
perturbations the leading order solution of the number den-
sity is just a bright soliton solution, which implies that the 1.25
wave packet of the matter wave is localized in the space at s
any time. Therefore, following the standard Melnikov ap- 0.75
proach, the Melnikov function for this homoclinic orbit is 0 25
given by :
Z dRy [~ dR, 0 1 2 3 4 5
M.(¢o) = d_g(vo CoS({Ro - wd_g)d§ (b) V1,

4 9y 5 FIG. 1. Plots of the chaotic regions in parameter spade)dhe
A ﬂcsc%{—Tr)sin(ZgO), (13)  optical intensityV, versus the laser wave vectond(b) Vo versus
69 v the propagating velocity of the optical lattice from E@4). Here

whic_h measures the_distapce bgtween.the stable. and unstattgl?%?;:irziﬁgn nr?flrirg:etsefm?;e' ;%f/zyff 'Logfemiﬁzfﬁ?{’s’kgf
manifolds in the Poincaré section. If it has a simple zerog ko0 respectively

then a homoclinic bifurcation occurs, which signifies the on- "% "= '
set of Smale-horseshoe chaotic behajdel. Taking note of
Eq. (4), the Melnikov function(13) vanishing leads to the

homoclinic chaotic region

correspond to Melnikov chaotic regions in which the evolu-
tion of the atomic number density has the properties of
Smale-horseshoe chaos; those below denote regions of regu-
Vo 167m4v‘,f [ whk lar motion. From Fig. (&) we observe that for very weak
E., = 3ﬂ-ﬁ—4k§k25m o, )’ (14 dampingy=0.005, the threshold value of the laser intensity
’ is approximately obtained a%,=0.02 fork=0.5 (in unit of
in which Eq.(4) has been adopted. In E(@L4), we express k,). This implies that for weak damping and optical lattice
the optical intensity as a function of the wave vedtoand  potential the criterion(14) can indeed be satisfied. If the
the moving velocityv, of the optical lattice. Sinc& is in-  damping is increased to about 0.1, from Etg), the critical
volved in the recoil energ¥,, which is used as the unit of value become®/,=0.4 for k=0.5. In this case, the optical
optical strength in the definition of E@4), in order to see strength becomes comparable to the interatomic interaction
clearly the dependence of the optical intensity on the wavelue to g=8wka=-0.375 with sswave scattering lengtta
vector k, we introduce another energy scale &, =-2.8 nm. Therefore, the optical potential cannot be treated
=h2k5/(2m) for a fixed optical wavelength\g=27/k,  as a perturbation now. On the other hand, from Fi) e
=589 nm just as in Eq(14). The criterion(14) is usually  find that afterv, >1 a largerv, value is associated with a
considered as a necessary condition for the onset of chadarger threshold value o, This implies a suppression of
For a set of fixed parameters E{.4) gives the threshold chaos, namely, in the region >1, a givenV, value is
value of the optical potential. The system undergoes a progreater than the chaos threshold for a smaijevalue, but it
cession from regular motion to chaotic motion when theis less than the chaos threshold whgnis increased to a
strength of the optical potential is increased across theertain value. Due to the experimental controllability of the
threshold value. lattice velocity, this suppressive effect suggested to us a valid
In order to see clearly the dependence of the chaotic reapproach to controlling the chaos in experiments. Moreover,
gions on the system parameters, starting from (#d), we  to guarantee the validity of the weakly chaotic regid4),
plot the optical intensity/, versus the laser wave vectoin  the traveling velocity of the lattice must be slow, because
Fig. 1(a) and plotV, versus the traveling velocity, in Fig.  when the velocity is large enough the second term on the
1(b). Here, the parameters are takenyas0.005,m=23m,  right hand of Eq.(8) may become very large and so the
with m, the proton mass, andl;=589 nm; meanwhile, in perturbational treatment becomes invalid. Meanwhile, from
Fig. 1(a v =3 cm/s andV, andk are in units ofE, o and  Eq. (14) we can see that the threshold value is proportional
ko=2m/\q, respectively, and in Fig.(b) k=ky, Vo andv_are  to the strength of the damping; when the damping is very
in units of E; o andv =3 cm/s(a particular velocity scale weak, the criticalV, value is small, but a strong damping
selected arbitrarily In Fig. 1, the areas above the curveswill lead to a higher criticaV,. In other words, for a certain
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dr/ d{

—_
(]
~

dRr/ df

FIG. 2. Plots of the phase orbits in the equivalent phase spad® 0R/d¢) from Eq.(8). The left column shows the transient chaos and
the right column illustrates the corresponding regular attractors and the stationary chaotic attjactor

depth of lattice, enhancement of the damping will decreasgeneral feature that the evolution of the system seems to be
the chaotic region; so the damping has a suppressive effechaotic during some transient periods and ultimately tends to
on chaos too. However, when the damping is strong enouglsome periodical stable attractors. This phenomenon is called
the Melnikov method becomes invalid; then a numericalransient chaof36]. Transient chaos will appear for arbitrary
analysis for the system is needed. initial conditions before it goes into the final attractors. We
shall illustrate transient chaos in the numerical simulation by
exhibiting the process of attraction from transient chaos to
regular and stationary chaotic attractors.

We adopt Denschlag’s experimental parameters, wirere

Because of the damping effects, the dissipative systerequates to 28, with m, being the proton mass, the laser
considered has the important consequence that the phasgavelength is\=X,=589 nm, and the traveling velocity of
space volume will contract with the evolution of the space-the optical lattice reads, =3 cm/s such that =2mv, /7iky
time variable. In the process of evolution, there exists the=2.03 andg=8wk,a=-0.75. Furthermore, a damping value

IIl. NUMERICAL ILLUSTRATION OF THE TRANSITION
FROM TRANSIENT TO STATIONARY CHAOS
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) ) ) . ~ FIG. 4. A plot of the bifurcation diagram dR(T) vs y. The
FIG. 3. A plot of the bifurcation diagram witR(T) vs Vo. At cha0s suppression effect caused by damping is illustrated. With an
aboutVo 2.95, the system enters a stationary chaotic state. Hergncrease of the damping, the system changes from chaotic to regular
VO is in units of the recoil energ, . motion.

v=0.05 is set. USinIATHEMATICA we solve Eq(8) numeri-  that for a larger damping 0.25 in Fig. 3 the critical optical

cally under the initial condition&x(0)=0.01,dR(0)/d{=0,  strengthV, for the stationary chaos also becomes stronger.
and illustrate the transient and final attractors in the equwa— For the sake of Seekmg the effect of dampmg on the onset
lent phase space ¢R,dR/d¢) by Fig. 2 for(a) and(b) with  of chaos in this system, we plot the bifurcation graphic of
V0 1.85, (c) and (d) with VO 1.9, (e) and (f) with V0 R(T) versus the damping as in Fig. 4, where the system
=1.975, andg) and(h) with V,=2. The attracting procession Parameters are the same as in Fig. 2 and the optical potential
from transient chaos to the corresponding final state takestrength is taken as a determined num¥gr 1.8. From Fig.
aboutt’ =0.06 s forx=0, that is,{,-o=kv, t’ =2000, and any 4 we can see that for much weaker damping the values of
transient state is plotted frof=0 to /=100. The left column R(T) are random and the motion of the system is stationary
describes the transient chaotic attractors and the right columchaotic. When the damping becomes stronger, the values of
denotes the final regular attractors and a stationary chaotiR(T) convergence to two values and the motion of the sys-
state(h). tem becomes regular. Thereby, the damping plays a baffling
In Fig. 2 we show that transient chaotic attractors arerole in obstructing the system coming into stationary chaos.
formed from¢=0 to {=100. For different value 0?/01 the  Thisresultis in agreement with the theoretical analysis in the
chaotic attractor is changed into different regular attractor&bove-mentioned Melnikov method.
with the increase of the space-time coordinate fiGni00 to Going back over the above theoretical analysis and nu-

£=2000. When?/o 1.85 is taken, Fig. @) shows the final merical simulation, the evolution of the matter wave is gov-
attractor as a closed single-period orbit. As the optical inten€Med by a Bloch-like wave in Eq2), which is traveling

with the same velocity as the optical lattice. Therefore, the
sities are increased MO 1.9 andVO 1.975, the final phase y P

bite b he doubl d and T d orbi random motions in the deterministic system demonstrate to
orbits become the double-period and four-period orbits as ifyg 5 time-space chaos. This chaotic state propagates in the

Figs. 2d) and 2f). When the laser strength reachés=2 by direction of motion of the optical lattice.
carefully adjusting our numerical simulations, the phase tra-
jectories fall from the transient chaotic state as in Fig) 2
onto the stationary chaotic attractor FighR These proces-
sions imply that the transition from transient chaos to station- |n summary, we have considered a BEC system loaded
ary chaos may undergo a series of bifurcations. into a moving lattice and studied the space-time chaotic dy-

In order to illustrate clearly the bifurcation sequence ofnamics of the system. When the optical lattice potential and
the final attractors, we give a bifurcation plot for the value ofthe damping are very weak, using the Melnikov function to
R(T) versusV/O as in Fig. 3, by using the same system pa-predict the onset of chaos is a valid analytical technique. In
rameters as in Fig. 2 and a different dampipg0.25. Here, the perturbational parameter region, the Melnikov chaos near
R(T) is the value at=T=nm with n being an integral num- the homoclinic solution was investigated for the evolution of
ber. In order to avoid transient chaos, the valueR@f in  the atomic number density, and the weak chaotic regime was
the initial 500 periods of the driven potentid(¢) are elimi- ~ Presented consequently. A chaos suppression effect caused
nated. by the propagation of the optical lattice was revealed, which

. ~ . suggests a possible method for controlling chaos in experi-

me Fig. 3 we can see that for smaf} the gvolutlonal_ mgr?ts Wheﬂ the intensity of the optical Ia?uce potential an

behavior of the system converges to a period-1 solutio

Mthe damping are strong enough, the Melnikov method be-
With increase of the optical intensity the first bifurcation comes invalid, which necessitates a numerical approach. A

appears at abouv,=2.82, and the second bifurcation at chaotic transient, which is a common phenomenon in dissi-
aboutvo 2.92. As expected, the transition between transienpative systems, has been illustrated numerically. The transi-
chaos and stationary chaos indeed comes through a periotien from the transient to stationary chaos was embodied in
doubling bifurcation. Comparing Fig. 2 with Fig. 3, we find the variety of the final attractors. The route from transient

IV. CONCLUSION
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chaos to a stationary chaotic state of the system was simwiated with quantum entanglemef7] and quantum error
lated numerically and period-doubling bifurcations werecorrecting[48], which are all key subjects in quantum com-
demonstrated when the strength of the lattice potential waputation; thereby, investigating and controlling the chaos in
increased continuously. Meanwhile, the restraining effects oBECSs is very important.

the onset of chaos caused by the damping were also investi-

gated.
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