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For the representation of eigenstates on a Poincaré section at the boundary of a billiard different variants
have been proposed. We compare these Poincaré Husimi functions, discuss their properties, and based on this
select one particularly suited definition. For the mean behavior of these Poincaré Husimi functions an
asymptotic expression is derived, including a uniform approximation. We establish the relation between the
Poincaré Husimi functions and the Husimi function in phase space from which a direct physical interpretation
follows. Using this, a quantum ergodicity theorem for the Poincaré Husimi functions in the case of ergodic
systems is shown.
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I. INTRODUCTION

The study of eigenfunctions of quantum systems, in par-
ticular, their dependence on the classical dynamics, has at-
tracted a lot of attention. A prominent class of examples is
provided by two-dimensional billiard systems, which are
classically given by the free motion of a particle inside some
domain with elastic reflections at the boundary. The corre-
sponding quantum system is described by the Helmholtz
equation inside a compact domainV,R2 (in units "=1
=2m),

Dcnsxd + kn
2cnsxd = 0, x P V, s1d

with (for example) Dirichlet boundary conditions

cnsxd = 0, x P ] V, s2d

where the eigenfunctionscnsxd are inL2sVd. Assuming that
the eigenvalueskn

2 are ordered with increasing value, the
semiclassical limit corresponds ton→`. A detailed knowl-
edge of the behavior of the eigenvalueskn

2 and the structure
of eigenstates is relevant for applications, for example, mi-
crowave cavities or mesoscopic systems(see, e.g., Ref.[1],
and references therein).

For the description of the phase space structure of quan-
tum systems usually the Wigner function[2] or Husimi func-
tion [3] is used. However, for a system withd degrees of
freedom these are 2d-dimensional functions, which are diffi-
cult to visualize ford.1. Therefore, one usually considers
the position representation, or the momentum representation
[4], or sections through the Wigner or Husimi function, see,
e.g., Ref.[5].

Another approach is the use of representations on the bil-
liard boundary, acting as a global Poincaré section. In the
literature one can find several variants for these representa-
tions, see, e.g., Refs.[6–8]. The reason is, as emphasized in

Ref. [7], that there is no natural definition of a scalar product
for functions on the billiard boundary. This raises the ques-
tion whether one of these definitions has advantages over the
others, which will be addressed in the following.

The representation of eigenstates on the Poincaré section
plays an important role in several applications. For example,
it is used to define scar measures[8,9], or to study conduc-
tance fluctuations, see Ref.[10], and references therein. Fur-
thermore, these representations are used to determine the
coupling of leads in open systems[11]. Another important
application is the detection of regions where eigenstates lo-
calize, see, e.g., Refs.[12,13,11] (for an alternative approach
based on the scattering approach see Refs.[14,15]). Repre-
sentations of eigenstates on the Poincaré section have also
been useful to understand the behavior of optical microreso-
nators, see, e.g., Ref.[16], and references therein. More gen-
erally, the approach is not just applicable for billiard systems
but it is also useful for Poincaré sections arising from Bogo-
molny’s transfer operator approach[17].

In this paper we first compare two different definitions for
the Poincaré Husimi representation, discuss their properties
(Sec. II), and based on this we select one particular definition
for the following. In Sec. III we derive the behavior of these
Poincaré Husimi functions when averaged over several ener-
gies. In Sec. IV we establish a relation between the well-
known Husimi function in phase space and the Poincaré Hu-
simi function on the billiard boundary. This allows for a
direct physical interpretation of the Poincaré Husimi func-
tions. Moreover, for ergodic systems a quantum ergodicity
theorem for the Poincaré Husimi functions is shown.

II. HUSIMI REPRESENTATION ON THE BOUNDARY

Let us first recall the definition and some properties of
Husimi functions in phase space. For a solutioncn of the
Helmholtz equation(1) with energyE=kn

2 the Husimi func-
tion Hn

Bsp,qd is given by its projection onto a coherent state,
i.e.,

Hn
Bsp,qd: = S kn

2p
D2

ukcsp,qd,kn

B ,cnlVu2. s3d

Here
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kc1,c2lV: =E
V

c̄1sqdc2sqdd2q s4d

is the scalar product inV, andc̄1 denotes the complex con-
jugate ofc1.

The coherent states are defined as

csp,qd,k
B sxd: = S k

p
D1/2

sdet Im Bd1/4eikfkp,x−ql+s1/2dkx−q,Bsx−qdlg,

s5d

where sp,qdPR23R2 denotes the point in phase space
around which the coherent state is localized, andB is a sym-
metric complex 232 matrix which determines the shape of
the coherent state. For the conventional coherent states one

hasB= is100

1 d and in general one has the condition ImB.0,

i.e., kv , Im B vl.0 for all vPR2\ h0j. Notice that because
the variance of the coherent states is proportional tok, all
Husimi functions are concentrated around the energy shell
upu2=1 (and not aroundupu2=k2). By this it is possible to
compare Husimi functions with different energieskn

2, and, for
example, consider their mean, see Eq.(7) below.

Such Husimi functions can be interpreted as probability
distributions on phase space, because they satisfy the relation

kcn,AcnlV =E
R2
E

R2
asp,qdHn

Bsp,qdd2pd2q + Oskn
−1d,

s6d

whereasp,qd is a function on phase space andA its quanti-
zation. This relation also shows that the choice of the matrix
B in the definition of the coherent states does not affect the
leading order behavior ofHn

B as a probability density, since
the left hand side of Eq.(6) does not depend onB.

The average of all Husimi functionsHn
Bsp,qd up to some

energyk2=E converges fork→` to the normalized invariant
measure on the energy shell,

lim
k→`

1

Nskd o
knøk

Hn
Bsp,qd =

1

p A
xVsqdds1 − upu2d. s7d

Here Nskd denotes the spectral staircase function,Nskd :
= #hknøkj, xV is the characteristic function onV, andA is
the area ofV. The mean behavior(7) is similar to the mean
behavior of the spectral staircase function, which is given by
the Weyl formula, i.e., fork→` one hasNskd,sA/4pdk2. A
similar asymptotic behavior can be derived for the mean of
normal derivative functions, see Ref.[19] for a detailed dis-
cussion.

For billiards an extremely useful approach for describing
the dynamics is the use of a Poincaré sectionP together with
the corresponding Poincaré mappingP. Usually the section
P : =hsq,pd uqP f0,Lg ,pP f−1,1gj is parametrized by the ar-
clength coordinateq along the boundary]V of the billiard
and the projectionp of the (unit) momentump̂ after the
reflection on the tangentt̂sqd, i.e., p=kp̂, t̂sqdl. By this the
billiard flow induces an area-preserving mapP:P→P,
where the invariant measure is given bydm=dq dp.

In order to have the advantages of such a reduced repre-
sentation in quantum mechanics as well, one is interested in
a Husimi representationhnsq,pd on the Poincaré sectionP
which is associated with an eigenstatecn. Such aPoincaré
Husimi functionshould have similar properties as the ones
expressed by relations(6) and(7) for the Husimi functions in
phase space, and our aim is to study to what extent this is
possible. More precisely, one would like that for the Husimi
function on the billiard boundary a spectral average,

Hksq,pd: =
1

Nskd o
knøk

hnsq,pd, s8d

tends to the invariant measure onP as k→`, in the same
way as in Eq.(7).

The Husimi representation on the billiard boundary is
usually defined using the normal derivative of the eigenfunc-
tion (hereafter called the boundary function),

unssd: = kn̂ssd, = cn„xssd…l, s9d

wherexssd is a point on the boundary]V, parametrized by
the arclengths, andn̂ssd denotes the outer normal unit vector
to ]V at xssd. The boundary functions are a natural starting
point for defining a Husimi representation because they de-
termine the eigenfunctions uniquely, see Eq.(30). Thus the
boundary functions form a reduced representation of the sys-
tem. If an eigenfunctioncn is normalized, then the corre-
sponding boundary functionun fulfils the normalization con-
dition [21]

1

2
E

]V

uunssdu2kn̂ssd,xssdlds= kn
2. s10d

For alternative derivations of Eq.(10) and more general
boundary conditions see Refs.[22,23]. Notice that while the
integrand depends on the chosen origin for the vectorxssd,
the integral is independent of this choice.

Starting from the boundary function a Husimi function on
the Poincaré section can be defined by a projection onto a
coherent state. There are different possibilities to define co-
herent states on the boundary of a billiard. A natural choice is
the periodization of the usual one-dimensional coherent
states,

csq,pd,k
b ssd: = S k

p
D1/4

sIm bd1/4o
mPZ

eikfpss−q+mLd+sb/2dss − q + mLd2g,

s11d

where sq,pdP]V3R, and L denotes the length of the
boundary. The parameterbPC, Im b.0, determines the
shape of the coherent state. Then for an eigenstatecn with
boundary functionun a Husimi function on the Poincaré
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sectionP (or more precisely, on the cylindric phase space
]V3R) can be defined as[6,7]

hnsq,pd =
1

2pkn
UE

]V

c̄sq,pd,kn

b ssdunssddsU2

. s12d

The completeness relation for the coherent states gives

E
]V
E

R
hnsq,pddp dq=

1

kn
2E

]V

uunssdu2ds, s13d

so in view of relation(10) the Poincaré Husimi function
hnsq,pd will in general not be normalized. This can be fixed
by dividing hnsq,pd by the factors1/kn

2de uunssdu2ds, as was
done, for instance, in Refs.[12,13]. But later on we will see
that it is more natural to work with the non-normalized Hu-
simi functions(12).

A different Poincaré representation has been proposed in
Ref. [8],

h̃nsq,pd =
1

2kn
2

UE
]V

c̄sq,pd,kn

b ssdunssdkn̂ssd,xssdldsU2

E
]V

c̄sq,pd,kn

b ssdcsq,pd,kn

b ssdkn̂ssd,xssdlds

,

s14d

where the inclusion of the factorkn̂ssd ,xssdl is motivated by
its appearance in the normalization condition(10). In order
to compare the two definitions, we use the fact that for large
k the coherent state becomes more and more concentrated
around s=q and so kn̂ssd ,xssdl c̄sq,pd,kn

b ssd
,kn̂sqd ,xsqdlc̄sq,pd,kn

b ssd. This leads to the relation

h̃nsq,pd , kn̂sqd,xsqdlhnsq,pd, s15d

between the two definitions for Husimi functions.
Let us first illustrate the behavior of the Husimi represen-

tation given by Eq.(12). As a concrete example we consider
a member of the family of limaçon billiards introduced by
Robnik [24,25], whose boundary is given in polar coordi-
nates byrswd=1+« cosswd, where «P f0,1g is the family
parameter. At«=0.3 the billiard has a mixed phase space
(see Fig. 1 in Ref.[12]) and at«=1 it turns into the fully
chaotic(i.e., ergodic, mixing,…) cardioid billiard. Because
of the symmetry of the billiard we consider the half-limaçon
billiard with Dirichlet boundary conditions everywhere. The
eigenvalues have been computed using the conformal map-
ping technique [25,26] and then the boundary element
method has been used to compute the eigenfunctions(see
Ref. [27], and references therein). Figure 1 shows a compari-
son of eigenstatescnsqd with their Husimi representations
hnsq,pd as gray-scale plots with black corresponding to large
values. For the computationsb: = is−1= i was chosen. In
(a) an eigenstate which is localized around a stable periodic
orbit with period three is shown which is clearly reflected in
its Poincaré Husimi function to the right. The symmetry
hnsq,pd=hnsq,−pd is due to the time-reversal symmetry of
the system and the symmetryhnsq,pd=hnsL−q,pd stems
from the reflection symmetry of the system. The plots in

Figs. 1(b) and 1(c) are at«=1.0, i.e., for the cardioid billiard.
The eigenstate shown in(b) is localized around an unstable
periodic orbit of period two which is also nicely seen in the
prominent peaks for the corresponding Poincaré Husimi
function. In (c) an irregular state in the cardioid billiard is
displayed which is spread out over the full billiard and also
hnsq,pd does not show any prominent localization.

Now we turn to a comparison of the two Poincaré Husimi
representations given by Eqs.(12) and (14). In Fig. 2 a plot
of Hksq,pd is shown wherek=125.27. . . is chosen such that
the first 2000 states are taken into account. Both definitions,
Eqs.(12) and(14), lead to a similar nonuniform behavior of
Hksq,pd in p direction. We will discuss this behavior in more
detail in the following section. In addition we observe that
Hksq,pd has a minimum at sq,pd=s0,0d and sq,pd
=s±L /2 ,0d, which is due to the desymmetrization. Figure

2(b) shows a plot ofH̃ksq,pd which is defined asHksq,pd,
but instead ofhnsq,pd the functionsh̃nsq,pd are used, see
definition (14). In this case we observe in addition a clear
variation inq. The reason for this is the factorkn̂sqd ,xsqdl as
explained by relation(15). Another important point is that
the definition(14) depends on the chosen origin as the factor
kn̂sqd ,xsqdl does, and therefore the integrals in Eq.(14) are
not invariant under a shift of the origin. Because of the varia-

tion of h̃nsq,pd in q and the dependence on the origin we
prefer the definition(12) and will use this exclusively in the
following.

FIG. 1. Examples of eigenstatescnsqd, shown to the left, and to
the right their Poincaré Husimi functionshnsq,pd. In (a) an eigen-
state sn=1952d localizing around a regular orbit for the limaçon
billiard at «=0.3 is shown. In(b) and (c) two eigenstates for the
cardioid billiard are shown(n=1817 andn=1277).
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III. MEAN BEHAVIOR OF BOUNDARY
HUSIMI FUNCTIONS

In this section we determine the asymptotic behavior of
the meanHksq,pd of the boundary Husimi functions for
large energies. To this end we will use the methods from our
previous work[19]. Let us introduce

grsk,s,s8d: = o
nPN

unssdūnss8d
kn

2 rsk − knd, s16d

wherer is a smooth function whose Fourier transformr̂ is
supported in a neighborhoodf−h ,hg, with h smaller than the
length of the shortest periodic orbit of the billiard flow, and
satisfies in additionr̂s0d=1. The functiongrsk,s,s8d was
studied in Ref.[19] and an asymptotic expansion was de-
rived. Its leading term reads

grsk,s,s8d =
k

2p2E
0

2p

kn̂ssd,êswdl

3kn̂ss8d,êswdleikkxssd−xss8d,êswdldwf1 + Osk−1dg,

s17d

where xssd denotes the position vector on the boundary at
point s, n̂ssd denotes the outer unit normal vector to the
boundary ats, and êswd=scosw ,sin wd is the unit vector in
direction w. In general the right hand side of Eq.(17) is a
sum of oscillating terms corresponding to reflected orbits, the
condition on the support of the Fourier transform ofr is
necessary in order that only one term contributes.

Multiplying Eq. (17) with c̄sq,pd,k
b ssd andcsq,pd,k

b ss8d and in-
tegrating overs ands8 leads to

o
nPN

rsk − kndhnsq,pd

=
k2

4p3E
0

2p UE
]V

kn̂ssd,êswdl eikkxssd,êswdlc̄sq,pd,k
b ssddsU2

dw

3f1 + Osk−1dg, s18d

where we have usedicsq,pd,k
b −csq,pd,kn

b i2øCsk−knd2/ sk+knd2

in order to obtain the left hand side. Thes integral can be
computed by the method of stationary phase,

E
]V

kn̂ssd,êswdleikkxssd,êswdlc̄sq,pd,k
b ssdds

=S k

p
D1/4

sIm bd1/4E
−`

`

kn̂ssd,êswdl

3eikfkxssd,êswdl−pss−qd−sb̄/2dss − qd2gds

= S4p

k
D1/4sIm bd1/4

fib̃g1/2
kn̂sqd,êswdl

3eikfkxsqd,êswdl+s1/2b̃dhp − kt̂sqd,êswdlj2gf1 + Osk−1/2dg,

s19d

with

b̃ = b̄ + ksqdkn̂sqd,êswdl, s20d

whereksqd is the curvature of the boundary atq. Inserting
this result we obtain

o
nPN

rsk − kndhnsq,pd

=
2k2

s2pd3S4p

k
D1/2 E

0

2p sIm bd1/2

ub̃u
ukn̂sqd,êswdlu2

3e−ksIm b/ub̃u2dfp − kt̂sqd,êswdlg2 dwf1 + Osk−1/2dg,

s21d

and for upu,1 the w integral can again be solved by the
method of stationary phase(notice that there are two station-
ary points) which yields

FIG. 2. Plot ofHksq,pd for k=125 using the first 2000 eigen-
states in the limaçon billiard of odd symmetry at«=0.3. In (a) the
result forHksq,pd using definition(12) for hnsq,pd is shown and in

(b) a correspondingH̃ksq,pd using definition(14) is displayed. In
addition to the symmetry related dips atsq,pd=s0,0d and sL /2 ,0d
one clearly sees the variation inp direction in both cases and in(b)
we, moreover, observe a variation inq.
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o
nPN

rsk − kndhnsq,pd =
k

p2
Î1 − p2f1 + Osk−1/2dg. s22d

By integrating this equation, and using a Tauberian Lemma
as in proofs of the Weyl formula(see, e.g., Ref.[28], Lemma
17.5.6), we finally obtain

Hksq,pd ;
1

Nskd o
knøk

hnsq,pd =
2

Ap
Î1 − p2 + Osk−1/2d.

s23d

In the derivation of Eq.(22) from Eq.(21) we have assumed
that upu ,1 because then the stationary points are nondegen-

erate. Forupu .1 the stationary points become complex and
the integral is exponentially decreasing fork→`.

Previously, such aÎ1−p2 behavior appeared in the con-
text of Fredholm methods for Poincaré Husimi functions
[30] and was also obtained in connection with the inverse
participation ratio[9].

Next we want to derive a uniform approximation which
describes the mean behavior of the Husimi functions near
upu =1 and the crossover from the regimeupu ,1 to the ex-
ponential decrease forupu .1. We will study the casep<1,
the casep<−1 is completely analogous. Letw0 be the angle
corresponding to the direction oft̂sqd and expanding the am-
plitude and phase function in Eq.(21) aroundw0 leads to

o
nPN

rsk − kndhnsq,pd =
4k2

s2pd3S4p

k
D1/2E

0

` sIm bd1/2

ub̃u
w2e−ksIm b/ub̃u2dsp − 1 + w2d2dw f1 + Osk−1/2dg

=
4k2

s2pd3S4p

k
D1/2 E

0

` sIm bd1/2

ub̃u
x1/2e−ksIm b/ub̃u2dsp − 1 + xd2dxf1 + Osk−1/2dg

=e−ksIm b/ub̃u2dsp − 1d2s2kd3/4

2p5/2 S ub̃u2

Im b
D1/4E

0

`

x1/2e−hs2k Im bd1/2/ub̃ujsp−1dx−x2/2dxf1 + Osk−1/2dg

=
s2kd3/4

s2pd2 e−ksIm b/2ub̃u2ds1 − pd2S ub̃u2

Im b
D1/4

D−3/2S s2k Im bd1/2

ub̃u
sp − 1dDf1 + Osk−1/2dg, s24d

whereD−3/2sxd denotes the parabolic cylinder function and
we have used one of the standard integral representations,
see, e.g., Ref.[31].

This result was derived under the assumptionp<1 such
that sp2−1d<2sp−1d. Substitutingsp−1d by sp2−1d /2 al-
lows us to combine the results for the differentp regions in
one formula,

o
nPN

rsk − kndhnsq,pd =
k

p2Fkspdf1 + Osk−1/2dg, s25d

where

Fkspd =
1

2s2kd1/4e−ksIm b/8ub̃u2ds1 − p2d2S ub̃u2

Im b
D1/4

3D−3/2S sk Im bd1/2

21/2ub̃u
sp2 − 1dD . s26d

For upu,1 one hasFkspd=Î1−p2+Osk−1d, since D−3/2sxd
,23/2uxu1/2ex2/4 for x→−`. Recall thatb̃ is defined in Eq.
(20). In Fig. 3 we compare the expression(26) with

ub̃u2/ Im b=1 for different values ofk. It is clearly visible that
the asymptotic result is reached slowly with increasingk.

Integrating Eq.(26), analogous to the transition from Eq.
(22) to Eq. (23), one can compare the uniformized mean
behavior with the numerical result. In Fig. 4 a section of

Hksq,pd at q=3.0 is shown fork=125, compare with Fig.
2(a). The remaining differences are due to higher order cor-
rections.

In the derivation of the results(22) and (25) we have
implicitly assumed that the boundary ofV is sufficiently
smooth, because only then we can use the stationary phase
formula. But it is easy to extend the results to the case that
the boundary is only piecewise smooth. Since we multiply in
Eq. (18) by a coherent state centered inq, all the following
computations remain valid ifq is in the smooth part of the
boundary, since the contributions from the singular points are
exponentially suppressed then. So it could only happen that
some additional mass sits at the singular points of the bound-
ary, i.e., we have

lim
k→`

1

Nskd o
knøk

hnsq,pd =
2

Ap
Î1 − p2 + mSsp,qd, s27d

wheremSsp,qddp dq is a measure supported on the singular
part of the boundary(i.e., if sp,qdPsuppmS thenq is in the
singular part of the boundary). We want to show thatmS=0 if
the billiard is star shaped. We first show thatmSù0, let mS
=mS

++mS
− be the decomposition into its positive and negative

parts, and letS± be the support ofmS
±. We define for any«.0

S«
−: =hz; infsPS− uz−su j, and with lim«→0eS

«
− m+dpdq=0 and

lim«→0eS
«
−Î1−p2dpdq=0 we get
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lim
«→0

lim
k→`

1

Nskd o
knøk

E
S«

−
hnsq,pddpdq=E

S−
mS

−. s28d

But the right hand side is negative, whereas the left hand side
is positive, and thereforemS

−=0 andmSù0. Now the com-
pleteness relation for the coherent states and the normaliza-
tion (10) gives limkn→`

1
2 eekn̂sqd ,xsqdlhnsq,pddpdq=1, and

together with the relation 1/2eekn̂sqd ,xsqdl
3s2/ApdÎ1−p2dpdq=1 this yields

E
−1

1 E
]V

kn̂sqd,xsqdlmSsp,qddq dp= 0. s29d

But for a star-shaped billiard one can choose the origin of the
coordinate system such thatkn̂sqd ,xsqdl.0 for all qP]V,
and somS=0. Therefore Eqs.(22) and (25) remain true for
star-shaped billiards with piecewise smooth boundary with
the only possible modification that the error term might de-
cay more slowly at the singular points of the boundary.

IV. FROM HUSIMI FUNCTIONS IN PHASE SPACE
TO HUSIMI FUNCTIONS ON THE BOUNDARY

In this section we derive a direct relation between the
Husimi function in phase space and the one on the Poincaré
section, as given by Eq.(12). By this we obtain a physical
interpretation of the Poincaré Husimi representation. For the
calculations in this section we have to assume that the bil-
liard domainV is convex. Letc be a solution of the Helm-
holtz equation(1) in V which satisfies Dirichlet boundary
condition on]V. Any such function can be represented as

csxd = −E
]V

Gk„x − xssd…ussdds, s30d

where Gksx−yd is a free Greens function andussd is the
normal derivative ofc on the boundary. Notice that the right
hand side of Eq.(30) gives an extension ofcsxd to R2 with

csxd=0 for xPR \V̄ (this follows from Green’s formula).
Let cz be a coherent state(5) centered atz=sp,qd

PT*R2, for reasons of simplicity we restrict ourselves to the

case of a nonsqueezed symmetrical state, i.e.,B= i s1 0

0 1d,
and omit the indexB in the following. We want to compute
the overlapkc ,czl given by

kc,czlV = kc,czlR2 = −E
]V

kGk„·−xssd…,czlR2ūssdds,

s31d

where we have used the aforementioned extension ofcsxd to
R2 given by Eq.(30). We now observe that

kGk„·−xssd…,czlR2 = Gk
†cz„xssd…, s32d

where

Gk = lim
«→0

− 1

D + k2 + i«
s33d

is the resolvent operator, whose kernel is the Greens func-
tion. From Eq.(32) we see that the functionGk

†cz is re-
stricted to the billiard boundary. For the resolvent operator
we use the integral representation

Gk
† =

i

k
E

−`

0

eikt Ustddt, s34d

whereUstd=esi/kdtD is the free time evolution operator with
1/k playing the role of", and inserting Eq.(34) into Eq.(32)
we obtain

kGk„·−xssd…,czlR2 =
i

k
E

−`

0

eikt Ustdcz„xssd…dt. s35d

But the free time evolution of a coherent state centered in
z is well known (see, e.g., Refs.[32,33]) to give again a
coherent state, centered around the image ofz under the clas-
sical flow and with transformed variance,

FIG. 3. Comparison of the uniformized asymptotic behavior

Fkspd, see Eq.(26), with ub̃u2/ Im b=1 and fork=10,30,500. The
asymptotic semicircle behavior is reached slowly.

FIG. 4. The full curve shows a section ofHksq,pd at q=3.0 with
k=125 for the desymmetrized limaçon billiard, see Fig. 2(a), and
the second line is the uniformized mean behavior. The remaining
deviations are caused by higher order corrections.
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Ustdczsxd

= eikupu2tS k

p
D1/2 1

1 + 2it
eikfkp,x−qstdl+fi/h2s1+2itdjg„x − qstd…2g,

s36d

with qstd=q+2tp. Therefore,Gk
†czsxd has the structure of a

Gaussian beam emanating from the pointq in direction p
backwards in time. If we introduce a new coordinate system
x=sxi ,x'd centered atq with xuu parallel top andx' perpen-
dicular top, we obtain by a stationary phase approximation
that for x' and 1−upu small (i.e., near the energy shell)

Gk
†czsxd =

i
Î2ks1 + ixid1/2

eikfxi+hi/„2s1+ixid…jx'
2 +si/2ds1 − upud2g

3f1 + Osk−1/2dg s37d

holds, where we have assumed thatxi ,0. For xi <0 and
xi .0 the integral leads to an error function which describes
the transition from the exponentially decaying regime with
xi .0 to the regimexi ,0 in Eq. (37). For upu =1 the result
reads

Gk
†czsxduupu=1 =

i
Î2ks1 + ixid1/2

eikfxi+hi/„2s1+ixid…jx'
2 g

3
1

2
erfcSÎk

2

xi

s1 + ixid1/2Df1 + Osk−1/2dg,

s38d

where erfcszd denotes the complementary error function, and
the absolute value of this expression is shown in Fig. 5.

Next we want to evaluate this expression on the boundary.
To this end, letxsqd be the point of intersection between the
boundary and the line fromq in direction −p. (Here we need
the assumption that the billiard domainV is convex, in order

that there is only one such point.) Then we obtain with
xssd=xsqd+ t̂sqdss−qd−ksqd /2n̂sqdss−qd2+O(ss−qd3) that

xi = uq − xsqdu + pss− qd −
ksqd

2
s1 − p2d1/2ss− qd2

+ O„ss− qd3
…, s39d

x' = s1 − p2d1/2ss− qd + O„ss− qd2
…, s40d

wherep: =kp̂, t̂lP f−1,1g. Inserting these expressions in Eq.
(37) gives

kGk„·−xssd…,czlR2

=
ip1/4

Î2k5/4

1

s1 − p2d1/4eikuq−xsqdu+iue−sk/2ds1 − upud2csq,pd,k
b ssd

3f1 + Osk−1/2dg, s41d

wherecsq,pd,k
b ssd is a coherent state on the boundary, as de-

fined in Eq. (11), with varianceb= is1−p2d / f1+i uq−xsqdug
−ksqds1−p2d1/2 and eiu=fuq−xsqdu+ ig1/2/ fuq−xsqdu2+1g1/4.
Notice that although we started with a symmetric coherent
state in the interior, the projected coherent state on the
boundary is no longer symmetric and has a nontrivial
squeezing parameterb which depends on the position of the
original state, the angle of intersection of the ray in direction
−p with the boundary, and the curvature of the boundary.

If we insert the expression(41) into Eq. (31) we obtain a
semiclassical relation between the projection of an eigenstate
onto a coherent state in the interior and the projection of the
normal derivative on the boundary onto a coherent state on
the boundary,

kcn,czlV = −
ip1/4

Î2 kn
5/4

1

s1 − p2d1/4

3eiknuq−xsqdu+iue−skn/2ds1 − upud2

3kun,csq,pd,kn

b l]Vf1 + Oskn
−1/2dg. s42d

In turn from this we obtain the central result of this section,
a direct relation between the corresponding Husimi functions

Hnsp,qd = dkn
s1 − upud

1

4

hnsq,pd
Î1 − p2

f1 + Oskn
−1/2dg, s43d

with

dkn
s1 − upud: = Skn

p
D1/2

e−kns1 − upud2. s44d

Let us first discuss the meaning of the individual terms on
the right hand side of Eq.(43). The functiondkn

s1−upu d is a
delta sequence forkn→`, and describes the localization of
Hnsp,qd around the energy shell. The factor 1/Î1−p2 comes
from the projection of the Gaussian beam to the plane tan-
gent to the boundary, see Fig. 5. The right hand side of
Eq.(43) has still a dependence on the phase space pointsp,qd
on the left hand side through the parameterb in the coherent
state in Eq.(41). But as we will discuss after Eq.(45) below
(and in more detail in the Appendix), when integrating the

FIG. 5. Illustration of a Gaussian beam as given by Eq.(38)
inside the limaçon billiard at«=0.3.
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Husimi function against an observable the result does not
depend onb in leading order.

As in the preceding section we have assumed that the
boundary is smooth. But by the localization of the coherent
states the results can be again extended to the case that the
boundary is piecewise smooth, then Eq.(43) remains valid if
q is not a singular point of the boundary.

The direct connection between the Husimi function in the
interior and the one on the boundary, given by Eq.(43),
allows us to derive interesting relations between the two Hu-
simi functions and can be used to give a direct physical in-
terpretation of the Husimi function on the boundary. From
Eq. (6) together with relation(43) we obtain

kcn,AcnlV =E
−1

1 E
]V

hnsq,pd
4Î1 − p2

kalsq,pdlsq,pddq dp

+ Oskn
−1/2d, s45d

where lsq,pd denotes the length of a ray emanating from
qsqdP]V in the direction determined byp until it hits the
boundary again. Furthermore,

kalsq,pd: =
1

lsq,pdE0

lsq,pd

a„qsqd + têsq,pd,êsq,pd…dt

s46d

is the mean value of the classical observable between two
bounces, whereêsq,pd denotes the unit vector atqsqd in
directionp. A relation of the same type as Eq.(45) has been
obtained recently by different methods in Ref.[34] for cer-
tain localized functions on the boundary. Equation(45) now
shows that the dependence on the parameterb in the coher-
ent states used to definehn can be discarded in leading order,
see the Appendix for a detailed discussion. This means that if
we move from the pointwise relation(43) to the integral
relation(45), we gain the freedom to define the Husimi func-
tions on the boundary with an arbitrary parameterb.

We conclude from relation(45) that

hnsq,pd: =
1

4

hnsq,pd
Î1 − p2

s47d

is a reduction of the probability density defined by the Hu-
simi function on the whole phase space to the boundary. So if
one wants a proper representation of eigenfunctions on the
Poincaré section which is an approximate probability density,
and whose general properties are independent of the billiard
shape, then Eq.(47) seems to be the best choice. Of course a
drawback of the function(47) is the singularity of 1/Î1−p2

at p= ±1 which is relevant at any finite energy. So for nu-
merical computations the definition(12) is more suitable and
the importance of Eq.(47) lies in the physical interpretation.

In particular, relation(45) implies an asymptotic normal-
ization condition onhnsq,pd,

E
−1

1 E
]V

hnsq,pdlsq,pddq dp= 1 +Oskn
−1/2d. s48d

Since lsq,pddq dp is the phase space volume in the energy
shell corresponding to the volume elementdq dp of the

Poincaré section, the factorlsq,pd can be viewed as a nor-
malization which makeshnsq,pd independent of the billiard
shape, i.e., for any D,]V3 f−1,1g, we get that
eD hnsq,pdlsq,pddq dp is the probability for the particle in

the statecn to be found in the regionD̂ : =P−1D on the
energy shell, where the mapP describes the projection of the

domainD̂ to the boundary.
We would like to close this section with some remarks on

the implications of quantum ergodicity to the behavior of the
Poincaré Husimi functions. If the classical billiard flow inV
is ergodic, then the quantum ergodicity theorem[35,36] (see
Ref. [20] for an introduction) tells us that almost all Husimi
functionsHnsp,qd tend weakly to 1/2p A. Our result(43)
then immediately implies that in the semiclassical limit al-
most all Poincaré Husimi functionshnsq,pd tend to
f2/p AgÎ1−p2 in the weak sense. So this proves a quantum
ergodicity theorem for the boundary Husimi functions. Re-
cently related results have been obtained establishing quan-
tum ergodicity for observables on the Poincaré section
[35,37,38]. Notice that theÎ1−p2 behavior is also visible in
the plot ofhnsq,pd for the irregular state shown in Fig. 1(c)
for the ergodic cardioid billiard.

V. SUMMARY

Poincaré representations of eigenstates play an important
role in several areas. However,a priori there is no unique
way for their definition. In this paper we single out the defi-
nition given by Eq.(12) and show that the asymptotic mean
behavior of these Husimi functions is proportional toÎ1−p2.
For this asymptotic semicircle behavior we in addition derive
a uniform asymptotic formula. Furthermore we establish a
direct relation between the Husimi function in phase space
and the Poincaré Husimi function(12) on the billiard bound-
ary. By this a physically meaningful interpretation, see Eq.
(43), of the previouslyad hoc chosen definition for the
Poincaré Husimi function is obtained. Namely, the Poincaré
Husimi functionhnsq,pd can be viewed as a probability den-
sity on the Poincaré section. For ergodic systems our result
implies a quantum ergodicity theorem for the Poincaré Hu-
simi functions, i.e., almost all Poincaré Husimi functions be-
come equidistributed with respect to the appropriate mea-
sure.
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APPENDIX: HUSIMI FUNCTIONS
AND EXPECTATION VALUES

In this appendix we recall some facts about Husimi func-
tions, see, e.g., Ref.[18] and the contribution by Helffer in
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the same volume. With this information we discuss the de-
pendence of the Husimi functions on the parameterb, as
given in the definition(11) of the coherent states. In the
following we will use the notationz=sp,qd. A Husimi func-
tion is a smoothed version of the Wigner function,

k

2p
ukcz,k

b ,ulu2 =E Wfcz,k
b gsz8dWfugsz8ddz8, sA1d

where Wfugsz8d denotes the Wigner function ofu. The
Wigner function of the coherent statecz,k

b is given by
Wfcz,k

b gsz8d=sk/pde−kkz8−z,gsz−z8dl+Ose−c/kd, where

g = S 1/Im b − Reb/Im b

− Reb/Im b Im b + sRe bd2/Im b
D . sA2d

Relation(A1) holds as well ifb depends onz.
We will now use the fact that ifA is the Weyl quantization

of a function aszd, see, e.g., Ref.[29], then ku,Aul
=easzdWfugszddz. Using this and Eq.(A1) one obtains

E aszd
k

2p
ukcz,k

b ,ulu2dz=E E aszdWfcz,k
b gsz8dWfugsz8ddzdz8

= ku,Ãul, sA3d

whereÃ is the Weyl quantization of the function

ãszd =E asz8dWfcz8,k
b gszddz8. sA4d

If we assume that the matrixg is either constant, or satisfies
uu]z

agszd u uøCa for all aPN2 and zPsuppa, which is
equivalent to the requirement thatbszd is smooth and
Im bszd.0 for zPsuppa, then the method of stationary
phase gives

ãszd = aszd +
1

k
Rsk,zd, sA5d

whereRsk,zd is a smooth bounded functions with bounded
derivatives. Hence the Weyl quantization ofRsk,zd is
bounded by the Calderon-Vallaincourt theorem(see Ref.

[29]), so uuA−Ã u uøC/k and therefore

UE aszd
k

2p
ukcz,k

b ,ulu2 dz− ku,AulU ø C/k. sA6d

Since ku,Aul is independent ofb we have for any smooth

bszd ,b̃szd with Im bszd.0, Imb̃szd.0 for zPsuppa the es-
timate

UE aszd
k

2p
ukcz,k

b ,ulu2 dz−E aszd
k

2p
ukcz,k

b̃ ,ulu2dzU ø C/k.

sA7d

This shows that in the definition of the family of coherent
states we can choose any nondegenerate, possibly
z-dependent, parameterb and still get in leading order the
same probability distribution defined by the corresponding
Husimi densities. In this sense the dependence of the Husimi
functions onb is weak.

Let us now look at relations(43) and (45) from the per-
spective of the preceding discussion. In the Husimi function
appearing on the right hand side of Eq.(43) the parameterb
is given byb= is1−p2d / f1+i uq−xsqd u g−ksqds1−p2d1/2, so it
depends onz=sp,qd and additionally onq, and it degener-
ates forp→ ±1. If the classical observablea in relation(45)
has support in the interior ofV, thenkal is supported away

from p= ±1 and we can replaceb by any nondegenerateb̃. If
the support ofa includes the boundary]V, then kal is not
necessarily zero atp= ±1 and we can only replaceb by one
which has the same type of behavior forp→ ±1, such as,
e.g.,bs0dsp,qd= is1−p2d−ksqds1−p2d1/2.
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