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Poincaré Husimi representation of eigenstates in quantum billiards
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For the representation of eigenstates on a Poincaré section at the boundary of a billiard different variants
have been proposed. We compare these Poincaré Husimi functions, discuss their properties, and based on this
select one particularly suited definition. For the mean behavior of these Poincaré Husimi functions an
asymptotic expression is derived, including a uniform approximation. We establish the relation between the
Poincaré Husimi functions and the Husimi function in phase space from which a direct physical interpretation
follows. Using this, a quantum ergodicity theorem for the Poincaré Husimi functions in the case of ergodic
systems is shown.
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[. INTRODUCTION Ref. [7], that there is no natural definition of a scalar product

. . . for functions on the billiard boundary. This raises the ques-
. The stu_dy of eigenfunctions of guantum systems, in Paltion whether one of these definitions has advantages over the
ticular, their dependence on the classical dynamics, has thers, which will be addressed in the following
tract%dgl It?t of at:jgntlon._A plrotr:jlllﬂegt class of eximﬁ'es S" The representation of eigenstates on the Poincaré section
provided by two-dimensional billiard systems, which areyaus an important role in several applications. For example,
classically given by the free motion of a particle inside some; is ysed to define scar measui@sd], or to study conduc-
domain with elastic reflections at the boundary. The correyance fluctuations, see RéL0], and references therein. Fur-
sponding quantum system iis described by the Helmholtghermore, these representations are used to determine the
equation inside a compact domafdCR* (in units #=1  coupling of leads in open systenii&l]. Another important

=2m), application is the detection of regions where eigenstates lo-
2 _ calize, see, e.g., Reffl2,13,1] (for an alternative approach
Ag00 +kaiin(x) =0, x € O, @ based on the scattering approach see Réf15). Repre-
with (for example Dirichlet boundary conditions sentations of eigenstates on the Poincaré section have also
B been useful to understand the behavior of optical microreso-
$n(x)=0, xedQ, ) nators, see, e.g., Rdfl6], and references therein. More gen-

where the eigenfunctions,(x) are inL%(€)). Assuming that grall_y,_ thel appro?clhfis r;ot_just applicable for billiafrd sy;tems
; 2 s : ut it is also useful for Poincaré sections arising from Bogo-

B e oerss o S e ol Tanster oprator approa]

edge of the behavior of the ei envald%gand the structure In this paper we first compare two different definitions for

of geigenstates is relevant for gpplications for example rn.the Poincaré Husimi representation, discuss their properties

- : I'(Sec. I), and based on this we select one particular definition
crowave cavities or mesoscopic systefsee, e.9., Refll], o the following. In Sec. Il we derive the behavior of these
and references theregin

e Poincaré Husimi functions when averaged over several ener-
For the description of the phase space structure of quargies. |n Sec. IV we establish a relation between the well-
tum systems usually the Wigner functifj or Husimi func-  known Husimi function in phase space and the Poincaré Hu-
tion [3] is used. However, for a system withdegrees of simi function on the billiard boundary. This allows for a
freedom these ared2dimensional functions, which are diffi- direct physical interpretation of the Poincaré Husimi func-
cult to visualize ford>1. Therefore, one usually considers tions. Moreover, for ergodic systems a quantum ergodicity
the position representation, or the momentum representaticheorem for the Poincaré Husimi functions is shown.
[4], or sections through the Wigner or Husimi function, see,
e.g., Ref[5]. II. HUSIMI REPRESENTATION ON THE BOUNDARY
Another approach is the use of representations on the bil- Let us first recall the definition and some properties of
liard boundary, acting as a global Poincaré section. In thédusimi functions in phase space. For a solutignof the
literature one can find several variants for these representatelmholtz equatior(1) with energyE=k? the Husimi func-
tions, see, e.g., Reff6—8]. The reason is, as emphasized intion HE(p,q) is given by its projection onto a coherent state,

ie.,
k 2
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— In order to have the advantages of such a reduced repre-

(¢, ) =J ACIZC) R (4)  sentation in quantum mechanics as well, one is interested in
Q a Husimi representatioh,(q,p) on the Poincaré sectioR

which is associated with an eigenstate Such aPoincaré
Husimi functionshould have similar properties as the ones
expressed by relatior{§) and(7) for the Husimi functions in
phase space, and our aim is to study to what extent this is
possible. More precisely, one would like that for the Husimi
function on the billiard boundary a spectral average,

is the scalar product if, and% denotes the complex con-
jugate of is.
The coherent states are defined as

1/2
UB o (00 = (E) (det Im B)YAeKpx-ar(1/2x-a.80x-a)]
e v

(5)
where (p,q) € R>X R? denotes the point in phase space H(a,p): = LE ha(a,p), (8)
around which the coherent state is localized, Brid a sym- N(K) ¢ =«

metric complex 2 2 matrix which determines the shape of
the coherent state. For the conventional coherent states oQ&, s 1o the invariant measure @hask— . in the same

10 .
hasB:i( ) and in general one has the condition Bn-0, W&y as in EqQ(7). . - _
01 The Husimi representation on the billiard boundary is

i.e., (v,ImBuv)>0 for all v e R*\{0}. Notice that because ysyally defined using the normal derivative of the eigenfunc-
the variance of the coherent states is proportiona,tall  tion (hereafter called the boundary functjpn

Husimi functions are concentrated around the energy shell

Ipl?=1 (and not aroundp|?=k?). By this it is possible to .

compare Husimi functions with different energlés and, for Un(S): =(A(s), V ¢n(X(9))), 9
example, consider their mean, see Ef).below.

Such Husimi functions can be interpreted as probabilityyherex(s) is a point on the boundary(), parametrized by
distributions on phase space, because they satisfy the relatigge arclengtts, andfi(s) denotes the outer normal unit vector
to 9Q at x(s). The boundary functions are a natural starting
(U Ao :f f a(p,q)Hy(p, q)dPpcfg + O(K,h), point for defining a Husimi representation because they de-
R? JR? termine the eigenfunctions uniquely, see E20). Thus the
(6) boundary functions form a reduced representation of the sys-
tem. If an eigenfunctiony, is normalized, then the corre-

wh'erea(p,'q) Is a function on phase space a.Adts quanti- . sponding boundary functiow, fulfils the normalization con-
zation. This relation also shows that the choice of the mat”)&ition [21]

B in the definition of the coherent states does not affect the
leading order behavior dﬂﬁ as a probability density, since
the left hand side of Eq6) does not depend oB. 1 2/a o
The average of all Husimi functioﬂsﬁ(p,q) up to some 2 0 |Un(S)[XA(s),x(8))ds= k. (10
energyk?=E converges fok— o to the normalized invariant

measure on the energy shell, _ o
For alternative derivations of Eq10) and more general

1 1 - . .
lim —— > HB(p,q) = — xq(q) (1 —|pP?). 7) boundary conditions see Ref22,23. Notice that while the
ke N(K) g Zic nP  AXO a P integrand depends on the chosen origin for the vextey,
. . ) the integral is independent of this choice.
Tere '\<|(k) den_otes the spect_ral_ stalrcgse functuN(k)_. Starting from the boundary function a Husimi function on
=#{k\=<k}, xqo is the characteristic function of}, andAis  he poincaré section can be defined by a projection onto a
the area of. The mean behavia) is similar to the mean  ¢operent state. There are different possibilities to define co-
behavior of the spectral staircase function, which is given by,erent states on the boundary of a billiard. A natural choice is

the Weyl formula, i.e., fok— o one hasNgk)~(A/4w)k2. A the periodization of the usual one-dimensional coherent
similar asymptotic behavior can be derived for the mean ofates,
normal derivative functions, see R¢1.9] for a detailed dis-
cussion._ _ N Ui
For billiards an extremely useful approach for describing ® o (9):= (E) (Im b)V4S) glpls-armUy+(br2)(s - + mL)?]
the dynamics is the use of a Poincaré secfiogether with @P) K T ’
the corresponding Poincaré mappiRg Usually the section
P:={(q,p)|qe[0,L],pe[-1,1]} is parametrized by the ar-
clength coordinate along the boundary() of the billiard
and the projectiorp of the (unity momentump after the  where (q,p) € 92X R, and L denotes the length of the
reflection on the tangeritq), i.e., p=(p,i(q)). By this the  boundary. The parametdse C, Im b>0, determines the
billiard flow induces an area-preserving mdp.P— P, shape of the coherent state. Then for an eigensgiateith
where the invariant measure is given iy =dq dp boundary functionu, a Husimi function on the Poincaré

meZ

(11
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section? (or more precisely, on the cylindric phase space
/0 X R) can be defined ag6,7]

2

1 — "
hn(q,p)=;kn LQ Clg.p .k (SUn(s)ds (12)
The completeness relation for the coherent states gives -1 . |
(a) 0 L/2 a L
1
f f hy(a,p)dp dg=— f lun(9)|°ds, (13) !
0 JR knJ a0 .
so in view of relation(10) the Poincaré Husimi function
h,(q,p) will in general not be normalized. This can be fixed 7 . =~
by dividing h,(q,p) by the factor(1/k3) [|u,(9)|’ds as was
done, for instance, in Ref§l2,13. But later on we will see ~1 :
that it is more natural to work with the non-normalized Hu- () 0 L/2 a L

simi functions(12).
A different Poincaré representation has been proposed ir
Ref. [8],

P 3"
£}

T
0 L/2 q L

2

1 f i, (SUn(S)(A(S),X(s))ds
s o)
hn(q1p) = % ,
nf E?q,p),kn(S)C?q,p),kn(s)m(S),X(S))ds (©
90

(14) FI_G. 1. E_xamples of eige_ns_tat&qs(q), shown to the left, gnd to
the right their Poincaré Husimi functiors(q,p). In (a) an eigen-

where the inclusion of the factdn(s),x(s)) is motivated by state (n=1952 localizing around a regular orbit for the limagon

its appearance in the normalization conditid@®). In order  Pilliard at£=0.3 is shown. In(b) and(c) two eigenstates for the

to compare the two definitions, we use the fact that for larg&ardioid billiard are showiin=1817 andh=1277.

k the coherent state becomes more and more concentrated

around s=q and SO (A(s),x(s)) E'(’qvp)’kn(s)

~<ﬁ(q),X(q)>E?q,p),kn(S)- This leads to the relation Figs. Xb) and Xc) are ate=1.0, i.e., for the cardioid billiard.

The eigenstate shown iib) is localized around an unstable
~ A periodic orbit of period two which is also nicely seen in the
ha(@.p) ~ (A(@). x(a)hn(a.p), (15 prominent peaks for the corresponding Poincaré Husimi
between the two definitions for Husimi functions. function. In(c) an irregular state in the cardioid billiard is
Let us first illustrate the behavior of the Husimi represen-displayed which is spread out over the full billiard and also
tation given by Eq(12). As a concrete example we consider h,(q,p) does not show any prominent localization.
a member of the family of limagon billiards introduced by ~ Now we turn to a comparison of the two Poincaré Husimi
Robnik [24,25, whose boundary is given in polar coordi- representations given by Eq4.2) and(14). In Fig. 2 a plot
nates byp(p)=1+e coq¢), wheree €[0,1] is the family  of H,(q,p) is shown wher&k=125.27... is chosen such that
parameter. Ate=0.3 the billiard has a mixed phase spacethe first 2000 states are taken into account. Both definitions,
(see Fig. 1 in Ref[12]) and ate=1 it turns into the fully Egs.(12) and(14), lead to a similar nonuniform behavior of
chaotic(i.e., ergodic, mixing,..) cardioid billiard. Because Hy(q,p) in p direction. We will discuss this behavior in more
of the symmetry of the billiard we consider the half-limacon detail in the following section. In addition we observe that
billiard with Dirichlet boundary conditions everywhere. The H,(q,p) has a minimum at(q,p)=(0,00 and (q,p)
eigenvalues have been computed using the conformal map<(+£/2,0), which is due to the desymmetrization. Figure
ping technique[25,2§ and then the boundary element 2(b) shows a plot oﬂtlk(q,p) which is defined ag(q,p),

method has been used to compute the eigenfunciises . L~
Ref.[27], and references thergirFigure 1 shows a compari- Put instead ofhy(q,p) the functionsh,(q,p) are used, see
son of eigenstates(q) with their Husimi representations definition (14). In this case we observe in addition a clear

h.(q,p) as gray-scale plots with black corresponding to large’a'ation ing. The reason for this is the factaii(q),x(q)) as

values. For the computatiorls: =io"!=i was chosen. In explained by relation15). Another important point is that

(a) an eigenstate which is localized around a stable periodith® definition(14) depends on the chosen origin as the factor
orbit with period three is shown which is clearly reflected in (1(@),x(@)) does, and therefore the integrals in Ety) are

its Poincaré Husimi function to the right. The symmetry NOt invariant under a shift of the origin. Because of the varia-
ha(d,p)=h,(q,—p) is due to the time-reversal symmetry of tion of h,(g,p) in q and the dependence on the origin we
the system and the symmetiy(q,p)=h,(L—q,p) stems prefer the definition12) and will use this exclusively in the
from the reflection symmetry of the system. The plots infollowing.
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k 2 R R
g°(k,;s,s') = ﬁj (N(s),&(¢))
0
02
ity X(R(S), &)X &A1 +O(k Y],
01
(17
00 where x(s) denotes the position vector on the boundary at
point s, A(s) denotes the outer unit normal vector to the
. boundary ats, and&(¢)=(cos ¢, sin ¢) is the unit vector in
direction ¢. In general the right hand side of E(L7) is a
4 sum of oscillating terms corresponding to reflected orbits, the
L5 Lz condition on the support of the Fourier transform fis
' 0.0 necessary in order that only one term contributes.
@ P 130 Multiplying Eq. (17) with ¢, ; ,(s) andcy, (') and in-
tegrating overs ands’ leads to
> p(k=k)hy(a,p)
03 neN
Hk(q’p)O.Z | K2 2 A, 2
- A 2 ik(x(s),el
o L e} fmm(s),e(cp» O, ) (9ds| de
0.0 F -1
X[1+0O(k™)], (18)
where we have useht?q’p)’k—cﬁ’q’p),knﬂzg C(k—kq)?/ (k+k,)?
£ in order to obtain the left hand side. Tlsantegral can be
q computed by the method of stationary phase,
L2
1.5 o _ .
00 J (A(9),&(¢))e X O&NE I (s)ds
(b) s a0
k 1/4 o
FIG. 2. Plot of Hy(q,p) for k=125 using the first 2000 eigen- :(—) (Im b)1/4f (A(s),&¢))
states in the limacon billiard of odd symmetryest0.3. In(a) the m —0

result forH,(q,p) using definition(12) for h,(q,p) is shown and in
(b) a correspondingttk(q,p) using definition(14) is displayed. In
addition to the symmetry related dips (@t p)=(0,0) and(L/2,0) A 1’4(Im b)l/4 R R
one clearly sees the variation indirection in both cases and (b) = ? ﬁ(n(Q),e(¢)>
we, moreover, observe a variationdn [ib]

gkl (x(9) &(e)-Pls-a)-(b/2)(s - 9] 4g

x @M X(@ &) +1/2)(p - (@) &N 1 + O(k12)],
IIl. MEAN BEHAVIOR OF BOUNDARY (19)
HUSIMI FUNCTIONS
with
In this section we determine the asymptotic behavior of ~ —
the mean,(q,p) of the boundary Husimi functions for b=Db+ k(q)n(a),&(¢)), (20)

large energies. To this end we will use the methods from oufere «(q) is the curvature of the boundary at Inserting
previous work[19]. Let us introduce this result we obtain

2 P(k - kp)hn(q, p)

Un(S)uy(s’) neN
Pk,s,s)= X == S p(k—ky), (16)
9 o = <4w>m f R
= - — &l
(2m°\ k o o]
wherep is a smooth function whose Fourier transfofnis x g kim biibA)[p - ((a) &) de[1 +0(k )],
supported in a neighborhode », ], with » smaller than the (21)

length of the shortest periodic orbit of the billiard flow, and

satisfies in additiorp(0)=1. The functiong’(k,s,s’) was and for |p|<1 the ¢ integral can again be solved by the
studied in Ref.[19] and an asymptotic expansion was de-method of stationary phagaotice that there are two station-
rived. Its leading term reads ary pointg which yields
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> pk=ky)hy(a,p) = V- pl1+0(K 3], (22

nelN
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erate. Forlp| > 1 the stationary points become complex and
the integral is exponentially decreasing for .
Previously, such a/1-p? behavior appeared in the con-

By integrating this equation, and using a Tauberian Lemmdext of Fredholm methods for Poincaré Husimi functions

as in proofs of the Weyl formulésee, e.g., Ref28], Lemma
17.5.9, we finally obtain

_ 1 _2 T Al
Hi(Q,p) = N(k)knﬁgkhn(q,p)— A \1=p?+O(k ).

(23)

[30] and was also obtained in connection with the inverse
participation ratio[9].

Next we want to derive a uniform approximation which
describes the mean behavior of the Husimi functions near
|p|=1 and the crossover from the reginm <1 to the ex-
ponential decrease fop| > 1. We will study the casp~1,
the casgp=~-1 is completely analogous. Let, be the angle

In the derivation of Eq(22) from Eq.(21) we have assumed corresponding to the direction &fg) and expanding the am-
that|p| <1 because then the stationary points are nondegerplitude and phase function in E(@1) arounde, leads to

43 (477')1/2 Jw (Im b)*?

e\ k) Jo

> p(k—kha(a,p) =

nelN

em\ k) o

277.5/2

- 34 [RI2
— ak(m b/b[A)(p - 1)2&( ﬂ

~ (2k)3/4

= e k(m bi2b?)(1 - p)?
(2m)?

4K (477)1’2 F (Im "2

Imb

[bl?

Y4 (2K Im b)Y2
mb/ AT &

Prerkim bijb2)(p -1 + <P2)2d¢ [1+0(k2)]

1/2gk(Im b/[b2(p - 1 +X)2dx[1 +0(K2)]

14 .. ~
) f xL/2g{(2k Im b)llzl\b\}(p—l)x—lezd){l +O(k‘1’2)]

0

——(p- 1))[1 +0(k 3], (24)

[b]

where D_3,5(x) denotes the parabolic cylinder function and H(q,p) at q=3.0 is shown fork=125, compare with Fig.
we have used one of the standard integral representation®a). The remaining differences are due to higher order cor-

see, e.g., Ref31].

This result was derived under the assumptisal such
that (p?—1)=2(p—1). Substituting(p—1) by (p>-1)/2 al-
lows us to combine the results for the differgntegions in
one formula,

k
> plk=k)hy(a,p) = SR +0(k1?)], (25

nelN
where
~ 1/4
1 _ HI2)(1 — n2)2 |b|2
E = k(Im b/8Jb|)(1 - p) <_
P =5 e Im b
(k Im b)/2
><D_3,2(—~(p2—1) . (26)
21/2|b|

For |p|<1 one hasFy(p)=yV1-p?+0O(k™), since D_z(x)
~ 232|124 for x——x=. Recall thatb is defined in Eq.
(20). In Fig. 3 we compare the expressiq26) with

[b|2/Im b=1 for different values ok. It is clearly visible that
the asymptotic result is reached slowly with increading

rections.

In the derivation of the result&22) and (25) we have
implicitly assumed that the boundary 6i is sufficiently
smooth, because only then we can use the stationary phase
formula. But it is easy to extend the results to the case that
the boundary is only piecewise smooth. Since we multiply in
Eqg. (18) by a coherent state centereddgnall the following
computations remain valid iff is in the smooth part of the
boundary, since the contributions from the singular points are
exponentially suppressed then. So it could only happen that
some additional mass sits at the singular points of the bound-
ary, i.e., we have

2

1 —
lim—— > h.(g,p) = — 1 -p? q, (27
leN(k)kn%k (@GP = V1-p*+pdpa),  (27)

where ug(p,q)dp dgis a measure supported on the singular
part of the boundaryi.e., if (p,q) € suppusthenq s in the
singular part of the boundaxyWe want to show thagtg=0 if
the billiard is star shaped. We first show that=0, let ug
=ug+ug be the decomposition into its positive and negative

Integrating Eq(26), analogous to the transition from Eq. Parts, and le§* be the support ofis. We definie for any >0
(22) to Eq. (23), one can compare the uniformized mean$;: ={z;infs.s |z=s[}, and with lim _ofs x*dpdg=0 and
behavior with the numerical result. In Fig a section of lim,_ofsV1-p?dpdg=0 we get
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Lof P(x)=0 for x e H\ﬁ(this follows from Green’s formula
Let ¢, be a coherent stat¢s) centered atz=(p,q)
0.8 e T'R?, for reasons of simplicity we restrict ourselves to the
1
case of a nonsqueezed symmetrical state, Bei, ( 0 1)
06 and omit the indexB in the following. We want to compute
) .
= the overlap(y, i) given by
0.4
(W bpa =P hrz=~ f (Gy(-=x(3)), )r2u(s)ds,
0.2 129}
(31)
005 where we have used the aforementioned extensiaf{>Jfto

R? given by Eq.(30). We now observe that

FIG. 3. Comparison of the uniformized asymptotic behavior ot
~ Gy(-—x(9)), =G (X(9)), 32
F(p), see Eq(26), with [b|2/Im b=1 and fork=10,30,500. The (G- =X(9), )i = G X(9)) (32)
asymptotic semicircle behavior is reached slowly.
where
lim lim —— > f h,(g, p)dpdq f <. (29 -
) = Ms- - —_—
e—0k—eN(K) ZyJ 57 " s G llinoA+k2+i8 39

But the right hand side is negative, whereas the left hand side th vent i h K lis the G f
is positive, and thereforgeg=0 and us=0. Now the com- IS the resolvent operator, Whose kernel 1S the reens func-

pleteness relation for the coherent states and the normalizé?r'i”'c'te':drOtg1 tEg.t()ﬁ%r\gebc?Sﬁ dg:;t g;? J#g(:rgzgl\(/lé;tlso;;zrator
tion (10) gives lim _..5 [ [(A(q),x(4))hn(q, p)dpde=1, and :

¢ he | | i
together  with ' the  relaion  L/R[(A)x(q)y C USe the integral representation
X (2/Am)1-p?dpdo=1 this yields i (o

Gl = EJ

X e udt, (34)
f j (f(a),x(@)us(p,a)dq dp=0. (29 -
-1 JQ .

whereU(t)=e/M% is the free time evolution operator with
But for a star-shaped billiard one can choose the origin of thq /i playing the role ofi, and inserting Eq:34) into Eq.(32)
coordinate system such thét(q),x(q))>0 for all g e Q, we obtain
and sous=0. Therefore Eqs(22) and (25) remain true for
star-shaped billiards with piecewise smooth boundary with i
the only possible modification that the error term might de- (G(-=x(9)), h)p2= Ef e U () g (x(9))dt.  (35)
cay more slowly at the singular points of the boundary. -

But the free time evolution of a coherent state centered in
z is well known (see, e.g., Refg32,33) to give again a

IV. FROM HUSIMI FUNCTIONS IN PHASE SPACE coherent state, centered around the imageurfder the clas-
TO HUSIMI FUNCTIONS ON THE BOUNDARY sical flow and with transformed variance,

In this section we derive a direct relation between the
Husimi function in phase space and the one on the Poincar¢ 015
section, as given by Eq12). By this we obtain a physical
interpretation of the Poincaré Husimi representation. For the  q.10 |
calculations in this section we have to assume that the bil-
liard domain(} is convex. Lety be a solution of the Helm- §
holtz equation(1) in Q which satisfies Dirichlet boundary

condition ond€). Any such function can be represented as

0.00
-1.5

(x) == f Gi(x = x(s))u(s)ds, (30)
129}

FIG. 4. The full curve shows a section &f(q,p) atq=3.0 with
where G (x-y) is a free Greens function andal(s) is the k=125 for the desymmetrized limacon billiard, see Figa)2and
normal derivative ofy on the boundary. Notice that the right the second line is the uniformized mean behavior. The remaining
hand side of Eq(30) gives an extension af(x) to R? with  deviations are caused by higher order corrections.
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that there is only one such pointThen we obtain with
x(s)=x(q) +(a)(s—a) — x(a)/ 2A(q)(s-q)*+O((s-0)°) that

X =g - x(a)| + p(s—q) - at )(1 p)YA(s- g)?
+0((s-9)?), (39
X, =(1-p)Y4s-q) +O((s-9)?), (40)
wherep: =(p,t) e[-1,1]. Inserting these expressions in Eq.
(37) gives
(Gi(-=x(3)), Phr2
[ 1 iKlo-x(@)]+i 6g=(k/2)(1 - |p|>2
X[1+0(2)], (42)

x(q)

wherec k(:s) is a coherent state on the boundary, as de-
FIG. 5. lllustration of a Gaussian beam as given by EB8) fined in Eq (11), with varianceb=i(1-p?)/[1+i|g—x(q)|]

inside the limagon billiard a¢=0.3. _K(q)(l_pZ)l/Z and e“9:[|q—x(q)|+i]1’2/[|q—x(q)|2+1 14
Notice that although we started with a symmetric coherent
U(t) () state in the interior, the projected coherent state on the
12 boundary is no longer symmetric and has a nontrivial
- elklplzt< k) _ gkl(px-am)+[if21+20}1x - 1)l squeezing parametérwhich depends on the position of the
m/ 1+2t original state, the angle of intersection of the ray in direction

(36) —p with the boundary, and the curvature of the boundary.

If we insert the expressiof#1) into Eg.(31) we obtain a
with q(t)=q+2tp. Therefore,Gllpz(x) has the structure of a semiclassical relation between the projection of an eigenstate
Gaussian beam emanating from the painin directionp  onto a coherent state in the interior and the projection of the
backwards in time. If we introduce a new coordinate systermormal derivative on the boundary onto a coherent state on
x=(x;,x,) centered afj with x| parallel top andx, perpen- the boundary,
dicular top, we obtain by a stationary phase approximation

1/4
. i 1
that forx, and 1-p| small(i.e., near the energy shgll () = — k;:”“—(l ~ A
Gl U(x) = i DX Hi/(L4ix)pE +/2)(L = [p)?] ¢ @kelax(@+i6g-(ky2 (1 - [p])2

V2k(1 +ix,) 2

X b + -1/ )
X[l + O(k—1/2)] (37) <unvc(q,p),kn>r70,[1 O(kn 2)] (42)
In turn from this we obtain the central result of this section,

holds, where we have assumed that-0. Forx,~0 and 5 girect relation between the corresponding Husimi functions
x>0 the integral leads to an error function which describes
n(q p)

the transition from the exponentially decaying regime with

— ~-1/2

x,>0 to the regimex, <0 in Eq.(37). For|p|=1 the result Hn(p,a) = 5'<n(1 |p|) [1 Oka™ 1, (43

reads
with
i . ' . 2
GT O = e'k[XH+{'/(2(1+'XH))}XL] k. \1/2 ~ 2
1= FRVT: B =lpl):= () tolt I, (44)
x %erfc< \/E;l/zﬁl +o(k2)], Let us first discuss the meaning of the individual terms on
(1 +ix)) the right hand side of Eq43). The functions (1-|p|) is a

(39) delta sequence fdk,— o0, and describes the localization of
H,.(p,q) around the energy shell. The factorxfI]J—p comes
where erf¢z) denotes the complementary error function, andfrom the projection of the Gaussian beam to the plane tan-
the absolute value of this expression is shown in Fig. 5. gent to the boundary, see Fig. 5. The right hand side of
Next we want to evaluate this expression on the boundaryEq(43) has still a dependence on the phase space fojg)
To this end, lex(q) be the point of intersection between the on the left hand side through the paramétén the coherent
boundary and the line from in direction -p. (Here we need state in Eq(41). But as we will discuss after E¢45) below
the assumption that the billiard domdihis convex, in order (and in more detail in the Appendixwhen integrating the
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Husimi function against an observable the result does ndPoincaré section, the factbf,p) can be viewed as a nor-
depend orb in leading order. malization which make$,(q,p) independent of the billiard

As in the preceding section we have assumed that thghape, i.e., for anyDCdQx[-1,1], we get that
boundary is smooth. But by the localization of the coherent/, 5 (q,p)l(q,p)dq dpis the probability for the particle in
states the results can be again extended to the case that & statey;, to be found in the regiorﬁ' =TI"'D on the

. . . . . . n .=

bo_undary IS piecewise smooth, then E4B) remains valid if energy shell, where the mdpdescribes the projection of the
g is not a singular point of the boundary.

The direct connection between the Husimi function in thedomainD to the boundary. - _ ,
interior and the one on the boundary, given by E4), We would like to close this section with some remarks on

allows us to derive interesting relations between the two Huth€ implications of quantum ergodicity to the behavior of the

simi functions and can be used to give a direct physical in_Poincaré Husimi functions. If the classical billiard flowgh

terpretation of the Husimi function on the boundary. FromiS €rgodic, then the quantum ergodicity theors8,34 (see
Eq. (6) together with relatior{43) we obtain Ref. [20] for an introduction tells us that almost all Husimi

functionsH,(p,q) tend weakly to 1/2- A. Our result(43)

then immediately implies that in the semiclassical limit al-

most all Poincaré Husimi functionsh,(q,p) tend to

Ly [2/7 A]y1-p? in the weak sense. So this proves a quantum
+0(k, ), (45) ergodicity theorem for the boundary Husimi functions. Re-

wherel(g,p) denotes the length of a ray emanating fromcently related results have been obtained establishing quan-

q(g) € 4 in the direction determined by until it hits the UM ergodicity for observables on the Poincaré section
boundary again. Furthermore [35,37,38. Notice that the\1-p? behavior is also visible in

the plot ofh,(q,p) for the irregular state shown in Fig(cd
for the ergodic cardioid billiard.

1
h,(q,
(AU = J f Q—(q P) (a(q,p)l(q,p)dq dp
-1 0!

4y1-p?

1 I(a,p) R .
(@(a,p): == f a(q(q) +te(q,p), &g, p))dt
1(a,p) Jo
(46) V. SUMMARY
is the mean value of the classical observable between two Poincaré representations of eigenstates play an important

bounces, wheré(q,p) denotes the unit vector a(a) in role in several areas. Howevex,priori there is no unique
direction,p A reIat?(),r? of the same type as E@i5) hasqbeen way for their definition. In this paper we single out the defi-
obtained recently by different methods in RE34] for cer- hition given by Eq(12) and show that the asymptotic mean

. . X behavior of these Husimi functions is proportionahtb—p?.
tsﬂgvl/(;ct?gte%cfeuggggazgr?c;hﬁnb?huenggzgwﬁ:itﬁiﬁigﬁg- For this asymptotic §emicircle behavior we in addition dgrive
ent states used to defihg can be discarded in leading order a uniform asymptotlc formula. Eurjhermpre we establish a
see the Appendix for a detailed discussion. This means tha,t Irect relatl_on betwee_n fche Hl.JSImI functlon_m phase space

o . : . nd the Poincaré Husimi functigf2) on the billiard bound-
we move from the pointwise relatio®3) to the integral

: ; : s ary. By this a physically meaningful interpretation, see Eq.
r_elatlon(45), we gain the _freedom to define the Husimi func- (43), of the previouslyad hoc chosen definition for the
tions on the boundary with an arbitrary paramdier

We conclude from relatio45) that Poincaré Husimi function is obtained. Namely, the Poincaré
Husimi functionb,(qg, p) can be viewed as a probability den-
~_1hy(q,p) sity on the Poincaré section. For ergodic systems our result
bn(,p): _Z\,rpz (47) implies a quantum ergodicity theorem for the Poincaré Hu-
simi functions, i.e., almost all Poincaré Husimi functions be-
is a reduction of the probability density defined by the Hu-come equidistributed with respect to the appropriate mea-
simi function on the whole phase space to the boundary. So gure.
one wants a proper representation of eigenfunctions on the
Poincaré section which is an approximate probability density, ACKNOWLEDGMENTS
and whose general properties are independent of the billiard
Shape’ then Ed47) seems to be the best choice. Of course a A.B. and R.S. would like to thank the Mathematical Sci-
drawback of the functioii47) is the singularity of M’T& ences Research Institute, Berkeley, USA, for financial sup-
at p=+1 which is relevant at any finite energy. So for nu- Port and hospitality where part of this work was done. R.S.
merical computations the definitigi2) is more suitable and Was supported by the European Commission under the Re-
the importance of Eq47) lies in the physical interpretation. search Training NetworkMathematical Aspects of Quantum
In particular, relation45) implies an asymptotic normal- Chaog Grant No. HPRN-CT-2000-00103 of the IHP Pro-

ization condition or,(q,p), gramme.

1
J f b(a,p)(q,p)dg dp=1+0(K- 1.  (48) APPENDIX: HUSIMI FUNCTIONS
-1 Jan AND EXPECTATION VALUES

Sincel(q,p)dq dpis the phase space volume in the energy In this appendix we recall some facts about Husimi func-
shell corresponding to the volume elemeadd dp of the tions, see, e.g., Ref18] and the contribution by Helffer in
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the same volume. With this information we discuss the de-

pendence of the Husimi functions on the paramdieas
given in the definition(11) of the coherent states. In the
following we will use the notatiorz=(p,q). A Husimi func-
tion is a smoothed version of the Wigner function,

£|<c2,k,u>|2= f W JZ)Wul(z)dZ, (A1)

where Wu](z') denotes the Wigner function ofi. The
Wigner function of the coherent stat@;@'k is given by
WL, J(z') = (k/ m)e K7 -29z 20+ O(e*k), where

|

Relation(Al) holds as well ifb depends orz.

We will now use the fact that ifA is the Weyl quantization
of a function a(z), see, e.g., Ref[29], then (u,Au)
=fa(zWu](z)dz Using this and Eq(Al) one obtains

1/imb - Reb/lmb
-Reb/imb Imb+(Reb)?Imb

) . (A2)

k
fa(z)z_r|<c'z”k,u)|2dz:ffa(z)\/\/[cgk](z’)\/\/[u](z’)dzdz

=(u,Au), (A3)
whereA is the Weyl quantization of the function
A(2) = f az)Wc) J(2dz . (A4)

If we assume that the matrixis either constant, or satisfies
llo%g(2)||<C, for all aeN? and zesuppa, which is
equivalent to the requirement thdi(z) is smooth and
Im b(z)>0 for ze suppa, then the method of stationary
phase gives

PHYSICAL REVIEW E 70, 036204(2004)

a(z=a(z) + iR(k, 2), (A5)

whereR(k,z) is a smooth bounded functions with bounded
derivatives. Hence the Weyl quantization &(k,z) is
bounded by the Calderon-Vallaincourt theordsee Ref.

[29]), so||A-A||<C/k and therefore

< C/k. (AB)

U«'st(Z)%KCZ’,k,wI2 dz-(u,Au)

Since(u,Au) is independent ob we have for any smooth

b(z) ,B(z) with Im b(z) >0, ImB(z) >0 for ze suppa the es-
timate

< Clk.

k k =
Ua(Z)ZTKCgk'UHZ dz—fa(z)ZTchk,u)Fdz
(A7)

This shows that in the definition of the family of coherent
states we can choose any nondegenerate, possibly
z-dependent, parametérand still get in leading order the
same probability distribution defined by the corresponding
Husimi densities. In this sense the dependence of the Husimi
functions onb is weak.

Let us now look at relation¢43) and (45) from the per-
spective of the preceding discussion. In the Husimi function
appearing on the right hand side of £43) the parameteb
is given byb=i(1-p?)/[1+i|q-x(q)|1- «(@)(1-p?*?, so it
depends orz=(p,q) and additionally org, and it degener-
ates forp— 1. If the classical observabkein relation(45)
has support in the interior d, then(a) is supported away
from p=+£1 and we can repladeby any nondegenerate If
the support ofa includes the boundary(}, then(a) is not
necessarily zero gi=+1 and we can only repladeby one
which has the same type of behavior for- +1, such as,
e.g.,b@(p,q)=i(1-p? - x(a)(1-p?)Y2
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