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Two types of asymptotic ordering processes in the anisotropic Swift-Hohenberg equation are studied, paying
particular attention to the interaction between domain walls. For the first type, we will discuss the time
evolution in which the spatially oscillatory patterns are formed, and show that two kinds of patterns exist
depending on whether or not the imaginary part of the field vanishes. When the imaginary part is present, the
equation has two distinct states which are regarded as kinds of domains, so the dynamics between two domain
walls is established. We then discuss, for the second type, the dynamics when nontrivial uniform states are
constructed. There exist two different domain walls, the Néel type wall and the Bloch type wall, in a similar
way to the anisotropic Ginzburg-Landau equation. The equation of motion for two domain walls is derived, and
it is shown that the distance between the two domain walls eventually approaches a finite length. The theo-
retical result is confirmed by numerical simulations. This fact proves the validity of the prediction on the
temporal development of the distance between two domain walls.
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I. INTRODUCTION sented in terms of the Swift-Hohenbet§H) equation, the

well-known model of the Rayleigh-Bénard convectidy].

, Ehﬁre are many Wﬁrks on ordering processes associateghe model turns out to be quite suitable to describe the for-
with thermodynamic phase transitiofis-3] in magnetic sys- mation process of the spatially oscillatory dissipative struc-

tems and b|r_1ary alloys. On the other han_d_, p_attern formatlorajres in systems far from equilibrium even though the order-
processes in systems far from equilibrium, e.g., the

. . . - ing process in the garnet thin film is associated with
Rayleigh-Bénard convection for liquid layers heated fromthermod namic phase transition. In fact, a labyrinth pattern
below[4,5], liquid crystals under an oscillating electric field . ynamic p L » a1aby P
[6.7], chemical reaction-diffusion systen(8], etc., have is observed in the ferromagnetic system without applying an

been extensively studied from the theoretical as well as ex‘?)(tema,I field[16] where the temperature is k_ept. fa_r below
perimental points of view. A common approach to study thethe Culrle temperature.. The observed pattern is similar to that
dynamics of domain walls associated with the ordering profound in the SH equation when the control parameter corre-
cesses has been developed, and is now one of the prevaili§§onding to the temperature difference from the Curie tem-
methods to comprehensively understand such process§rature is sufficiently larggi8,19.
[9-14 despite the mechanisms of the above two kinds of Thus the simplest model to explain the experiment noted
processes being different from each other in the sense thabove may be the SH equation with an external field
the former evolves in time towards thermal equilibrium
while the latter describes nonequilibrium and open systems.
This fact shows a universal aspect of the ordering processes. w=[e— (V2 + K5 w— w3+ F(1), (1)

The present work was motivated by several recent experi-
ments investigating the formation processes of magnetic do-

main structures and their statistical characteristics in garng{herew is a real field corresponding to local magnetization,
thin film under a temporally periodic external fie{llﬁ,lg. It € is a control parameter ark} is the wave number to be
has been observed that the garnet thin film, which is one ofietermined by the characteristics of the system as well as the
the materials to form a ferromagnetic phase, constructs Se¥oundary condition. In spite df, being set to be unity by a
tice, and spotty patterns, etc., depending on values of amplgopted several values different from unity in numerical
tude and frequency of the external magnetic field. Thesimylations.F(t) is an external field, which is often repre-
existence of the formation of lamellar patterns suggests thalonted as the sinusoidal forédt) =A coqQt) with ampli-

the system is capable of being phenomenologically repregqe A and frequency). However, it is known that the thin

garnet film is a strongly anisotropic material. This fact sug-

gests the necessity of extending the figldto a complex
*Electronic address: ouchi@kobe-du.ac.jp variable and then adding an anisotropic teymw* to the
"Electronic address: fujisaka@i.kyoto-u.ac.jp complex SH equation as follows:
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Equations(6) give the three types of stationary solutions
) Xo andYy, i.e.,
(i) Xo=Yo=0,
(2 (i) Xo#0, Yo=0,
(i) Xg#0, Yo#0,
which are, respectively, referred to as the trivial solution, the
Néel type oscillatory solution and the Bloch type oscillatory
solution. Of course, there exists another type of the solution
B s Y o 1o o Xo=0 andY,# 0, which turns out to be unstable because the
H=| dr| = ew*~ §(W2+W )+ §(|W| ) componeniX is more unstable thax for y>0.
The linear stability of the trivial solution can be discussed

W=[e= (V24 kg7 Iw= wiw+ > + F(t) = - —

where w is a complex field andy is the strength of the
anisotropy, which is assumed to be reHl.is the Lyapunov
functional defined by

2 0 L2\al2 _ * with the linear growth rates for the wave numbdemode
TV kw™ - FOW+w=) . ®) around the solution
Equation(2) is hereafter referred to as the anisotropic Swift- M=e+ty-(K-K)? N=e-y-(K-K)2 (7

Holf:]e?rl])igrg(gsg? evegaft:)%:.s our discussion on the spatiall Jhe largest growth rates aeg y for X and e~ y(< e+ ) for
paper, b " at k=Kk,. Since the trivial solution is linearly stable fer

one-dimensionallD) system to reveal the fundamental char-+ <0 we hereafter focus our attention on the case
acteristics of Eq(2) in the absence of an external field, i.e., +z>0’

F(t)=0. We will show that the system exhibits several pat-
terns depending on the control parameteend y. The tem- A. Néel type oscillatory pattern
poral evolution of the system will then be discussed in terms
of the dynamics for the domain wall.

The present paper is constructed as follows. In Sec. Il tw
types of oscillatory patterns, separated by the existence o
abser!ce of the imaginary part of the fie.Id, are discyssed. The X = [e+y— ((954_ kg)z]x_ X3 Y=0. (8)
domain wall dynamics of the pattern with an imaginary part
is further discussed in a similar way as for the time-This is identical to the conventional SH equationXlk,t) is
dependent Ginzburg-Landa@DGL) equation. It will be  expanded a¥X(z,t)=3__ p, ()€™ with p_,=p,, then the
shown that the distance between neighboring walls developsquations of motion fop,(t) are given by

Let us consider the dynamics of the Néel type oscillatory
attern, i.e., the solutions of Eq&a) and (6b) with Y=0.
e, therefore, try to solve the equations

logarithmically in time. In Sec. Il it is found that a pair of -
nontrivial uniform stateg|w| # 0) stably exists for a definite et 2 2uh

. . . = -(n°-1 - ke . 9
parameter region. Furthermore, the domain wall dynamics pr=lery=( JHolen k,I:Z—oc ProtctPidr ©

with a set of kink and antikink pair is developed. We will ) o
find that no annihilation of kinks occurs and the systemAS far as 0<e+y<Kkg, a solutionp,=0 for all n is linearly
keeps the number of walls invariant. Concluding remarks arétable /%pt_fon: +1, and the orders ¢f, are estimated as

given in Sec. IV. ps1=\(e+7)/3, pn=0, and pyn.1=0(pi™"), respectively.
If e+ is appropriately small, Eqg9) are reduced to the
equation

Il. OSCILLATORY PATTERN IN 1D SYSTEM AND ITS . )
PHASE DYNAMICS pe1=(e+ Y)ps1— 3|p1|°pss (10)

by neglecting other terms than, and the steady solution

Xo = pleikoz+ p_le—ikoZ: V4(e+ y)I13 cogkyz+ 6y) (11)

Let us consider the 1D aSH equation

. - _ 2\2 _ 2 * = _
W(z D) =€~ (7 + ko) *w = [wlPw + yw* = W 4 With a constant, is finally obtained. The steady solution can

be obtained by settingf=p cogkyz) and substituting it into

with 8,= d/dz, where Eqg. (8), where higher harmonic terms proportional to
1 cognkyz) and sirinkyz) with n>1 are neglected.
H= J dz[— w2 = w2+ w*2) + Z([wjD)2+ (2 + kw2 In order to discuss the linear stability for the Néel type
2 2 steady solution, we introduce disturbance variableandu,
(5) as
denotes the Lyapunov functional of the system. Hereafter, X(z,t) =X+ Uy, Y(zt) =Y+ Uy . (12

without loss of generality;y is chosen to be positive. By

Settingw(z,1) = X(z,1) +iY(z.1), Eq. (4) is written as The linearization of Eq(6b) aroundX, andYy=0 gives the

perturbation equation fau,,

X=[e+y=(Z+IQZX- (X +YI)X, (63) Uy =[ (e~ 9) — Z(e+ y)cof(ke2) - (2 + KD u,.  (13)
) s o - We can also obtain the perturbation equation dgr How-
Y=[e=y= (g +kp)TY = (X +YI)Y. (6b)  ever, sinceu, is linearly stable when we are concerned with
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the instability of the Néel type solution, the equation of mo-
tion for uy is not given here.

If one assumes the formuy(z,t)=p(t)cogky2) . L. L
+pg(t)sin(kyz) with z-independenp, and ps, Eq. (13) is al- =16 =02(p1, 6) + zpre  SIN2(6r = 6))],  (20b)
ternatively written as

- prR = Go(pr, OR) + 211P|2PR sinf2(6,-6g)], (203

where g,(p, ) and g,(p, 6) are the functions op, 6, and
Pe=—2ype ps= (€= 27)ps, (14)  their derivatives. The derivation of the above equations and

the explicit forms ofg, andg, are provided in Appendix A.

where higher harmonic terms proportional to @sz) and  The stationary state witfp2, 0R=koz+ dr, pP, and P=kz

sin(3ko2) are again neglected. Equatighd) and the stability — + ¢, with any constantsg and ¢, is thus evaluated by solv-

of the trivial solution show that the Néel type oscillatory ing

pattern is stable for y<e<2y. 0 LR A 1R 1

Let e-2y be negative. TheX grows exponentially at the O =PR[€+ y=3(p% +p) =3P — 2 cO2(6f - 9%)}],

first stage of the dynamics, bMttends to vanish as time goes (219
on. The eventual dynamics is therefore given by .
The spatially nonuniform modes around the wave number 0= sir[2(0?— 6%)] (21b)

ko are excited in time. To take into account the temporal
evolution, letX be divided into the amplitude variabjeand 0 L2 A 1R 10
the phase variablé as 0=p I:f‘ y=3(0% +p)) -~ 3p — 4Pr COS2(0R- ‘9?)}]-

X(z,t) = p(z,t)cosb(z,t), (15) (219

where|d,6| is assumed to be close kg as far ase+y is not Equation(21b) leads to

so large. Substituting E¢15) into Eq. (8) with the assump- 2(6°- 6% =nm (22)

tion that the amplitudep approaches the constant, ] ) .

=\/4(e+7)/3 in a finite time leads to the phase equation for an arbitrary integen. If nis an even number, then there
are no solutions fopg andp; for y# 0. On the other hand, if

. 6Hq1 0 n is an odd number, then Eq@1a and(21¢) give the solu-
0= 200,07~ Rlao- Ry = - T28 g DS u 9213 and(219 give the solu
56 tion
where p%= Ve+ 2y, p|0= Ve - 2y. (23

B N 5 12\ 1, 2m3 In studying the asymptotic process, we consider the case
Hi{6}= | d430(0,0)° - K+ 3(26)%}. (17 thatpg, p;, 6z and 6, vary slowly with respect ta, so both
0:1(pr, Br) andg(p;, 6,) can be neglected in Eq6l9g and

There exists a stable stationary solutié@) =koz+ ¢, to Eq.  (19Db) in the lowest order with respect to the spatial variation.
(15) with any constantp,. We note that Eq(16) coincides  Since the characteristic times pf and p, are much faster
with the Kahn-Hilliard equation for the variable=4,6. than those offlg and 6,, pg and p, approach a quasi-steady-

In the case ofe>2y, the Néel type oscillatory pattern state which is characterized pys=p,=0. This condition
becomes unstable and the Bloch type oscillatory pattermakespg and p, be adiabatically integrated as
takes place as shown in the next section.

2 0P_o €_ _
B. Bloch type oscillatory pattern PR PR 2<4 7’)0052(9R o), (249

Next, we consider the dynamics fer2y>0. Under this
condition, the imaginary part of the stationary solutigg
=0 becomes linearly unstable. Thus one shouldXsahdY
as

p2=p¥- 2(2 + 'y> cog(bg— 6), (24b)

where we usedtod 6z- 6,)| < 1, noting that the phase differ-
X =prCOSOr, Y=p, cOSH, (18)  encefr- 6 is close tonm/2 from Eq.(22). By substituting
in order to develop the amplitude dynamics and the phasEdS- (248 and (24b) into Egs.(209 and (20, the phase
dynamics. Repeating the reduction procedure similar to thagquations are obtained in the forms
applied for the Néel oscillatory pattern, we obtain the ampli-

: 1 _ SH{6g}
tude equations 0=~ Zp?z sin2(6, - 6r)] - 510 , (259
R
pr=(e+Y)pr= Gilpr, ) = 2(PR* P))PR~ 3PR
12 _ - 1 SHa{ 6}
2P PrCO$2(6; — OR)], (199 0=~ 4PR sinf2(6r— 6,)] - S0 (25b)
|
pi=(e=Ypi = lpi, &) = 3k + PP — 4p7 where H,{6} is the same functional given by E@l7). In
_12 _ deriving Eqs.(25g and(25b), these equations of motion are
aPRP1 CO32( O~ )] (19b) expanded with respect tgog 6g— 6,)| and the only lowest
and the phase equations order is retained.
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FIG. 1. Equation(4) is integrated by using the Euler method  FIG. 2. The wall structure given in Eq30). The value of¢
with the time stepAt=1/2000 and the space discretization width evaluates the inverse of the domain width and is set to be one here.
Az=m/8 for the system sizéd. =512Az. The control parameters
were set forky=1, €=0.3, andy=0.1, and the initial state was E
generated by adding random numbers uniformly distributed in the Holu} = f dz[? coqmu) + 2k§(&zﬂ)2 _ (28)
range[—0.01, 0.0] to the unstable uniform statg,=0. Shown is a
snapshot of Rev(z,t)] (solid line) and Infw(z,t)] (dashed ling at
t=2000. One finds that there exists a domain wifk 6&=/2 in
the region of 76<x<150 and a domain witl# - 6%=-/2 in the
remaining region.

One can also obtain the equation of motion #of which
the explicit form is not given here because the equation is not
required in discussing the ordering process of the Bloch type
oscillatory pattern.

Equation(27) has two stable uniform statgs=+1 and
one unstable uniform staje=0. One can analytically obtain
a domain wall solutionuy(z) by integrating the time-
1ﬁ\'dependent equation

It is straightforward to prove that the stationary solutions
Eqg. (22) with oddn are linearly stable. One should note that
although the above equations also have the synchronized s
tionary solutiong%= 6P for y=0, it is linearly unstable.

&

& sin(muy) + E(muy) =0, &= (29)

C. Domain wall dynamics in Bloch type oscillatory pattern 4k§
The fact that Eq(4) has the two different stationary states under the boundary conditiopg,=—1 atz=—o anduy=1 at
6P 6=+ /2 suggests that the two kinds of domains can bez=%. The above equation yields the solution
formed simultaneously in time. We numerically integrated
Eq. (4) in terms of the explicit Euler scheme on a 1D lattice
under a periodic boundary condition, where two control pa-
rameters were set as=0.3 andy=0.1 to satisfy the condi- _ L )
tion of forming the Bloch type oscillatory pattern. A snapshotWhere the domain wall position is setz¢0. The width of
is shown in Fig. 1. The figure indeed shows that the domaiff’® Wall can be estimated asél Equation(30) is known as
with 6°-6=m/2 coexists with that withe®—2=—m/2, the kink solution of the so-called sine-Gordon equation,

where a pair of domain walls are constructed to connect th¥/10Se explicit form withé=1 is drawn in Fig. 2. .
domains. Let us consider the' t!me e\{olutlon in the case that a pair
In order to investigate the ordering process of the BloctPf @ kink and an antikink exist at=z, and z=z, on the

type oscillatory pattern, it is appropriate to introduce the dif-condition ofz; <z, where the system locating two kinks at

ference variableu(z,t) between two phases and the phase?=% andz=z is denoted agu(z,t). We assume thai(z,1)
disturbance variabley(z,t) through depends on time only through the drift motion of the two

domain walls and that the pair annihilation process occurs
when the distance of the walls becomes an order &f 1/
77 - . . . . .
O(z,t) =Koz + B(z,1), O(z,1) =Koz + (Zt) + —u(z 1), ~ The drift motion of the domain wall existing atz with
: Koz & ! Ko+ & 2" i=1 or 2 is expressed by\[z-z(t)], and therefore the time
(26) dependence of the system is approximately represented as a

superposition of the two drifting domain walls
where u=+1 andu=-1 correspond ta’- 6%=+/2 and ~
0?—49%5—77/2, resp/;Lectiver. Thepequatic;ns of motion far w20 = pnlz=2 0] = 2= 2] -1 (31)
and ¢ are obtained in the formp=f;(u,¢,...) and ¢  subject to the conditiom,(t)—z;(t) > 1/£ When zy(t) - ()
+(m/2)w="fo(1n,Pu, ...) by substituting Eq(26) into Eqs.  becomes an order of £/n temporal evolution, annihilation
(259 and (25h). Assuming that¢ and u vary slowly with  of the two domain walls will occur.
respect t@, one may approximately neglect higher-order dif- As shown in Appendix B, substituting E¢31) into Eq.
ferential terms thans?¢ and #u, and obtains a self- (27), which is multiplied byd,fi(z,t), and then integrating it
consistent equation fau, from —= to (z;+2,)/2 gives the equation of motion for the
domain wall positiorz, as

4
un(2) = 1 - — arctane™# (30)
ar

. € SH A}
ju== sin(mp) + AGPu = - ———, (27) 8% . a0
T o Z 25 ) (32
where whereo is the surface tension defined by
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FIG. 3. Temporal evolution of the dislan(fét) between two
domain walls. Theoretical forné(t)=(2ky/Ve)In[8e(t;—t)] (dotted
line), is compared to the simulation resykolid line) which is
obtained by integrating E27) in terms of the Euler method with
the time stepAt=1/100 and the space discretization width=1
for the system siz& =128Az. The control parameters are setas
=0.3 andkg=1.

” 8
o= f dz((?z,uN)Z:ﬂ—i. (33

PHYSICAL REVIEW E 70, 036210(2004)
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FIG. 4. Temporal evolution of the distandét) between two
domain walls which is obtained by integrating the original aSH
equation(4) in terms of the Euler method with the time stép
=1/2000 and the space discretization width=7/8 for the system
sizeL=384Az. The control parameters are setlkgs 1, e=0.3, and
y=0.1. One finds that the asymptotic lafit) =alog(t;—t) holds
but the rate of decrease=5.5 is larger than the theoretical one.
Thus Eq.(27) turns out to qualitatively describe the domain dynam-
ics of Eq.(4).

4 shows that the distance decreases logarithmically in time
and the two domain walls annihilate at the tiret;. This

This method to obtain the dynamics for the position of thecharacteristic agrees with the theoretical re¢@#). How-
domain walls was originally developed by Nagai ande€ver, the rate of decrease is estimated to be 5.5, which is

Kawasaki[12] for the TDGL equation and is applied by Tutu faster than the theoretically predicted onég/2/e=3.65.

and Fujisaka for the anisotropic TDGL equatifi8]. Simi-
larly, integrating the same equation frofe;+z,)/2 to «
gives the equation of motion fa, as

(34)

The origin of this quantitative disagreement may be ex-
plained as follows. As is well known, the adiabatic elimina-
tion of amplitude is appropriate except for wall regions. We
are now, on the other hand, discussing the dynamics of wall
positions. So, in principle, the analysis in terms of the adia-
batic elimination should lose its validity. Nevertheless, as
shown above, the phase dynamics approach through the adia-

Let ¢=2,-z denote the distance between the two domainyagic elimination of amplitude seems to work qualitatively.

wall positions. It immediately follows that

(=- 16ko\s“; exp(— 2\_sz>

where the explicit forms fo€ and o provided by Eqs(29)
and(33) are substituted.

Equation(35) is straightforwardly integrated with the ini-
tial condition ¢(t=0)=¢; to yield the form

(=22

=
Ve

(35)

|n[8€(tf - t)], ty = i eX[( t)! (36)

ALY
8¢ 2ky °

Thus we suggest that if one attempts to compare the tempo-
ral evolutions of Eq.(36) with the numerical simulations,
then one should take into account the fact that near wall
amplitudes are less tha@3). This fact may be phenomeno-
logically taken into account by setting which is smaller
thane. If €in Eq. (36) is replaced bye’, the £(t) becomes
larger than that in E(.36), which tends to qualitatively agree
with the observed result.

The temporal evolution starting from an initial state
w(z,0) =0 with parameter values for which the Bloch type
oscillatory pattern stably exists is described as follows. In an
early stage the amplitude exponentially grows towards the

Wheretf, the time when the two domain walls annihilate, is constant noted in Ec(23) On the other hand’ the phases

uniquely determined via the initial distané¢g between two
domain walls. Equation(36) indicates thatf(t) decreases
monotonously and the walls finally annihilate at tirrvet;.
The theoretical result36) is confirmed by the numerical
simulation of Eq.(27) which is integrated with the same
initial condition as in Eq(36). The explicit time dependence

evolve in time much slower than the amplitudes, with the
result that the system tends to create many regions in each of
which 6, - 6 takes either #/2 or —7r/2. In this pattern, the
wall positions separating #/2 and -w/2 regions are ran-
domly distributed. So the time evolution is asymptotically
determined by Eq(27) with randomly distributedu=+1

of £(t) evaluated by the numerical integration is shown inregions and the domain walls connecting those domains.

Fig. 3. One finds that(t) evolves logarithmically in time

A domain wall interacts with the neighboring walls in the

and the time evolution quantitatively agrees with the theoretform as in Eq.(35) and the distance between the walls de-

ical result(36).
The time dependence &ft) is furthermore confirmed by
numerically integrating the original aSH equati@h. Figure

creases logarithmically as in E@6), which yields the sub-
sequent annihilations of domain walls and a decrease of the
number of domains. Figure 5 shows the temporal evolution
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Lg I1Il. DOMAIN WALLS IN THE 1D SYSTEM

A. Uniform steady states and their stabilities

There exist several nontrivial uniform states in HKd4)
depending on parameter values. We first find spatially uni-
form stateswy’s and then discuss their stabilities.

Wy's are determined by solving

0 = (€= Ko)wo — [wo[Wo + o, (39
01 Dl = ' There exist five uniform states
t 0,
FIG. 5. Temporal evolution of the positions of domain walls Wo = ﬂmg for e+ y—ki>0, (40)

wherez are evaluated ag(z,t)=0. Equation(27) is integrated for 3 .
the system siz& =4096\z. Other parameters are set to be the same tive-y-ky for e~ y-Ky>0.

as in Fig. 3. For details, see the text To examine the stability of their uniform states, we introduce

. a disturbance variablé(z,t) by
of domain wall positionsz which are determined via the

condition u(z,t)=0. One finds that the characteristic domain W(Z,t) =W + (z,1). (41)
size grows in time due to the annihilations of domain Wa"S'The linearized equation af is written as
Let (€£(t)) denote the average domain size at tinevalu-

ated by the system siZe divided by the number of domain y=[e- (2 + 1K) = 2wol2— Wi * + yy* . (42)
lis n(t), i.e.,
wals n(t). i.e By setting y=yr+iyy, EQ.(42) is re-expressed as
L dr=let y=2wWl* - wo— (2 +k) IR, (433
= 37) " R )

yi=[e-y-2w>+ W3- (Z+ K% (43D

Since the lifetimer of a domain with lengtH is proportional ~ Equations(43) immediately reveal that the uniform statg

to e'“(/20, n(t) is estimated by solving the equation is stable for perturbations with any wave numliteif the
conditions
1 . e+ y—2wy?-wj <0, (443
A= — = o — @ (2Kt (38)
T €=y 2wl + W2 <0 (44b)

. . . . are both satisfied. The stability of individual uniform states
Equations(37) and(38) yield the equation fot¢(t)), which Eq. (40) is examined as follows.

reveals that the average domain size grows logarithmically in (i) Wo=0: This trivial solution is unstable because y is
time, i.e.,({(t))=logtin a late stage. Figure 6 confirms nu- g\ways larger than 0.

merically that{¢(t)) increases logarithmically as time goes (i) wy==+i\e-y-k’ Substituting these solutions into

on. Eq. (449 leads to
. 2y+k3 <0, (45)
100} _—_- which is never satisfied because ¢f>0 and so the two
= uniform states are both unstable.
a0 | jr ] (i) wo=+\e+y—kg Substituting these solutions into
I /_H—f ] Egs.(44a and(44b) and leads leads to
v - y> - e+ (32K, > (12K, (46)
7 respectively. Ife and y are implemented to satisfy these in-
equalities, where+ y—kg>0 is automatically satisfied, then
0 " " L . A
I 10 T 1o the uniform states are linearly stable.

FIG. 6. Temporal evolution of the average domain sigé)).
The simulation result and the logarithmic line are denoted by the
diamond symbol and the dashed line, respectively. One finds that The fact that the two uniform states,=*e+ y—l@
the average domain size increases logarithmically as time goes of=+W))) are stable under conditiqd6) suggests that E¢4)

B. Néel type wall
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has several domain wall solutions. Indeed, as will be showinto Eg. (53) gives the equation fof(z) of the form
soon, two kinds of domain walls are found; these are dis- 5 2, W2 . .
criminated by whether or not the imaginary part vanishes. (0, + k)¢ = €l =Wo(20 + £ ) + yL ™. (55)
The former and the latter are referred to as the Néel typ®y settings=¢r+iq;, whereq takes the value 1 or -1 cor-

domain wall and the Bloch type domain wall, respectively. responding to the sign of the imaginary partvef at z=0,
Let us first discuss the Néel tygee., rea) solutionwn(z)  Eq. (55) is re-expressed as

of Eqg. (4). The parameters andy are hereafter implemented 25 25
to satisfy the inequalitie$46). The solution is obtained by (% +K)*tr=Trlr (B +K5)?G =T\, (56)
where both Tr=s+y-3W5(=kj-2W2) and T|\=e

solving the time-independent SH equation

—y—VVg(:ké—Zy) take negative values because of the condi-
tions (44 and (44b). Equation(56) is solved in the same
way as that of the Néel type wall, and one obtains the
asymptotic form

Wg(2) = £ Wp £ Age 4R cogQglz| - bp)
+igA e codQ||Z - ¢) (57)

for z— +o0, whereAg, A, ¢r, and¢, are constants. Hereg,
z, Qr, andQ, are given by

1122 =\5(2Wo = k), Qr=\3(2Wo +1j),
1z =312y~ k), Q=V3(\2y+K).

D. Numerical forms of the Néel wall and the Bloch wall

(47)

under the boundary conditionsy=-W, at z=-% and wy
=W, at z=e. One is not capable of solving EGl7) strictly,
so that we attempt to obtain an asymptotic form

(% + K5 2wy = (€+ YWy — Wy (Wi =Wwy)

Wn(Z2) = £ W+ {(2) for z— * oo, (48)

where{(z) is an odd function of and denotes the deviation
from the uniform staté\,. Without loss of generality, the
domain wall position is set a&=0. By substituting Eq(48)
into Eq. (47), the equation foZ(z) is obtained in the form

(B +K)X =T, (49)

whereT' = e+ y-3W3(=ki-2W5) takes a negative value be-
cause of the conditiofd4g. Equation(49) is solved by set-
ting

(58)

It is quite difficult, as mentioned earlier, to find exact
solutions of Eqs(47) and(53) analytically. We therefore try
to obtain the explicit forms of Néel type and Bloch type
walls by solving the equations numerically. Instead of solv-
ing Egs. (47 and (53) and directly, Eq.(4) is integrated
numerically because the forms satisfying the equatidas
or (53) are obtained via integration for a sufficiently long
time to lead to steady states.

, Equation (4) is integrated with the Euler scheme. The
for z— +oo, whereA and ¢ are constants which are not de- coniro| parametee is fixed to 3/2, andy is set to be 0.47,
termined in the above linearized theory. and Q measure  \yhere the uniform states, are linearly unstable, and 0.51,

the domain width and the wave front oscillation, respec-gcg 58 and 0.59 wheng, are stable due to condition
tively, and take the forms (46)., ' '

\/T \/T Both the oscillatory pattern solution discussed in Sec. Il
= _, = —(\V2W, + 2 . 52

and the wall solutions are stable for the above parameter
C. Bloch type wall

A
2= Ee”*"f’ +c.c., (50
where A and ¢ are positive constants andis a complex
number satisfying the equatiof\?+k3)?=T". As a conse-
quence, one finds the solution

Wn(2) = £ Wy Ae@% cogQ|Z - ¢) (52)

value and therefore they coexist. Thus in order to find the
wall solution(excepty=0.47 casg numerical integration is
carried out by imposing the artificial initial condition
X(z,00=-W, for z<z, X(z,00=W, for z>=z, and
Y(z,0)=0. The Neumann boundary condition is adopted due
to the initial condition.

The results are depicted in Fig. 7. Figur@/shows that
the oscillatory pattern is observed instead of the domain wall
(53 due to the uniform statesv, being unstable. Figures

7(b)-7(d) show that the Bloch type wallsg(z) are stable for
under the same boundary condition as for the Néel type wally 5< y<0.59 where Ifw(z)]#0 in the vicinity of the do-
It is assumed thatvg(z) can be set in a similar way to Eq. main wall position. Figure (&) shows that the Néel type wall
(48), emerges in place of the Bloch type wall fge=0.59, where
Im[w(z)]=0 for anyz

Let us next consider the Bloch tygee., compleX solu-
tion wg(2) of Eq. (4), which is obtained by solving the time-
independent aSH equation

(5% + k§)2Wi = eWg — [wg|2Wg + ywg

(54)

where{(z) is now a complex function whose real part is odd

Wg(2) = £t Wy +{(2) for z— * oo,
E. Domain wall dynamics

and imaginary part is even with respect Zz0The domain
wall position is set to be=0. The substitution of Eq54)

The time evolution in the case that a pair of kink and an
antikink exists at=z, andz=z,, respectively, is investigated
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0 FIG. 8. Time dependence of the distance between two domain
() walls initially separated by several lengths. The initial distance of
two walls is set a€g;=nAz with n=75, 80, 100, and 110. Equation
(4) is integrated withAt=1/2000 andAz= /4 for the system size
L=256Az. The control parameters are setigs1/4, e:1.5k3, and
© y=0.6k3. For detalils, see the text.
5]
1w N
of ] Néel type wall solution(51) into Eq. (60), one obtains
_1%/J i
0 z L ol = 4A%\2W5(2WE - kg e~ /% sin(QE - 2¢ — 26),
FIG. 7. Snapshots of the Néel type wall and several Bloch type (63)

walls. The forms of these walls are obtained by numerically inte- ) ) ]

grating Eq.(4) with At=1/6000 andAz=/16 for the system size WhereQ is same as in Eq52), and ¢ is a constant phase

L=512Az The control parametég, ande are fixed to be 1 and 3/2, defined by

respectively, andy is set to bga) 0.47,(b) 0.51,(c) 0.55,(d) 0.58,

and(e) 0.59. For details, see the text. ' \“‘”ZVV%— kg
sin 20= W (64)

in this section. The time dependence of the system is ap- 0

proximately represented as a superposition of the two dogqation(63) reveals that the distandét) between the two
main walls located at(1) andz(t) at timet, i.e., domain walls, which is initially set to be a valdg, begins
W(z,t) =w[z— ()] — W[z = 25(1) ] - W, (59) to shrink if siQfg—2¢-26)<0 and spreads out if
sin(Qf—2¢—26) >0. Therefore, the distance in the lintit
— oo approaches a definite length, which is determined by
Qf,—2¢—26=(2n+1)7 with an integemn. The selected,, is

As shown in Appendix C, substituting E¢p9) into Eq. the nearest td,

(4) and applying the method by Nagai and Kawasaki, one The time dependence d@ft) is evaluated numerically in
finds that the equation of motion of the distant(®)=z (tj order to examine the above theoretical result. Figure 8 shows
-2

B . the temporal evolution for four initial distanceg,=75Az,
z(t) between the two domain walls obeys 80Az, 10QAz, and 11@Az with Az=#/4. For the runs with

1 {@( zZ + 22> &( )] the initial distances 75z and 8Q\z, they approach the length
—_— | = 0
2 L)

whereW satisfies Eq(4). Herewy denotes eithewy or wg
according to the dynamics of the Néel type wall or the Bloch
type wall.

€= pu (60) €,=59. For the runs with 100z and 11Q@z, they eventually
approach the length,,;=82. The above results are consis-
where®(z) is a function ofw and its derivatives defined by tent with the relatiorQ(¢,,,—¢,,) =27 sinceQ=0.28 for the
above parameter values. One further notices that the two

1
D(2) = (e— K3)|W|? + 212+ @~ )2 - =(|W|?)? domain walls starting at the distanc&g=100z and 11@z
2 2 move much slower than the wall movement startingf at
~ (2K 0, + 35(| 9, [?) ~ 3| 5W|?] (61) =75Az and 8Q\z as a result of the relatioi«e %, The

result is confirmed via the numerical simulation for another
parameter values= 1.5 and y=0.8g with ky=1/4, and we
(" ’ obtained the result consistent with the theoretical one.
o= | |iw(2)]"dz (62) In the above discussion, we evaluated the value of
- ®((zy+2,)/2) in terms of a simple superposition of the two
We first derive the equation of motion fdt) when the perturbatively obtained solutiongs1) which are derived
Néel type wall stably exists. Hef& results in the real func- from the linear stability analysis of the homogeneous solu-
tion, i.e.,w=W*, in Eq. (61). By substituting the asymptotic tion W,. So we have revealed that the time evolution of the

and o is the surface tension
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distancef(t) between the two domain walls is determined The first type of dynamics is the asymptotic pattern for-

with the linear stability analysis around the middle of the twomation process in the case that spatially oscillatory patterns

domain walls. are formed. The oscillatory patterns are distinguished accord-
Next we turn to the derivation of the equation of motion ing to whether or not the imaginary part of the fieldz, t)

for £(t) when the Bloch type wall stably exists. By substitut- vanishes. It was shown that the imaginary part vanishes

ing the asymptotic Bloch type wall solutiof7) into Eq.  (Yo=0) for —y<<e<2y, which is referred to as the Néel type

(60), one obtains oscillatory pattern by analogy with the time-dependent
. e _ Ginzburg-Landau equation, and that the dynamics becomes
ot = ARG 2WE(2WE - Kg)e /R SiN(Qgl — 2 — 26) identical to the conventional, real Swift-Hohenberg equation.
_ 2 oo Al o _ _ On the other hand, the stationary solutiég=0 becomes
A010ANN 272y ~ Ko)e T SIn(Q € = 2 - 26)), unstable provided that the conditiar>2y is satisfied, so

(65) that both the real and imaginary parts form a spatially oscil-
latory pattern, which is referred to as the Bloch type oscilla-
htory pattern. In this case, there exist two stable states in
which the phase difference of the oscillation between the real

and imaginary part takes either the valug2 or —m/2.
These two states form a kind of domain structure and the
V2y— K coexistence of the distinct domains constructs the domain
= - (66) walls in temporal evolution.

where zz, 7, Qg, and Q, are given in Eq.(58). q; and g,
represent the directions of the imaginary part of the Bloc
type wall atz=z, and z=z,, respectively.f is identical to
that given in Eq(64), while 6, is defined by

sin 26, =

—
V2y We derived the equation of motion for the phase differ-
The condition(46) yields the inequalityz, >z and so that €nce and discussed the time evolution of two domain walls
the first term of Eq(65) is neglected, leading to with the use of the method originally developed by Nagai
and Kawasaki. It was revealed that the distance between two
of = — 4q1q2A|2\/2y(2y— kg)e-fla sSin(Q€ — 2¢, - 26),). domain walls decreases logarithmically and the walls finally
67) annihilate at a characteristic time uniquely determined via

the initial distance between the walls. Qualitative agreement
Equation(67) reveals that the direction of motion df(t) between the theoretical analysis and the numerical experi-
starting atf, is determined not only by the sign of the quan- ment was obtained by comparing several numerical simula-
tity sin(Q,€s;—2¢,—26,) but also by the sign ofj,g,, which  tions.

takes +1 when the imaginary parts of the two domain walls The second type of dynamics is the asymptotic pattern
exist on the opposite side of direction and takes —1 when ofPrmation process in the case where the nontr’ivial uniform
the same direction. Nevertheless, the distance again aptates stably exist. The two uniform stateg=+\e+ y-kg
proaches a definite value with a constéptsimilarly to the  are linearly stable wher and y are implemented to satisfy

Néel type wall case. the inequalitieg46). It was found that there exist two distin-
Let us consider the 1D anisotropic TDGL equation, guishable domain walls according to whether or not the
) imaginary parts of the walls vanish. One of them is the Néel
== P+ yr + Eup, (68)  type domain wall for the vanishing imaginary part and the

other the Bloch type domain wall for non-vanishing imagi-
nary part in the vicinity of the wall. The asymptotic forms of
two kinds of domain walls were analytically derived and
were compared to the numerically obtained results.

The equations of motion of the distances between the two
Néel type domain walls and the two Bloch type domain
8\s"2—7/(1 -3y walls were then derived. We found that the distance between
— g2t (69 two domain walls approaches a definite length even in the

1-v3 limit t— oo, although the distance in the early stage begins to
which does not contain the term 6@)¢ - 2¢,—26,) existing shrinll< or spreaq out accprding to the initial state. This _char—
in Eq. (67). Equation (69) shows that the distancé(t)  acteristic holds irrespective of whether the domain wall is the
shrinks and eventually disappears @g,> 0, or spreads out V€€l type or the Bloch type.
infinitely for ;0,<<0 in the limit t— o, which is different
from the time evolution in the Bloch type wall in the present ACKNOWLEDGMENTS
case.

where ¢ is the complex spin order parameter apds the
strength of anisotropy. It is well known that the above equa
tion has the Bloch wall solution for€ y<1/3. As shown in
Refs.[13,14, the distance/(t) of a pair of the Bloch walls
obeys the equation of motion

€= — 0102
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IV. CONCLUDING REMARKS
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APPENDIX A: PHASE DYNAMICS FOR THE aSH
EQUATION

In this Appendix, we will derive the equations of motion
(19) for the amplitudeg andp, and the equations of motion

(20) for the phased)r and 6, from the aSH equatiorio).

Before developing the reduction procedure, we first intro-

duce the notation

(5 +k)pe”=[f1(p,0) +ifo(p,0)]€’, (A1)
wheref,(p, ) andf,(p, 6) are expressed as
f1p, 0) = aZp + [k = (3,6)°Ip,
f2(p, ) = 2(3,p)(,6) + pds 6. (A2)

It should be noted thaf(pg,Kyz+ ¢bg)=Fo(pg,Koz+ ¢pg) =0
holds for any constantg, and ¢,. Furthermore we define
01(p, 6) andgy(p, 6) by

(2 +K5)%pe’=[gs(p, 0) +iga(p,0)1€’,  (A3)
where the quantitieg;(p, ) andg,(p, 6) are expanded as

01(p, 0) = f1 + [K§ = (0,0)%1F1 = 2(3,0)(d,F ) — T2520,

Go(p, ) = 5515 + [KG = (2,002 5 + 2(3,0)(d,F1) + 1,.756.
(Ad)

The equalityg;(po,Koz+ ¢o) =9a(po. Koz+ o) =0 again holds
for any constantgy and ¢,.

SubstitutingX=pg cosfg and Y=p, cosé, into Eq. (63
and using the relation (62+k3)(pg cOSHr) =gf cosbr
—g? sin 6 provided by Eq(A3), one obtains

bR COSGR - pRéR Sin GR

= (€+ 7)pr COS bz~ (gF cOSOr — 05 sin fg)
— P(COS P+ cOSBR) — ;prA[COL 26, + )
+ C0SOg cog2(6, — Or)} — Sin g SiN{2(6, — 6R)}]

~ 3(pk+ pf)pr COS g, (A5)

PHYSICAL REVIEW E70, 036210(2004

d(2) = - ﬂ—z cos i + 2k(d,0)2, (B1)
where the notationuy;=un[z—2z(t)] has been used for sim-
plicity. If the distancgz,—z;| between the two walls is much
larger than the domain width £/which was introduced in
Eqg. (29), then the integration of EqB1) from —~ to (z

+2,)/2 leads to
+
- ﬂﬂ{%) - P(=), (B2)

where o is the surface tension given in E(B3). We have
used the relation

J (Fzani) () dZ= o 3, (B3)
which holds because the differentiation of E80),
2¢ 1
Iofani(2) = (B4)

 costié(z-z)]

is a sharp function located at the vicinity ot z.
The right-hand side of EqB?2) is evaluated as follows.
The asymptotic form of Eq.30),

4
un(x2) = £1F —e ¥ for z> 1/¢ (B5)
o

gives
Nz+2 6) ( €) 8 _
= 2 = ud == =121 =2g¢02
,U«< > ) MN(Z M TS ﬂ_e

with €=2z,—2z;. On the other hand, E¢B4) yields

azﬁ<21+ Zz) = aZMN(f) - am(- g) =0. (B7)

2 2

The substitution of these results and the obvious relations

u(=0)==1 andd,u(-<)=0 into Eq.(B2) leads to Eq(32).

The comparison of the left-hand side with the right-hand side

for terms proportional to coéz and sindg leads to Egs.

(199 and (20a), respectively, where higher harmonics

cos I and co$26,+ 6g) are neglected.

Equations(19b) and (20b) are obtained in a similar way

by substitutingX=pg coség andY=p, cosé, into Eq. (6b).

APPENDIX B: EQUATION OF MOTION FOR THE
DOMAIN WALL POSITION IN THE BLOCH TYPE
OSCILLATORY PATTERN

Let us derive the equation of moti@B2) for the domain
wall located at the positior=z;. The time evolution in the
existing two domain walls denoted as E&1) is described
by Eqg.(27). Multiplication of each side of Eq27) by d,u
leads to

= 2)[ (Fptn1)? = () (Fgping) ] + Zol (Fppiny) (Fntinz)
= (dun)?]= 3, 9(2),

APPENDIX C: EQUATION OF MOTION FOR POSITIONS
OF THE NEEL TYPE WALL AND THE BLOCH
TYPE WALL

Let wy be either the Néel type wall solutiaid1) or the
Bloch type wall solution57). Consider the integral

(zy+2)/2 - -
J [(OF)W* + (6, * )W* ]dz

—00

(z9+2))/2
- f (G- (B + Q7

+ A= [} + (o)

x{[e= (5 + )W + ¥ * - [W*W})dz, (CD)

whereW(z,t) is denoted by Eq(59). If the distancgz,-zy|

between the two walls is much larger than the domain wall
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width described either by Eq52) in the case of the Néel
type wall or by Eq.(58) in the case of the Bloch type wall,
then the left-hand side of EQC1) is evaluated as

(zy+2)/2
LHS = f (I W1 = IWk2) (— 219 Wy
+ 2,0 Wy,)dz+ c.C.
(z1+29)12
= - ZJ (23] 9 Wica|* + Zo| 9 Wi o)z

-0

= - 207, (C2)

PHYSICAL REVIEW E 70, 036210(2004)

Then the integration fronfz;+z,)/2 to « leads to the
equation for the right domain wall positian(t),

207, = D(=) —@(ﬁ) (Ca)

2

Equations(C2)—(C4) immediately yield Eq(60) by making
use of the relatiorb(—c)=d(x).
In the Néel type wall, Eq(59) is represented as

W(z,t) =Wy + A 2% codQ(z~-z,) - ]
+ A= 2% codQ(z-2) + ¢], (C5)

whereA and ¢ are constants, and theh derivative of Eq.

wherew,; =w[z-z(t)] and e is the surface tension denoted (C5) is obtained by

by Eq.(62). The right-hand side of EqC1) is, on the other
hand, expressed in the form

(z1+2))/2 7 +7
RHS:f 2,8 (2)dz= ¢(1TZ) - (- ),

(C3

whered(z) is defined by Eq(61). Equation(C2) with (C3)
gives the equation of motion for the left wall positiaj(t).

Bz, t) = (- @)"Ae” @D codQ(z-2) — p— nb]

+a"AdZ2% c0§Q(z-2,) + p+nb]  (CH)

whgﬁ is a constant phase defined by E&§4) and «
=yy2W,. Substituting the above expressions @f((z
+2,)/2,t) and djW((z,+2,)/2,t) into Eq. (61) and retaining
terms withe %% ande™‘% where{ = z,- z; by noting that¢
is large yields Eq.(63). A similar derivation leads to the
asymptotic dynamics of Bloch type walls.
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