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Two types of asymptotic ordering processes in the anisotropic Swift-Hohenberg equation are studied, paying
particular attention to the interaction between domain walls. For the first type, we will discuss the time
evolution in which the spatially oscillatory patterns are formed, and show that two kinds of patterns exist
depending on whether or not the imaginary part of the field vanishes. When the imaginary part is present, the
equation has two distinct states which are regarded as kinds of domains, so the dynamics between two domain
walls is established. We then discuss, for the second type, the dynamics when nontrivial uniform states are
constructed. There exist two different domain walls, the Néel type wall and the Bloch type wall, in a similar
way to the anisotropic Ginzburg-Landau equation. The equation of motion for two domain walls is derived, and
it is shown that the distance between the two domain walls eventually approaches a finite length. The theo-
retical result is confirmed by numerical simulations. This fact proves the validity of the prediction on the
temporal development of the distance between two domain walls.
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I. INTRODUCTION

There are many works on ordering processes associated
with thermodynamic phase transitions[1–3] in magnetic sys-
tems and binary alloys. On the other hand, pattern formation
processes in systems far from equilibrium, e.g., the
Rayleigh-Bénard convection for liquid layers heated from
below [4,5], liquid crystals under an oscillating electric field
[6,7], chemical reaction-diffusion systems[8], etc., have
been extensively studied from the theoretical as well as ex-
perimental points of view. A common approach to study the
dynamics of domain walls associated with the ordering pro-
cesses has been developed, and is now one of the prevailing
methods to comprehensively understand such processes
[9–14] despite the mechanisms of the above two kinds of
processes being different from each other in the sense that
the former evolves in time towards thermal equilibrium
while the latter describes nonequilibrium and open systems.
This fact shows a universal aspect of the ordering processes.

The present work was motivated by several recent experi-
ments investigating the formation processes of magnetic do-
main structures and their statistical characteristics in garnet
thin film under a temporally periodic external field[15,16]. It
has been observed that the garnet thin film, which is one of
the materials to form a ferromagnetic phase, constructs sev-
eral spatial patterns, e.g., labyrinth, lamellar, triangular lat-
tice, and spotty patterns, etc., depending on values of ampli-
tude and frequency of the external magnetic field. The
existence of the formation of lamellar patterns suggests that
the system is capable of being phenomenologically repre-

sented in terms of the Swift-Hohenberg(SH) equation, the
well-known model of the Rayleigh-Bénard convection[17].
The model turns out to be quite suitable to describe the for-
mation process of the spatially oscillatory dissipative struc-
tures in systems far from equilibrium even though the order-
ing process in the garnet thin film is associated with
thermodynamic phase transition. In fact, a labyrinth pattern
is observed in the ferromagnetic system without applying an
external field[16] where the temperature is kept far below
the Curie temperature. The observed pattern is similar to that
found in the SH equation when the control parameter corre-
sponding to the temperature difference from the Curie tem-
perature is sufficiently large[18,19].

Thus the simplest model to explain the experiment noted
above may be the SH equation with an external field

ẇ = fe − s¹2 + k0
2d2gw − w3 + Fstd, s1d

wherew is a real field corresponding to local magnetization,
e is a control parameter andk0 is the wave number to be
determined by the characteristics of the system as well as the
boundary condition. In spite ofk0 being set to be unity by a
simple rescaling, we will usek0 in this paper because we
adopted several values different from unity in numerical
simulations.Fstd is an external field, which is often repre-
sented as the sinusoidal forceFstd=A cossVtd with ampli-
tudeA and frequencyV. However, it is known that the thin
garnet film is a strongly anisotropic material. This fact sug-
gests the necessity of extending the fieldw to a complex
variable and then adding an anisotropic termgw* to the
complex SH equation as follows:
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ẇ = fe − s¹2 + k0
2d2gw − uwu2w + gw * + Fstd = −

dH
dw*

,

s2d

where w is a complex field andg is the strength of the
anisotropy, which is assumed to be real.H is the Lyapunov
functional defined by

H =E drF− euwu2 −
g

2
sw2 + w* 2d +

1

2
suwu2d2

+ us¹2 + k0
2dwu2 − Fstdsw + w * dG . s3d

Equation(2) is hereafter referred to as the anisotropic Swift-
Hohenberg(aSH) equation.

In this paper, we focus our discussion on the spatially
one-dimensional(1D) system to reveal the fundamental char-
acteristics of Eq.(2) in the absence of an external field, i.e.,
Fstd=0. We will show that the system exhibits several pat-
terns depending on the control parameterse andg. The tem-
poral evolution of the system will then be discussed in terms
of the dynamics for the domain wall.

The present paper is constructed as follows. In Sec. II two
types of oscillatory patterns, separated by the existence or
absence of the imaginary part of the field, are discussed. The
domain wall dynamics of the pattern with an imaginary part
is further discussed in a similar way as for the time-
dependent Ginzburg-Landau(TDGL) equation. It will be
shown that the distance between neighboring walls develops
logarithmically in time. In Sec. III it is found that a pair of
nontrivial uniform statessuwuÞ0d stably exists for a definite
parameter region. Furthermore, the domain wall dynamics
with a set of kink and antikink pair is developed. We will
find that no annihilation of kinks occurs and the system
keeps the number of walls invariant. Concluding remarks are
given in Sec. IV.

II. OSCILLATORY PATTERN IN 1D SYSTEM AND ITS
PHASE DYNAMICS

Let us consider the 1D aSH equation

ẇsz,td = fe − s]z
2 + k0

2d2gw − uwu2w + gw * = −
dH
dw*

s4d

with ]z;] /]z, where

H =E dzF− euwu2 −
g

2
sw2 + w* 2d +

1

2
suwu2d2 + us]z

2 + k0
2dwu2G

s5d

denotes the Lyapunov functional of the system. Hereafter,
without loss of generality,g is chosen to be positive. By
settingwsz,td=Xsz,td+ iYsz,td, Eq. (4) is written as

Ẋ = fe + g − s]z
2 + k0

2d2gX − sX2 + Y2dX, s6ad

Ẏ = fe − g − s]z
2 + k0

2d2gY − sX2 + Y2dY. s6bd

Equations(6) give the three types of stationary solutions
X0 andY0, i.e.,

(i) X0=Y0=0,
(ii ) X0Þ0, Y0=0,
(iii ) X0Þ0, Y0Þ0,

which are, respectively, referred to as the trivial solution, the
Néel type oscillatory solution and the Bloch type oscillatory
solution. Of course, there exists another type of the solution
X0=0 andY0Þ0, which turns out to be unstable because the
componentX is more unstable thanY for g.0.

The linear stability of the trivial solution can be discussed
with the linear growth rates for the wave numberk mode
around the solution

lk
X = e + g − sk2 − k0

2d2, lk
Y = e − g − sk2 − k0

2d2. s7d

The largest growth rates aree+g for X ande−gs,e+gd for
Y at k=k0. Since the trivial solution is linearly stable fore
+g,0, we hereafter focus our attention on the casee
+g.0.

A. Néel type oscillatory pattern

Let us consider the dynamics of the Néel type oscillatory
pattern, i.e., the solutions of Eqs.(6a) and (6b) with Y=0.
We, therefore, try to solve the equations

Ẋ = fe + g − s]z
2 + k0

2d2gX − X3, Y = 0. s8d

This is identical to the conventional SH equation. IfXsz,td is
expanded asXsz,td=on=−`

` rnstdeink0z with r−n=rn
* , then the

equations of motion forrnstd are given by

ṙn = fe + g − sn2 − 1d2k0
4grn − o

k,l=−`

`

rn−k−lrkrl . s9d

As far as 0,e+g,k0
4, a solutionrn=0 for all n is linearly

stable except forn= ±1, and the orders ofrn are estimated as
r±1.Îse+gd /3, r2n=0, and r2n+1.Osr1

2n+1d, respectively.
If e+g is appropriately small, Eqs.(9) are reduced to the
equation

ṙ±1 = se + gdr±1 − 3ur1u2r±1 s10d

by neglecting other terms thanr±1 and the steady solution

X0 = r1e
ik0z + r−1e

−ik0z = Î4se + gd/3 cossk0z+ u0d s11d

with a constantu0 is finally obtained. The steady solution can
be obtained by settingX=r cossk0zd and substituting it into
Eq. (8), where higher harmonic terms proportional to
cossnk0zd and sinsnk0zd with n.1 are neglected.

In order to discuss the linear stability for the Néel type
steady solution, we introduce disturbance variablesux anduy
as

Xsz,td = X0 + ux, Ysz,td = Y0 + uy. s12d

The linearization of Eq.(6b) aroundX0 andY0=0 gives the
perturbation equation foruy,

u̇y = fse − gd − 4
3se + gdcos2sk0zd − s]z

2 + k0
2d2guy. s13d

We can also obtain the perturbation equation forux. How-
ever, sinceux is linearly stable when we are concerned with
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the instability of the Néel type solution, the equation of mo-
tion for ux is not given here.

If one assumes the form uysz,td=rcstdcossk0zd
+rsstdsinsk0zd with z-independentrc and rs, Eq. (13) is al-
ternatively written as

ṙc = − 2grc, ṙs = 2
3se − 2gdrs, s14d

where higher harmonic terms proportional to coss3k0zd and
sins3k0zd are again neglected. Equation(14) and the stability
of the trivial solution show that the Néel type oscillatory
pattern is stable for −g,e,2g.

Let e−2g be negative. ThenX grows exponentially at the
first stage of the dynamics, butY tends to vanish as time goes
on. The eventual dynamics is therefore given by Eq.(8).

The spatially nonuniform modes around the wave number
k0 are excited in time. To take into account the temporal
evolution, letX be divided into the amplitude variabler and
the phase variableu as

Xsz,td = rsz,tdcosusz,td, s15d

whereu]zuu is assumed to be close tok0 as far ase+g is not
so large. Substituting Eq.(15) into Eq. (8) with the assump-
tion that the amplituder approaches the constantr0
=Î4se+gd /3 in a finite time leads to the phase equation

u̇ = ]zh2fs]zud2 − k0
2g]zu − ]z

2]zuj = −
dH1huj

du
, s16d

where

H1huj =E dzh 1
2fs]zud2 − k0

2g2 + 1
2s]z

2ud2j . s17d

There exists a stable stationary solutionuszd=k0z+f0 to Eq.
(15) with any constantf0. We note that Eq.(16) coincides
with the Kahn-Hilliard equation for the variableu=]zu.

In the case ofe.2g, the Néel type oscillatory pattern
becomes unstable and the Bloch type oscillatory pattern
takes place as shown in the next section.

B. Bloch type oscillatory pattern

Next, we consider the dynamics fore−2g.0. Under this
condition, the imaginary part of the stationary solutionY0
=0 becomes linearly unstable. Thus one should setX andY
as

X = rR cosuR, Y = rI cosuI s18d

in order to develop the amplitude dynamics and the phase
dynamics. Repeating the reduction procedure similar to that
applied for the Néel oscillatory pattern, we obtain the ampli-
tude equations

ṙR = se + gdrR − g1srR,uRd − 1
2srR

2 + rI
2drR − 1

4rR
3

− 1
4rI

2rR cosf2suI − uRdg, s19ad

ṙI = se − gdrI − g1srI,uId − 1
2srR

2 + rI
2drI − 1

4rI
3

− 1
4rR

2rI cosf2suR − uIdg s19bd

and the phase equations

− rRu̇R = g2srR,uRd + 1
4rI

2rR sinf2suI − uRdg, s20ad

− rIu̇I = g2srI,uId + 1
4rR

2rI sinf2suR − uIdg, s20bd

where g1sr ,ud and g2sr ,ud are the functions ofr, u, and
their derivatives. The derivation of the above equations and
the explicit forms ofg1 andg2 are provided in Appendix A.
The stationary state withrR

0, uR
0 =k0z+fR, rI

0, and uI
0=k0z

+fI with any constantsfR andfI is thus evaluated by solv-
ing

0 = rR
0fe + g − 1

2srR
02

+ rI
02

d − 1
4rR

02
− 1

4rI
02

cosh2suI
0 − uR

0djg ,

s21ad

0 = sinf2suI
0 − uR

0dg, s21bd

0 = rI
0fe − g − 1

2srR
02

+ rI
02

d − 1
4rI

02
− 1

4rR
02

cosh2suR
0 − uI

0djg .

s21cd

Equation(21b) leads to

2suI
0 − uR

0d = np s22d

for an arbitrary integern. If n is an even number, then there
are no solutions forrR

0 andrI
0 for gÞ0. On the other hand, if

n is an odd number, then Eqs.(21a) and(21c) give the solu-
tion

rR
0 = Îe + 2g, rI

0 = Î« − 2g. s23d

In studying the asymptotic process, we consider the case
that rR, rI, uR, anduI vary slowly with respect toz, so both
g1srR,uRd and g1srI ,uId can be neglected in Eqs.(19a) and
(19b) in the lowest order with respect to the spatial variation.
Since the characteristic times ofrR and rI are much faster
than those ofuR anduI, rR andrI approach a quasi-steady-
state which is characterized byṙR= ṙI =0. This condition
makesrR andrI be adiabatically integrated as

rR
2 . rR

02
− 2S e

4
− gDcos2suR − uId, s24ad

rI
2 . rI

02
− 2S e

4
+ gDcos2suR − uId, s24bd

where we useducossuR−uIdu!1, noting that the phase differ-
enceuR−uI is close tonp /2 from Eq. (22). By substituting
Eqs. (24a) and (24b) into Eqs. (20a) and (20b), the phase
equations are obtained in the forms

u̇R = −
1

4
rI

02
sinf2suI − uRdg −

dH1huRj
duR

, s25ad

u̇I = −
1

4
rR

02
sinf2suR − uIdg −

dH1huIj
duI

, s25bd

where H1huj is the same functional given by Eq.(17). In
deriving Eqs.(25a) and(25b), these equations of motion are
expanded with respect toucossuR−uIdu and the only lowest
order is retained.
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It is straightforward to prove that the stationary solutions
Eq. (22) with oddn are linearly stable. One should note that
although the above equations also have the synchronized sta-
tionary solutionuR

0 =uI
0 for g=0, it is linearly unstable.

C. Domain wall dynamics in Bloch type oscillatory pattern

The fact that Eq.(4) has the two different stationary states
uI

0−uR
0 = ±p /2 suggests that the two kinds of domains can be

formed simultaneously in time. We numerically integrated
Eq. (4) in terms of the explicit Euler scheme on a 1D lattice
under a periodic boundary condition, where two control pa-
rameters were set ase=0.3 andg=0.1 to satisfy the condi-
tion of forming the Bloch type oscillatory pattern. A snapshot
is shown in Fig. 1. The figure indeed shows that the domain
with uI

0−uR
0 =p /2 coexists with that withuI

0−uR
0 =−p /2,

where a pair of domain walls are constructed to connect the
domains.

In order to investigate the ordering process of the Bloch
type oscillatory pattern, it is appropriate to introduce the dif-
ference variablemsz,td between two phases and the phase
disturbance variablefsz,td through

uRsz,td = k0z+ fsz,td, uIsz,td = k0z+ fsz,td +
p

2
msz,td,

s26d

where m= +1 andm=−1 correspond touI
0−uR

0 = +p /2 and
uI

0−uR
0 =−p /2, respectively. The equations of motion form

and f are obtained in the formḟ= f1sm ,]z
2f , . . .d and ḟ

+sp /2dṁ= f2sm ,]z
2m , . . .d by substituting Eq.(26) into Eqs.

(25a) and (25b). Assuming thatf and m vary slowly with
respect toz, one may approximately neglect higher-order dif-
ferential terms than]z

2f and ]z
2m, and obtains a self-

consistent equation form,

ṁ =
e

p
sinspmd + 4k0

2]z
2m = −

dH2hmj
dm

, s27d

where

H2hmj =E dzF e

p2 cosspmd + 2k0
2s]zmd2G . s28d

One can also obtain the equation of motion forf of which
the explicit form is not given here because the equation is not
required in discussing the ordering process of the Bloch type
oscillatory pattern.

Equation(27) has two stable uniform statesm= ±1 and
one unstable uniform statem=0. One can analytically obtain
a domain wall solutionmNszd by integrating the time-
independent equation

j2 sinspmNd + ]z
2spmNd = 0, j2 =

«

4k0
2 s29d

under the boundary conditionsmN=−1 atz=−` andmN=1 at
z=`. The above equation yields the solution

mNszd = 1 −
4

p
arctane−jz s30d

where the domain wall position is set atz=0. The width of
the wall can be estimated as 1/j. Equation(30) is known as
the kink solution of the so-called sine-Gordon equation,
whose explicit form withj=1 is drawn in Fig. 2.

Let us consider the time evolution in the case that a pair
of a kink and an antikink exist atz=z1 and z=z2 on the
condition ofz1,z2, where the system locating two kinks at
z=z1 andz=z2 is denoted asm̃sz,td. We assume thatm̃sz,td
depends on time only through the drift motion of the two
domain walls and that the pair annihilation process occurs
when the distance of the walls becomes an order of 1/j.

The drift motion of the domain wall existing atz=zi with
i =1 or 2 is expressed bymNfz−zistdg, and therefore the time
dependence of the system is approximately represented as a
superposition of the two drifting domain walls

m̃sz,td = mNfz− z1stdg − mNfz− z2stdg − 1 s31d

subject to the conditionz2std−z1std.1/j. Whenz2std−z1std
becomes an order of 1/j in temporal evolution, annihilation
of the two domain walls will occur.

As shown in Appendix B, substituting Eq.(31) into Eq.
(27), which is multiplied by]zm̃sz,td, and then integrating it
from −` to sz1+z2d /2 gives the equation of motion for the
domain wall positionz1 as

ż1 .
32e

p2s
e−jsz2−z1d, s32d

wheres is the surface tension defined by

FIG. 1. Equation(4) is integrated by using the Euler method
with the time stepDt=1/2000 and the space discretization width
Dz=p /8 for the system sizeL=512Dz. The control parameters
were set fork0=1, e=0.3, andg=0.1, and the initial state was
generated by adding random numbers uniformly distributed in the
range[20.01, 0.01] to the unstable uniform statew0=0. Shown is a
snapshot of Refwsz,tdg (solid line) and Imfwsz,tdg (dashed line) at
t=2000. One finds that there exists a domain withuI

0−uR
0 =p /2 in

the region of 70,x,150 and a domain withuI
0−uR

0 =−p /2 in the
remaining region.

FIG. 2. The wall structure given in Eq.(30). The value ofj
evaluates the inverse of the domain width and is set to be one here.
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s ; E
−`

`

dzs]zmNd2 =
8j

p2 . s33d

This method to obtain the dynamics for the position of the
domain walls was originally developed by Nagai and
Kawasaki[12] for the TDGL equation and is applied by Tutu
and Fujisaka for the anisotropic TDGL equation[13]. Simi-
larly, integrating the same equation fromsz1+z2d /2 to `
gives the equation of motion forz2 as

ż2 . −
32e

p2s
e−jsz2−z1d. s34d

Let ,;z2−z1 denote the distance between the two domain
wall positions. It immediately follows that

,̇ = − 16k0
Îe expS−

Îe

2k0
,D , s35d

where the explicit forms forj and s provided by Eqs.(29)
and (33) are substituted.

Equation(35) is straightforwardly integrated with the ini-
tial condition,st=0d=,st to yield the form

,std =
2k0

Îe
lnf8estf − tdg, tf ;

1

8e
expS Îe

2k0
,stD , s36d

wheretf, the time when the two domain walls annihilate, is
uniquely determined via the initial distance,st between two
domain walls. Equation(36) indicates that,std decreases
monotonously and the walls finally annihilate at timet= tf.
The theoretical result(36) is confirmed by the numerical
simulation of Eq.(27) which is integrated with the same
initial condition as in Eq.(36). The explicit time dependence
of ,std evaluated by the numerical integration is shown in
Fig. 3. One finds that,std evolves logarithmically in time
and the time evolution quantitatively agrees with the theoret-
ical result(36).

The time dependence of,std is furthermore confirmed by
numerically integrating the original aSH equation(4). Figure

4 shows that the distance decreases logarithmically in time
and the two domain walls annihilate at the timet= tf. This
characteristic agrees with the theoretical result(36). How-
ever, the rate of decrease is estimated to be 5.5, which is
faster than the theoretically predicted one, 2k0/Îe.3.65.
The origin of this quantitative disagreement may be ex-
plained as follows. As is well known, the adiabatic elimina-
tion of amplitude is appropriate except for wall regions. We
are now, on the other hand, discussing the dynamics of wall
positions. So, in principle, the analysis in terms of the adia-
batic elimination should lose its validity. Nevertheless, as
shown above, the phase dynamics approach through the adia-
batic elimination of amplitude seems to work qualitatively.
Thus we suggest that if one attempts to compare the tempo-
ral evolutions of Eq.(36) with the numerical simulations,
then one should take into account the fact that near wall
amplitudes are less than(23). This fact may be phenomeno-
logically taken into account by settinge8 which is smaller
than e. If e in Eq. (36) is replaced bye8, the ,std becomes
larger than that in Eq.(36), which tends to qualitatively agree
with the observed result.

The temporal evolution starting from an initial state
wsz,0d<0 with parameter values for which the Bloch type
oscillatory pattern stably exists is described as follows. In an
early stage the amplitude exponentially grows towards the
constant noted in Eq.(23). On the other hand, the phases
evolve in time much slower than the amplitudes, with the
result that the system tends to create many regions in each of
which uI −uR takes either +p /2 or −p /2. In this pattern, the
wall positions separating +p /2 and −p /2 regions are ran-
domly distributed. So the time evolution is asymptotically
determined by Eq.(27) with randomly distributedm= ±1
regions and the domain walls connecting those domains.

A domain wall interacts with the neighboring walls in the
form as in Eq.(35) and the distance between the walls de-
creases logarithmically as in Eq.(36), which yields the sub-
sequent annihilations of domain walls and a decrease of the
number of domains. Figure 5 shows the temporal evolution

FIG. 3. Temporal evolution of the distance,std between two
domain walls. Theoretical form,std=s2k0/Îedlnf8estf − tdg (dotted
line), is compared to the simulation result(solid line) which is
obtained by integrating Eq.(27) in terms of the Euler method with
the time stepDt=1/100 and the space discretization widthDz=1
for the system sizeL=128Dz. The control parameters are set ase
=0.3 andk0=1.

FIG. 4. Temporal evolution of the distance,std between two
domain walls which is obtained by integrating the original aSH
equation(4) in terms of the Euler method with the time stepDt
=1/2000 and the space discretization widthDz=p /8 for the system
sizeL=384Dz. The control parameters are set ask0=1, e=0.3, and
g=0.1. One finds that the asymptotic law,std.a logstf − td holds
but the rate of decreasea.5.5 is larger than the theoretical one.
Thus Eq.(27) turns out to qualitatively describe the domain dynam-
ics of Eq.(4).
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of domain wall positionsz̄ which are determined via the
conditionmsz̄,td=0. One finds that the characteristic domain
size grows in time due to the annihilations of domain walls.

Let k,stdl denote the average domain size at timet evalu-
ated by the system sizeL divided by the number of domain
walls nstd, i.e.,

k,stdl =
L

nstd
. s37d

Since the lifetimet of a domain with length, is proportional
to eÎe,/2k0, nstd is estimated by solving the equation

ṅ . −
1

t
~ − e−sÎe/2k0dk,stdl. s38d

Equations(37) and (38) yield the equation fork,stdl, which
reveals that the average domain size grows logarithmically in
time, i.e.,k,stdl~ log t in a late stage. Figure 6 confirms nu-
merically thatk,stdl increases logarithmically as time goes
on.

III. DOMAIN WALLS IN THE 1D SYSTEM

A. Uniform steady states and their stabilities

There exist several nontrivial uniform states in Eq.(4)
depending on parameter values. We first find spatially uni-
form statesw0’s and then discuss their stabilities.

w0’s are determined by solving

0 = se − k0
4dw0 − uw0u2w0 + gw0

* . s39d

There exist five uniform states

w0 = 5 0,

±Îe + g − k0
4 for e + g − k0

4 . 0,

± iÎe − g − k0
4 for e − g − k0

4 . 0.
6 s40d

To examine the stability of their uniform states, we introduce
a disturbance variablecsz,td by

wsz,td = w0 + csz,td. s41d

The linearized equation ofc is written as

ċ = fe − s]z
2 + k0

2d2gc − 2uw0u2c − w0
2c * + gc * . s42d

By settingc=cR+ icI, Eq. (42) is re-expressed as

ċR = fe + g − 2uw0u2 − w0
2 − s]z

2 + k0
2d2gcR, s43ad

ċI = fe − g − 2uw0u2 + w0
2 − s]z

2 + k0
2d2gcI . s43bd

Equations(43) immediately reveal that the uniform statew0
is stable for perturbations with any wave numberk if the
conditions

e + g − 2uw0u2 − w0
2 , 0, s44ad

e − g − 2uw0u2 + w0
2 , 0 s44bd

are both satisfied. The stability of individual uniform states
in Eq. (40) is examined as follows.

(i) w0=0: This trivial solution is unstable becausee+g is
always larger than 0.

(ii ) w0= ± iÎe−g−k0
4: Substituting these solutions into

Eq. (44a) leads to

2g + k0
4 , 0, s45d

which is never satisfied because ofg.0 and so the two
uniform states are both unstable.

(iii ) w0= ±Îe+g−k0
4: Substituting these solutions into

Eqs.(44a) and (44b) and leads leads to

g . − e + s3/2dk0
4, g . s1/2dk0

4, s46d

respectively. Ife andg are implemented to satisfy these in-
equalities, wheree+g−k0

4.0 is automatically satisfied, then
the uniform states are linearly stable.

B. Néel type wall

The fact that the two uniform statesw0= ±Îe+g−k0
4

s;±W0d are stable under condition(46) suggests that Eq.(4)

FIG. 5. Temporal evolution of the positions of domain wallsz̄,
wherez̄ are evaluated asmsz̄,td=0. Equation(27) is integrated for
the system sizeL=4096Dz. Other parameters are set to be the same
as in Fig. 3. For details, see the text.

FIG. 6. Temporal evolution of the average domain sizek,stdl.
The simulation result and the logarithmic line are denoted by the
diamond symbol and the dashed line, respectively. One finds that
the average domain size increases logarithmically as time goes on.
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has several domain wall solutions. Indeed, as will be shown
soon, two kinds of domain walls are found; these are dis-
criminated by whether or not the imaginary part vanishes.
The former and the latter are referred to as the Néel type
domain wall and the Bloch type domain wall, respectively.

Let us first discuss the Néel type(i.e., real) solutionwNszd
of Eq. (4). The parameterse andg are hereafter implemented
to satisfy the inequalities(46). The solution is obtained by
solving the time-independent SH equation

s]z
2 + k0

2d2wN = se + gdwN − wN
3 swN = wN

* d s47d

under the boundary conditionswN=−W0 at z=−` and wN
=W0 at z=`. One is not capable of solving Eq.(47) strictly,
so that we attempt to obtain an asymptotic form

wNszd . ± W0 + zszd for z→ ± `, s48d

wherezszd is an odd function ofz and denotes the deviation
from the uniform stateW0. Without loss of generality, the
domain wall position is set atz=0. By substituting Eq.(48)
into Eq. (47), the equation forzszd is obtained in the form

s]z
2 + k0

2d2z = Gz, s49d

whereG;e+g−3W0
2s=k0

4−2W0
2d takes a negative value be-

cause of the condition(44a). Equation(49) is solved by set-
ting

zszd =
A

2
elz+if + c.c., s50d

where A and f are positive constants andl is a complex
number satisfying the equationsl2+k0

2d2=G. As a conse-
quence, one finds the solution

wNszd = ± W0 ± Ae−uzu/z0 cossQuzu − fd s51d

for z→ ±`, whereA andf are constants which are not de-
termined in the above linearized theory.z0 and Q measure
the domain width and the wave front oscillation, respec-
tively, and take the forms

z0 =Î 2
Î2W0 − k0

2
, Q =Î1

2
sÎ2W0 + k0

2d. s52d

C. Bloch type wall

Let us next consider the Bloch type(i.e., complex) solu-
tion wBszd of Eq. (4), which is obtained by solving the time-
independent aSH equation

s]z
2 + k0

2d2wB = ewB − uwBu2wB + gwB
* s53d

under the same boundary condition as for the Néel type wall.
It is assumed thatwBszd can be set in a similar way to Eq.
(48),

wBszd . ± W0 + zszd for z→ ± `, s54d

wherezszd is now a complex function whose real part is odd
and imaginary part is even with respect toz. The domain
wall position is set to bez=0. The substitution of Eq.(54)

into Eq. (53) gives the equation forzszd of the form

s]z
2 + k0

2d2z = ez − W0
2s2z + z * d + gz * . s55d

By settingz=zR+ iqzI, whereq takes the value 1 or −1 cor-
responding to the sign of the imaginary part ofwB at z=0,
Eq. (55) is re-expressed as

s]z
2 + k0

2d2zR = GRzR, s]z
2 + k0

2d2zI = GIzI , s56d

where both GR;«+g−3W0
2s=k0

4−2W0
2d and GI ;«

−g−W0
2s=k0

4−2gd take negative values because of the condi-
tions (44a) and (44b). Equation(56) is solved in the same
way as that of the Néel type wall, and one obtains the
asymptotic form

wBszd = ± W0 ± ARe−uzu/zR cossQRuzu − fRd

+ iqAIe
−uzu/zI cossQIuzu − fId s57d

for z→ ±`, whereAR, AI, fR, andfI are constants. Here,zR,
zI, QR, andQI are given by

1/zR = Î1
2sÎ2W0 − k0

2d, QR = Î1
2sÎ2W0 + k0

2d,

1/zI = Î1
2sÎ2g − k0

2d, QI = Î1
2sÎ2g + k0

2d. s58d

D. Numerical forms of the Néel wall and the Bloch wall

It is quite difficult, as mentioned earlier, to find exact
solutions of Eqs.(47) and(53) analytically. We therefore try
to obtain the explicit forms of Néel type and Bloch type
walls by solving the equations numerically. Instead of solv-
ing Eqs. (47) and (53) and directly, Eq.(4) is integrated
numerically because the forms satisfying the equations(47)
or (53) are obtained via integration for a sufficiently long
time to lead to steady states.

Equation (4) is integrated with the Euler scheme. The
control parametere is fixed to 3/2, andg is set to be 0.47,
where the uniform statesw0 are linearly unstable, and 0.51,
0.55, 0.58, and 0.59, wherew0 are stable due to condition
(46).

Both the oscillatory pattern solution discussed in Sec. II
and the wall solutions are stable for the above parameter
value and therefore they coexist. Thus in order to find the
wall solution (exceptg=0.47 case), numerical integration is
carried out by imposing the artificial initial condition
Xsz,0d<−W0 for z,z0, Xsz,0d<W0 for z. =z0 and
Ysz,0d<0. The Neumann boundary condition is adopted due
to the initial condition.

The results are depicted in Fig. 7. Figure 7(a) shows that
the oscillatory pattern is observed instead of the domain wall
due to the uniform statesw0 being unstable. Figures
7(b)–7(d) show that the Bloch type wallswBszd are stable for
0.5,g,0.59 where ImfwszdgÞ0 in the vicinity of the do-
main wall position. Figure 7(e) shows that the Néel type wall
emerges in place of the Bloch type wall forgù0.59, where
Imfwszdg=0 for anyz.

E. Domain wall dynamics

The time evolution in the case that a pair of kink and an
antikink exists atz=z1 andz=z2, respectively, is investigated
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in this section. The time dependence of the system is ap-
proximately represented as a superposition of the two do-
main walls located atz1std andz2std at time t, i.e.,

w̃sz,td = wKfz− z1stdg − wKfz− z2stdg − W0, s59d

wherew̃ satisfies Eq.(4). HerewK denotes eitherwN or wB
according to the dynamics of the Néel type wall or the Bloch
type wall.

As shown in Appendix C, substituting Eq.(59) into Eq.
(4) and applying the method by Nagai and Kawasaki, one
finds that the equation of motion of the distance,std=z2std
−z1std between the two domain walls obeys

,̇ =
1

s
FFSz1 + z2

2
D − Fs`dG , s60d

whereFszd is a function ofw̃ and its derivatives defined by

Fszd = se − k0
4duw̃u2 +

g

2
fsw̃d2 + sw̃ * d2g −

1

2
suw̃u2d2

− f2k0
2u]zw̃u2 + ]z

2su]zw̃u2d − 3u]z
2w̃u2g s61d

ands is the surface tension

s ; E
−`

`

u]zwKszdu2 dz. s62d

We first derive the equation of motion for,std when the
Néel type wall stably exists. Herew̃ results in the real func-
tion, i.e.,w̃=w̃*, in Eq. (61). By substituting the asymptotic

Néel type wall solution(51) into Eq. (60), one obtains

s,̇ = 4A2Î2W0
2s2W0

2 − k0
4de−,/z0 sinsQ, − 2f − 2ud,

s63d

whereQ is same as in Eq.(52), and u is a constant phase
defined by

sin 2u =
Î2W0

2 − k0
4

Î2W0
2

. s64d

Equation(63) reveals that the distance,std between the two
domain walls, which is initially set to be a value,st, begins
to shrink if sinsQ,st−2f−2ud,0 and spreads out if
sinsQ,st−2f−2ud.0. Therefore, the distance in the limitt
→` approaches a definite length,n, which is determined by
Q,n−2f−2u=s2n+1dp with an integern. The selected,n is
the nearest to,st.

The time dependence of,std is evaluated numerically in
order to examine the above theoretical result. Figure 8 shows
the temporal evolution for four initial distances,st=75Dz,
80Dz, 100Dz, and 110Dz with Dz=p /4. For the runs with
the initial distances 75Dz and 80Dz, they approach the length
,n.59. For the runs with 100Dz and 110Dz, they eventually
approach the length,n+1.82. The above results are consis-
tent with the relationQs,n+1−,nd=2p sinceQ.0.28 for the
above parameter values. One further notices that the two
domain walls starting at the distances,st=100Dz and 110Dz
move much slower than the wall movement starting at,st

=75Dz and 80Dz as a result of the relation,̇~e−,/z0. The
result is confirmed via the numerical simulation for another
parameter value,e=1.5k0

4 andg=0.8k0
4 with k0=1/4, and we

obtained the result consistent with the theoretical one.
In the above discussion, we evaluated the value of

Fssz1+z2d /2d in terms of a simple superposition of the two
perturbatively obtained solutions(51) which are derived
from the linear stability analysis of the homogeneous solu-
tion W0. So we have revealed that the time evolution of the

FIG. 7. Snapshots of the Néel type wall and several Bloch type
walls. The forms of these walls are obtained by numerically inte-
grating Eq.(4) with Dt=1/6000 andDz=p /16 for the system size
L=512Dz. The control parameterk0 ande are fixed to be 1 and 3/2,
respectively, andg is set to be(a) 0.47,(b) 0.51,(c) 0.55,(d) 0.58,
and (e) 0.59. For details, see the text.

FIG. 8. Time dependence of the distance between two domain
walls initially separated by several lengths. The initial distance of
two walls is set as,st=nDz with n=75, 80, 100, and 110. Equation
(4) is integrated withDt=1/2000 andDz=p /4 for the system size
L=256Dz. The control parameters are set ask0=1/4, e=1.5k0

4, and
g=0.6k0

4. For details, see the text.
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distance,std between the two domain walls is determined
with the linear stability analysis around the middle of the two
domain walls.

Next we turn to the derivation of the equation of motion
for ,std when the Bloch type wall stably exists. By substitut-
ing the asymptotic Bloch type wall solution(57) into Eq.
(60), one obtains

s,̇ = 4AR
2Î2W0

2s2W0
2 − k0

4de−,/zR sinsQR, − 2fR − 2uRd

− 4q1q2AI
2Î2gs2g − k0

4de−,/zI sinsQI, − 2fI − 2uId,

s65d

where zR, zI, QR, and QI are given in Eq.(58). q1 and q2
represent the directions of the imaginary part of the Bloch
type wall atz=z1 and z=z2, respectively.uR is identical to
that given in Eq.(64), while uI is defined by

sin 2uI =
Î2g − k0

4

Î2g
. s66d

The condition(46) yields the inequalityzI .zR and so that
the first term of Eq.(65) is neglected, leading to

s,̇ . − 4q1q2AI
2Î2gs2g − k0

4de−,/zI sinsQI, − 2fI − 2uId.

s67d

Equation (67) reveals that the direction of motion of,std
starting at,st is determined not only by the sign of the quan-
tity sinsQI,st−2fI −2uId but also by the sign ofq1q2, which
takes +1 when the imaginary parts of the two domain walls
exist on the opposite side of direction and takes −1 when on
the same direction. Nevertheless, the distance again ap-
proaches a definite value with a constant,n, similarly to the
Néel type wall case.

Let us consider the 1D anisotropic TDGL equation,

ċ = c − ucu2c + gc * + ]z
2c, s68d

wherec is the complex spin order parameter andg is the
strength of anisotropy. It is well known that the above equa-
tion has the Bloch wall solution for 0,g,1/3. As shown in
Refs. [13,14], the distance,std of a pair of the Bloch walls
obeys the equation of motion

,̇ = − q1q2
8Î2gs1 − 3gd

1 − g/3
e−Î2g,, s69d

which does not contain the term sinsQI,−2fI −2uId existing
in Eq. (67). Equation (69) shows that the distance,std
shrinks and eventually disappears forq1q2.0, or spreads out
infinitely for q1q2,0 in the limit t→`, which is different
from the time evolution in the Bloch type wall in the present
case.

IV. CONCLUDING REMARKS

In this paper, we have investigated two types of
asymptotic dynamics in an anisotropic, complex Swift-
Hohenberg equation(4), especially focusing on the interac-
tion between the neighboring domain walls.

The first type of dynamics is the asymptotic pattern for-
mation process in the case that spatially oscillatory patterns
are formed. The oscillatory patterns are distinguished accord-
ing to whether or not the imaginary part of the fieldwsz,td
vanishes. It was shown that the imaginary part vanishes
sY0=0d for −g,e,2g, which is referred to as the Néel type
oscillatory pattern by analogy with the time-dependent
Ginzburg-Landau equation, and that the dynamics becomes
identical to the conventional, real Swift-Hohenberg equation.

On the other hand, the stationary solutionY0=0 becomes
unstable provided that the conditione.2g is satisfied, so
that both the real and imaginary parts form a spatially oscil-
latory pattern, which is referred to as the Bloch type oscilla-
tory pattern. In this case, there exist two stable states in
which the phase difference of the oscillation between the real
and imaginary part takes either the valuep /2 or −p /2.
These two states form a kind of domain structure and the
coexistence of the distinct domains constructs the domain
walls in temporal evolution.

We derived the equation of motion for the phase differ-
ence and discussed the time evolution of two domain walls
with the use of the method originally developed by Nagai
and Kawasaki. It was revealed that the distance between two
domain walls decreases logarithmically and the walls finally
annihilate at a characteristic time uniquely determined via
the initial distance between the walls. Qualitative agreement
between the theoretical analysis and the numerical experi-
ment was obtained by comparing several numerical simula-
tions.

The second type of dynamics is the asymptotic pattern
formation process in the case where the nontrivial uniform
states stably exist. The two uniform statesw0= ±Îe+g−k0

4

are linearly stable whene andg are implemented to satisfy
the inequalities(46). It was found that there exist two distin-
guishable domain walls according to whether or not the
imaginary parts of the walls vanish. One of them is the Néel
type domain wall for the vanishing imaginary part and the
other the Bloch type domain wall for non-vanishing imagi-
nary part in the vicinity of the wall. The asymptotic forms of
two kinds of domain walls were analytically derived and
were compared to the numerically obtained results.

The equations of motion of the distances between the two
Néel type domain walls and the two Bloch type domain
walls were then derived. We found that the distance between
two domain walls approaches a definite length even in the
limit t→`, although the distance in the early stage begins to
shrink or spread out according to the initial state. This char-
acteristic holds irrespective of whether the domain wall is the
Néel type or the Bloch type.
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APPENDIX A: PHASE DYNAMICS FOR THE aSH
EQUATION

In this Appendix, we will derive the equations of motion
(19) for the amplitudesrR andrI and the equations of motion
(20) for the phasesuR and uI from the aSH equation(6).
Before developing the reduction procedure, we first intro-
duce the notation

s]z
2 + k0

2dreiu = ff1sr,ud + i f 2sr,udgeiu, sA1d

where f1sr ,ud and f2sr ,ud are expressed as

f1sr,ud = ]z
2r + fk0

2 − s]zud2gr,

f2sr,ud = 2s]zrds]zud + r]z
2u. sA2d

It should be noted thatf1sr0,k0z+f0d= f2sr0,k0z+f0d=0
holds for any constantsr0 and f0. Furthermore we define
g1sr ,ud andg2sr ,ud by

s]z
2 + k0

2d2reiu = fg1sr,ud + ig2sr,udgeiu, sA3d

where the quantitiesg1sr ,ud andg2sr ,ud are expanded as

g1sr,ud = ]z
2f1 + fk0

2 − s]zud2gf1 − 2s]zuds]zf2d − f2]z
2u,

g2sr,ud = ]z
2f2 + fk0

2 − s]zud2gf2 + 2s]zuds]zf1d + f1]z
2u.

sA4d

The equalityg1sr0,k0z+f0d=g2sr0,k0z+f0d=0 again holds
for any constantsr0 andf0.

SubstitutingX=rR cosuR and Y=rI cosuI into Eq. (6a)
and using the relation s]z

2+k0
2d2srR cosuRd=g1

R cosuR

−g2
R sinuR provided by Eq.(A3), one obtains

ṙR cosuR − rRu̇R sinuR

= se + gdrR cosuR − sg1
R cosuR − g2

R sinuRd

− 1
4rR

3scos 3uR + cosuRd − 1
4rRrI

2fcoss2uI + uRd

+ cosuR cosh2suI − uRdj − sinuR sinh2suI − uRdjg

− 1
2srR

2 + rI
2drR cosuR. sA5d

The comparison of the left-hand side with the right-hand side
for terms proportional to cosuR and sinuR leads to Eqs.
(19a) and (20a), respectively, where higher harmonics
cos 3uR and coss2uI +uRd are neglected.

Equations(19b) and (20b) are obtained in a similar way
by substitutingX=rR cosuR andY=rI cosuI into Eq. (6b).

APPENDIX B: EQUATION OF MOTION FOR THE
DOMAIN WALL POSITION IN THE BLOCH TYPE

OSCILLATORY PATTERN

Let us derive the equation of motion(32) for the domain
wall located at the positionz=z1. The time evolution in the
existing two domain walls denoted as Eq.(31) is described
by Eq. (27). Multiplication of each side of Eq.(27) by ]zm̃
leads to

− ż1fs]zmN1d2 − s]zmN1ds]zmN2dg + ż2fs]zmN1ds]zmN2d

− s]zmN2d2g = ]zFszd,

Fszd = −
e

p2 cospm̃ + 2k0
2s]zm̃d2, sB1d

where the notationmNi=mNfz−zistdg has been used for sim-
plicity. If the distanceuz2−z1u between the two walls is much
larger than the domain width 1/j which was introduced in
Eq. (29), then the integration of Eq.(B1) from −` to sz1

+z2d /2 leads to

− sż1 = FSz1 + z2

2
D − Fs− `d, sB2d

wheres is the surface tension given in Eq.(33). We have
used the relation

E
−`

`

s]zmNids]zmNjddz= sdi j , sB3d

which holds because the differentiation of Eq.(30),

]zmNiszd =
2j

p

1

coshfjsz− zidg
sB4d

is a sharp function located at the vicinity ofz=zi.
The right-hand side of Eq.(B2) is evaluated as follows.

The asymptotic form of Eq.(30),

mNs±zd . ± 1 7
4

p
e−jz for z@ 1/j sB5d

gives

m̃Sz1 + z2

2
D = mNS,

2
D − mNS−

,

2
D − 1 = 1 −

8

p
e−j,/2

sB6d

with ,=z2−z1. On the other hand, Eq.(B4) yields

]zm̃Sz1 + z2

2
D = ]zmNS,

2
D − ]zmNS−

,

2
D = 0. sB7d

The substitution of these results and the obvious relations
m̃s−`d=−1 and]zm̃s−`d=0 into Eq.(B2) leads to Eq.(32).

APPENDIX C: EQUATION OF MOTION FOR POSITIONS
OF THE NÉEL TYPE WALL AND THE BLOCH

TYPE WALL

Let wK be either the Néel type wall solution(51) or the
Bloch type wall solution(57). Consider the integral

E
−`

sz1+z2d/2

fs]zw̃dw̃̇ * + s]zw̃ * dw̃̇ * gdz

=E
−`

sz1+z2d/2

ss]zw̃dhfe − s]z
2 + k0

2d2gw̃ *

+ gw̃ − uw̃u2w̃ * j + s]zw̃ * d

3hfe − s]z
2 + k0

2d2gw̃ + gw̃ * − uw̃u2w̃jddz, sC1d

wherew̃sz,td is denoted by Eq.(59). If the distanceuz2−z1u
between the two walls is much larger than the domain wall
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width described either by Eq.(52) in the case of the Néel
type wall or by Eq.(58) in the case of the Bloch type wall,
then the left-hand side of Eq.(C1) is evaluated as

LHS =E
−`

sz1+z2d/2

s]zwK1 − ]zwK2ds− ż1]zwK1
*

+ ż2]zwK2
* ddz+ c.c.

. − 2E
−`

sz1+z2d/2

sż1u]zwK1u2 + ż2u]zwK2u2ddz

. − 2sż1, sC2d

wherewKi ;wKfz−zistdg ands is the surface tension denoted
by Eq. (62). The right-hand side of Eq.(C1) is, on the other
hand, expressed in the form

RHS =E
−`

sz1+z2d/2

]zFszddz= FSz1 + z2

2
D − Fs− `d,

sC3d

whereFszd is defined by Eq.(61). Equation(C2) with (C3)
gives the equation of motion for the left wall positionz1std.

Then the integration fromsz1+z2d /2 to ` leads to the
equation for the right domain wall positionz2std,

− 2sż2 = Fs`d − FSz1 + z2

2
D . sC4d

Equations(C2)–(C4) immediately yield Eq.(60) by making
use of the relationFs−`d=Fs`d.

In the Néel type wall, Eq.(59) is represented as

w̃sz,td = W0 + Ae−sz−z1d/z0 cosfQsz− z1d − fg

+ Aesz−z2d/z0 cosfQsz− z2d + fg, sC5d

whereA and f are constants, and thenth derivative of Eq.
(C5) is obtained by

]z
nw̃sz,td = s− adnAe−sz−z1d/z0 cosfQsz− z1d − f − nug

+ anAesz−z2d/z0 cosfQsz− z2d + f + nug sC6d

where u is a constant phase defined by Eq.(64) and a
=ÎÎ2W0. Substituting the above expressions ofw̃(sz1

+z2d /2 ,t) and ]z
nw̃(sz1+z2d /2 ,t) into Eq. (61) and retaining

terms withe−,/2z0 ande−,/z0 where,;z2−z1 by noting that,
is large yields Eq.(63). A similar derivation leads to the
asymptotic dynamics of Bloch type walls.
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