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Triangular Ising model with nearest- and next-nearest-neighbor couplings in a field
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The authors study the Ising model on the triangular lattice with nearest-neighbor couilipgsext-
nearest-neighbor couplind&,,,> 0, and a magnetic fieldl. This work is done by means of finite-size scaling

of numerical results of transfer matrix calculations,

and Monte Carlo simulations. We determine the phase

diagram and confirm the character of the critical manifolds. The emphasis of this work is on the antiferromag-
netic caseK,,<0, but we also explore the ferromagnetic regikyg =0 for H=0. ForK,,<0 andH=0 we

locate a critical phase presumably covering the whole range K,,,< 0. ForK,,,<0, H# 0 we locate a plane

of phase transitions containing a line of tricritical three-state Potts transitions. In théllimit this line leads

to a tricritical model of hard hexagons with an attractive next-nearest-neighbor potential.
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I. INTRODUCTION

This analysis also predicts that for even larggra phase
transition to a flat SOS phase occurs, both at zero and at

The Ising model on the triangular lattice with nearest-pqn7er0 temperatures.

neighbor couplingsK,, next-nearest-neighbor couplings
Ko @nd a magnetic fieldd, is defined by the reduced
Hamiltonian

HlkBT:_KnnE SSJ_KnnnE SKSI_HE Sm» (1)

(nn) [nnn] m

wheres=+1, and(nn) and[nnn] indicate summations over

Somewhat earlier, part of this scenario had already been
described by Landaj6]. Via the lattice-gas representation of
Eqg. (1), he used the connection with th€Y model in the
presence of a six-state clocklike perturbation, made earlier
by Domanyet al.[7]. He could thus make use of their results
[7] for this model which allow for the existence of a critical,
XY-like phase in a nonzero rang,,> 0. Furthermore, Lan-
dau[6] used the Monte Carlo method to verify the existence

all pairs of nearest neighbors and of next-nearest neighborand nonuniversal character of this critical phase for the case

respectively, as illustrated in Fig. 1.

This model, in particular the antiferromagnetic model

(Knn<0), displays interesting behavior. Fét,,,=0, H=0
the model has been solved exadtly. A ferromagnetic tran-
sition occurs aK,,,=In(3)/4. An antiferromagneti¢K,,,<0)

of a fixed ratioK,,/K,,=—1.

Another tool to study the model with nonzero next-
nearest-neighbor couplinds,,, is provided by the transfer-
matrix technique. A simplification has been used in the latter
approachK,,,, was taken to be nonzero only for four out of

mirror image of this transition is absent. This is related to thethe six next-nearest neighbof8-10. This leads to a sub-
fact that the triangular lattice is not bipartite. However, atstantial simplification of the transfer matrix calculations, but

zero temperature, i.e., fdk,,— -, the model displays a
critical phase with algebraically decaying correlatidi2s.

This zero-temperature model can be exactly mapped on a [

solid-on-solid(SOS model[3]. Under renormalization, it is
assumed to map on the Gaussian mddégland on the re-
lated Coulomb gag5]. The coupling constargg of the Cou-
lomb gas can thus be obtained exactlyggs2 so that a

number of critical exponents can be calculated. The Ising
temperaturd oc—K;rf appears to beelevant the critical state

is destroyed for allT>0. Commensurate-incommensurate
transitions occur when finite differences between the infinite
nearest-neighbor couplings in the three lattice directions are

introduced[3,4].
Next we consider the case Bf=0 andK,,,,# 0. The map-

ping on the SOS mod¢and we may also assume this for the

Coulomb gasis still valid for K,,,— — but, in the absence
of an exact solutiongg is no longer exactly known. It has,
however, been deducdd] thatgg is an increasing function

of Ky The Coulomb gas analysis predicts that, for suffi-

NN AN AN AN
FIG. 1. The triangular lattice with nearest-neighbor couplings
Knn Next-nearest-neighbor couplings,,, (examples of which are

ciently largegg, the Ising temperature becomes irrelevant, sasshown as bold bongsand a fieldH (bold circle. The lattice is
that the algebraic phase extends to nonzero temperaturesivided into three sublattices labeled 1, 2, and 3.
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the resulting system lacks isotropy, so that applications o&nalysis. The study of the phase transitions of the triangular
conformal mappings become difficult. On this basis, limitedising model with nearest- and next-nearest-neighbor cou-
evidence[10] for the existence of the critical phase was re-plings in a zero field is presented in Sec. lll, and in Sec. IV
ported; the limitation of this evidence is obviously related towe describe our results for a nonzero magnetic field; we

the lack of sixfold symmetry. ~conclude with a discussion in Sec. V.
Next we consider the consequences of a nonzero field

H>0. On the basis of the relation with the Coulomb gas it

has been derived4] that, for K,,— —o and K,,,=0, the IIl. NUMERICAL METHODS
magnetic fieldH is irrelevant the critical state is not de-
stroyed by a sufficiently small fieltH #0. However, the
magnetic field tends to increase the Coulomb gas coupling Most of the the transfer-matrix calculations were per-
constantgg. The field will become marginally relevant at formed forT>0 so that we had to use a binary representa-
gr=9/4 and aransition of the Kosterlitz-Thouleg&T) type  tion for the Ising spins, leading to a transfer matrix of size
or, in this context more appropriate, of the roughening type i X 2- for a system with finite siz&. For T=0 one can use
thus expected. This transition separates the critical phase simplified transfer matrix of a smaller sigEl]. We define
from a long-range ordered phase, where the majority of thehe spin lattice on the surface of a cylinder, and take the
minus-spins have condensed on one of the three sublattic@insfer direction perpendicular to a set of nearest-neighbor
of the triangular lattice. This prediction has been confirmededges. The lattice is divided into three sublattices denoted as
[11,12 by means of numerical methods. The Iong-range or1, 2, and 3, respectively, as shown in Fig. 1. Nearest-
dered phase extends to nonzero temperaiured and is  pejghbor interactions occur only between different sublat-

separated from the disordered phase by a line of phase trafizes and next-nearest-neighbor interactions occur within the
sitions in the(H, T) plane that belongs to the three-state Potts;gme sublattice.

universality clas§12-1¢. To enable calculations for system as large as possible, a

Since the Ising model in a field can be mapped on a verté¥parse matrix decomposition has been used. This leads to a
model, and the critical manifolds of solvable vertex modelsyery significant reduction of the required computer time and
are described by the zeroes of simple polynomials in thgnemory. The transfer matrices are defined in REf&,12
vertex weights[17], it may be assumed that also for the for the nearest-neighbor model. Here we modify the transfer
triangular lattice the critical line in theH, T) is described by matrix to include all next-nearest-neighbor interactions. This
such a polynomial. This assumption was recently refuted bynakes it necessary to code twimstead of onglayers of
Qian et al. [12]. The shape of the critical line, as deducedspins as the transfer matrix index. Finite-size calculations
from this assumption, was found to be inconsistent with theyith L multiples of 6 up to_=24 were performed. The maxi-
numerical evidence. They also found that the renormalizatiopym finite sizeL=24 corresponds to a cylinder with a cir-
ideas originally outlined by Nienhuist al. [4] could be ap-  cumference of only 12 nearest-neighbor bonds.
plied to predict the shape of the critical line in thil, T) The magnetic correlation function along the coordinate
plane for smalll. This shape was found to be consistent within the length direction of the cylinder is defined as
their numerical data for the critical line.

The aforementioned three-state Potts-type critical line is Im(r) =(SS,). (2
naturally part of a critical surface extending to nonzkKrQ,,
The more involved problem to find the phase diagram in theAt large r, this correlation function decays exponentially
three-parametaiH, K, K., space has already been partly with a characteristic length scalg, that depends oK,
explored. On the basis of renormalization arguments, NienK,,, H, andL
huis et al. [4] obtained information about the shape of the
critical surface in the limitH—0. Landau[6] performed (1) o € émKnnKnnH.L) (3
Monte Carlo simulations for a fixed rati§,,/K,,=—1. He )
determined the line of phase transitions as a functioiof Which can be calculated from the largest two eigenvalugs
and noted that the three-state Potts character along this lif1d A of the transfer matrix,
changes at a tricritical point beyond which the transition 1
turns first order. -1 -

In this work we verify the predictions in Ref4] and m (Ko K L) = 2.3 (oM. @
determine the critical values &f,,,, corresponding to several _
relevant values of the Coulomb gas coupling consgnt  where the factor 23 is a geometric factor for two layers of
both for finite and infiniteK .. We verify the character of the spins. For the calculation &, we make use of the symme-
predicted critical phase al=0. We also study the critical try of the eigenvectors associated wih and\;. The lead-
phenomena associated with the introduction of a nonzering eigenvectorfor \y) is invariant under a spatial inversion.
magnetic field and explore the full three-parameter phasén contrast, the second eigenvector is antisymmetric under
diagram forK,,,,=0. inversion.

This paper is organized as follows. In Sec. Il, we summa- The theory of conformal invariandd 8] relatesé,, on the
rize our numerical methods which include Monte Carlo al-cylinder with the magnetic scaling dimensi¥p, (one-half of
gorithhms and the construction of a transfer matrix. We dethe magnetic correlation function exponent This expo-
fine the observables that will be the subject of our numericahent may be estimated as

A. Transfer-matrix calculations
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L algorithm, but also a Wolff and a geometric cluster algo-
Xin( K Ko H, L) = : (5 rithm. Which algorithm is used depends on the location in
Zﬁgm(Knna KnnnuH-L) . - . . .
the phase diagram. The Wolff algorithm is applicable in only
Asymptotically for a critical model with largé we have the case of zero magnetic field. The geometric algorithéh
conserves the magnetization and was therefore used in com-
XK Kooy HoL) = X (6) q

bination with the Metropolis algorithm. This combination
where X,,=1/(2gg) in the language of Coulomb gas. This was found to work faster than the Metropolis method, but the

equation allows us to estima¢, numerically and thus to gain in efficiency depends on the position in the three-
obtain evidence about the universality class of the model. Oarameter space.

if the universality class, and thog,, are considered known, ~ Several quantities were sampled using these algorithms in
Eq. (6) can be used to determine the critical surface, e.g., t@rder to explore the phase diagram. First we define the uni-
solve forK,,,, for given values ok, H, andL. As a con- form magnetization agn=_L"?%,s, which tends to +1/3 in
sequence of corrections to scaling, the solution will not prethe long-range ordered antiferromagnetic or flat phases, and
cisely coincide with the critical point. The effects of an irrel- to zero in the disorderegharamagneticphase. From its mo-
evant scaling fields and a small deviation with respect to ments we define the magnetic Binder ratio as
the critical value ofK,,, or K, or H are expressed by ()2

XK Ko Hy L) = X+ @ulyi + btLYt+ -+ (7) Qm= (m*

wherea andb are unknown constanty, is irrelevant expo-  Next, we consider the three-state Potts-type order parameter
nent andy, is temperature exponent. For the solution of theor, in the language of the present Ising model, the three sub-
equationXp(Kyn, Kpnn, H, L) =X, we thus haveaulYi+btL*  |attice magnetizations. We denote the magnetization density
~0, so that we expect corrections proportionalfo¥tin the  of sublatticei (i=1, 2, or 3 asm,.. On the basis of the stag-
critical point estimates. For instance, for three-state Pottgered magnetizations we write the variance of the Potts order
universality one hag,=6/5 andy;=-4/5 so that the leading parameter as

finite-size dependence of the estimated critical points is as ) )

L™2. This knowledge is helpful for the extrapolation to the M =mi+m;+m; - mmy - mpmg—mgmy - (11)

actualL = critical point. _ . and the corresponding dimensionless ratio as
In addition to &,, it is possible to determine a second m§ ,
(mg)

(10

correlation lengthé; describing the exponential decay of the
energy-energy correlation function. It is associated with a Qs (md)
third eigenvalue\, of the transfer matrix with an eigenvector

that is symmetric under a spatial inversion, just as the onét criticality, the quantitiesQ,, and Qs scale as a constant
with eigenvalue\,. The pertinent eigenvalue is thus solved plus irrelevant corrections, i.e., they converge to a constant
by means of orthogonalization with respect to the first eigenasL increases. This property can be used for the determina-
vector. In analogy with the case of the magnetic correlatiorfion of critical points.

length we can use the third eigenvalhg to estimate the

(12)

temperaturelike scaling dimensiof as Ill. NUMERICAL RESULTS FOR ZERO FIELD
_ L We restrict this work to ferromagnetic next-nearest-
XK Kooy L) = 27&(Knn K H, L) (8)  neighbor interactiongK,,,>0). First, we consider the Ising

— S model in a zero fieldH=0), and study the phase diagram in
where &=(1/2v3)In(\g/\,). At criticality, it behaves for (K K. ) plane. We distinguish the caséé,,>0 and
largelL as Kon<O.

Xi(Knn K H, L) = X;. 9

Combining Eqs(6) and(9), we can solve for two unknowns . L
simultanegus?y,(u)sing t(hzz knowiB] values of the tricritical For the Ising model we havk,=1/8 sothat at criticality
three-state Potts model, namely,=2/21 andX,=2/7. In W& expect that asymptotically for large
this way, we can esti_mate the tricritical poit,n, K fqr a X, (K Ky O,L) = % (13)
givenH. The corrections can be argued to be proportional to
LY~z wherey,,=4/7 andy;=—-10/7, i.e., the corrections de- from which one can estimate critical points, e.g., by solving
cay asL™2. for Ky, at a given value oK, or vice versa. In certain
cases, critical points can be determined accurately by ex-
) ) trapolating toL=<. For instance, foK,,,=0 we obtain the
B. Monte Carlo simulations critical value of the nearest-neighbor coupling,
Since transfer-matrix calculations are, although highly ac=0.274 652 10), which is consistent with the exact result
curate, restricted to small systems, we have also writtef{n,=In(3)/4. The results are shown in Fig. 2.
Monte Carlo algorithms for the present model. To obtain We also checked that, at the decoupling poi,=0) the
good statistical accuracies we included not only a Metropoligritical value of the next-nearest-neighbor couplikg,,

A. Results for the ferromagnetic transition (K,,,>0)
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18 - ' ' ; ; ; (3) For gz=4 we obtainK,,,=0.11792). This is where

16 [ . the KT-like line in the(K,n, Ky plane meets th&,,, axis.

14 (4) Forgr=9 we obtairk,,,,=0.2262). This is where the
a2l line of roughening transitions in th& ., K, plane meets
Ll —oac | the K, axis. This point corresponds with an actual phase
§ paramagnetic transition on thek,,,, axis. We note that, in casé¥) and(3),

© 08 I the K., axis meets with other lines of phase transitions.

ferromagnetic

0.6 | However, phase transitions do not occur at pojfijsand(3)
04+ ] because the critical amplitudes vanish on g, axis.
critical
02t
0 C. Shape of the critical lines for small|K,|

0 005 01 015 02 025 03

K, On the basis of an argument due to van Leeu{&&h, the

scaling behavior ofK,, near the decoupling pointK,,,

FIG. 2. Three lines of phase transitions in (&, K, plane.  =IN(3)/4, K,,=0), is governed by a new critical exponent
The numerically determined data points are shown as circles. Thgs=7/4. This exponent thus determines the shape of the
upper line displays the ferromagnetic critical line #65,>0. For  critical lines for small|K,,| according to
Knan<0 there are two more lines which represent the boundaries of 714
a critical phase which resembles the low-temperature phase of the K. o (In_3 -K ) (14)

XY model. The two lines appear to meet at a single point, the nn 4 nnn

decoupling point, aK,,=0. The right-hand critical line marks a find th itical v f h
roughening transition to a flat SOS phase, the left-hand line a KT- One can find the critical exponent exactly from the

like transition between the disordered and the critical phases. ThHENOWN properties of the magnetic correlation function of the

numerical errors in the ferromagnetic region are much smaller thaf'itic@l Ising model. The spin-spin correlation behaves as

the size of the symbols; for the remaining data they are difficult to 9ir(F) =2

estimate but believed to be at most of the same order as the symbol m '

size. whereX,=1/8 for the 2DIsing model. This also applies to
the decoupling point where the model decomposes in three

equals the exact value (B)/4. The three sublattices, which independent sublattices. This determines the scaling behavior

are also triangular lattices, become independent at the decofit @ four-spin correlation function involving spins in differ-
pling point. ent sublattices in the limit oK,,,—0

Fa(r) = (So0S01Sr05r1) = [Gm(r)]? o< r™m, (15)

where 559 and sy; are nearest-neighbor spins belonging to
At finite K,,<0 and smallK,,,,>0, the model is obvi- different sublattices, say sublattices 1 and 2. The same ap-

ously disordered. As described in the Introduction, with in-plies to the pair(s,y, 1) at a distance. Equation(15) de-

creasing K, the model is expected to undergd) a  scribes the energy-energy correlation associated Kyjthlts

Kosterlitz-Thouless transition to a critical phase at the poinpower-law decay is thus expressed by

where the Coulomb gas coupling reagis=4, and the corre- ox

sponding value of the magnetic dimensionXg=1/(2gg) Ga(r) o= 17, (16)

=1/8; (2) a roughening transition to a flat phase, and theyhere X, is the scaling dimension of the nearest-neighbor
corresponding value of the magnetic dimension is tKys energy density. Comparing E(L5) and Eq.(16), we con-
=1/18 atgr=9. We have solve,,, from Eq.(6) for these  ¢|ude thatX,=2X,,=1/4 andy,=7/4.

two values ofX,,, at several fixed values &f,,. Thg relsult.s We verify Eq. (14) by plotting K, versus [In(3)/4
were extrapolated th.=cc by means of three-point fits in- _k 17/4 for the ferromagnetic critical line in Fig. 3, and for

volving a constanithe estimated value &€, plus a finite-  ha o lines containing the algebraic phase in the antiferro-
size correction involving a free exponent. The final eSt'mate%agnetic region in Fig. 4. In all these cases we find approxi-

are included in the phase diagram, Fig. 2. They suggest th@t e jinear behavior near the decoupling point which con-
the two boundaries of the critical phase merge at the decoyims the predicted value of,.

pling pointK,,,=0. Our numerical results include a few spe-
cial points at zero temperatu(&,,,— —). In the renormal-

B. Results for the antiferromagnetic region(K,,<0)

ization scenario, their meaning is as follows: D. The algebraic phase

(1) Forgg=9/4 weobtainK,,,=0.018%4). This is where The renormalization scenario predicts that, in the alge-
the line of roughening transitions in th&,,,,H) plane braic phase the estimates Xf, as obtained from EqJ5),
meets theK,,,, axis. will converge to &K, -dependent limit when the finite size

(2) For gr=3 we obtainK,,,=0.06672). This is where increases. However, in the disordered and flat phases, the
the line of three-state Potts transitions in the plane perpersystem will renormalize away from the nonuniversal fixed
dicular to theK,,, axis comes in as a straight line with a line, and the data foX,, are therefore predicted to fan out for
nonzero, finite slope as argued in REf2]. different values ot.. We calculatedX,,, by solving Eq.(6) in
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0.3 . . . T . 0.25
025 5
25 L 1 | 12 &
0.2 T
02| # -
0.15 |
J o5t oF
01 F
0.1
005 ] 0.05 |
0 . . . . s 0 . . . . s X
] 002 004 006 008 0.1 0.12 0 005 01 015 02 025 03 035
[In3)/4-K,...]"* Ko
FIG. 3. The ferromagnetic critical line, plotted &S, versus FIG. 5. Finite-size estimates of the magnetic scaling dimension

[IN(3)/4-Kpnil "% The approximate linear behavior confirms that X,,, versus next-nearest-neighbor couplikg,, at K,,=-%. For

the exponeny, associated witf,,, obeys the theoretical prediction clarity we include four lines connecting data points for system sizes

ya=7/4. Theestimated errors are smaller than the symbol size. L=6, 12, 18, 24, respectively. The dashed line indicates the special
value X,,=1/18, and the black triangle shows the estimated critical

a suitable range oK, at fixed values oK, namelyK,,  Value ofKnnnfor Knn—=co.

=-m», -0.6, —0.4, -0.2, and —-0.1. These results confirm the L )
renormalization predictions, as illustrated in Figs. 5 and 6Cate that the finite-size dependence of the slopes is governed
Figure 5 shows that, foK,,,=—= and H=0, the data ofX, by anegativeexponenty. of L, which indicates that the_ slope
converge to &, rdependent constant in a range Kf,, L CONVerges to a constant fdr—c, as expected in the
from zero toK,,=0.2262) as determined above. This con- Cfitical range.

firms that forH=0, K,,,=—o the system indeed remains criti- N Order to provide independent confirmation of the alge-
cal until K,,,, induces a transition to a flat phase. In contrc";lst,bra'C phase, we also used the Monte Carlo method. Simula-

Fig. 6 indicates that for nonzero temperature the criticafioNS Were Idoneff(;r_x L slyst?ms OLSiZQZZA". 36, 48, and
phase starts at a positive value k., Figure 7 shows the ©00- Examples of the results i@ andQy, are given in Figs.

inverse ofX,,, and provides a clearer picture of the transitionghand 9, respehctively, "’?IS ? functri]on Iﬁ)zmn’ for KH”:_O'Z'
at the largeK,, side. We have numerically calculated the | '€S€ data behave similarly as thoseXgy and show good

average slopeS§_ of the finite-size curves in intervals speci- apparent convergence to a nonuniverghydependent con-
fied in Table 1, and fit them as follows: stant in the pertinent range. Note that the curvesGgdis-

play intersections ned,,,~0.207, and those fo®,, near
§ =S +al¥e+ -, (17) Knann=0.245, apparently at different sides of the algebraic
phase as shown in Fig. 2. We interpret these intersections,
where S, is constant, and/, denotes the exponent of the i.e., solutions of Eq(6) coinciding for differentL, as the
leading finite-size correction. Results listed in Table | indi-cancellation of the leading twd-dependent terms. Such

0 : ; : 0.2
o1kt - 0.2
02t j 0.15
03t § 0.1
04 F y 0.05
_0.5 ! 1 1 0

0.001 0.002 0.003 0.004
[In3)/4-K.,...]""*
FIG. 4. AntiferromagnetidK,,<0) critical lines near the de- FIG. 6. Finite-size estimates oK, versus K,,, at Ky,
coupling point. The numerical resulfsircley are plotted a,, =-0.6. For clarity we include four lines connecting data points for

versug[In(3)/4 Ko "4 The approximate linear behavior at small system size& =6, 12, 18, 24, respectively. The dotted and dashed
|K.il confirms that the exponent associated with the scalingqf  lines indicate the special valué§,=1/8 andX,,=1/18, respec-
obeys the theoretical predictign=7/4. Theestimated errors in the tively. The two black triangles show the estimated critical values of
data points are at most of the same order as the symbol size. K, at K,,=-0.6.
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50 1
10l 098
0.96
30
- § o 094
20
0.92
24 x
10F 0.9 36
48 ©
60 [}
0 . \ . . 0.88 . . . L
o1 0.15 02 0.25 03 0.19 0.195 0.2 0.205 0.21 0.215
Knm’l I(nnn

FIG. 7. Finite-size estimates of the inverse magnetic scaling FIG. 8. D|m9n3|onless amplitude ratiQs versusKpn, a_t_K”” .
dimensionX:? versus next-nearest-neighbor coupliKg,, at K =-0.2. Intersections are found to occur near the transition point
-—0.6. The nr1neaning of the lines and symbols are thg samng as fetween the disordered and the algebraic phases. The four lines
Fig. 6. The phase transition to flat phase is clearly visible in thisconnecting the data points represent, with increasing slope, system

figure. sizesL=24, 36, 48, and 60, respectively. The numerical uncertainty
margins are much smaller than the size of the data points.

terms are likely associated witll) the corrections as natu-

rally associated with irrelevant fields in the algebraic phasedescription implies that this line is a straight line when ex-
and (2) the fanning-out phenomenon mentioned above. lfpressed in the scaling fields. In view of the proximity of both
appears that the first types of correction®inandQ,,, are of  numerically determined points, we expect an almost straight

a different sign. line in the (K,,n,H) plane. The connection of the three-state
Potts transition line and the roughening transition point in
IV. RESULTS FOR NONZERO FIELD (H,K,) plane has been analytically investigated by Qén

. . . al. using renormalization arguments. Their analysis indicates
In view of the Ising character afl), we restrict ourselves o+ 1he"roughening transition Bit=0.266 is the end point of
to H=0 without loss of generality. The phase diagram with-y,e poyts transition line iH,K,,) plane forT| 0. Their re-
olut ne;(t—ne?resé-ngghb(()jr mtergct:jogs, €., Im (ZhE Kt‘”r)] sult applies similarly to other points on the line of roughen-
plane has already been determined by Ceaal. [12], wit ing transitions. We thus believe that this whole line serves as

special emphasis on the limKy,——c. In that limit, @ 5 %ontier of the Potts critical surface, as well as the part of
roughening-type transition is locatétil,12 nearH=0.266. the K, axis with g between 9/4 and 4 as determined in
As mentioned above, the algebraic phase becomes less stallg. |/ A

against perturbation b whenkK,,,,increases, and the alge-
braic phase in th€K,,,H) plane shrinks to zero afg
=9/4 which corresponds, as mentioned above, Kg,,
=0.0185.

The line connecting the two pointX,,,,H)=(0,0.266 08
and(0.0185,0 is a line of roughening transitions separating
the algebraic and the ordered phases. The renormalization

Since three-state Potts universality impligs=2/15 at
criticality, we expect that asymptotically for larde

075 |

07
TABLE |. Fitted results for the extrapolated average sl&e

~dXq/dKpn, in the algebraic phase. The last column shows the & o065 +
exponenty, of finite-size correction. The increase |&,| with K,

corresponds with the narrowing of the algebraic phase when the 06

decoupling pointk,,=0 is approached. The intervals &, in 4 x

which the average slopes are calculated are listed in the second 0.55 36 o

column. o . . Ié(s) ;

'0.235 024 0.245 0.25 0.255

Knn Knnn SJC yC Knnn
- 0.18-0.20 ~0.593) -1 FIG. 9. Dimensionless amplitude rat@,, versusK,,, at K,
-06 0.18-0.20 —0.782) -129 =-0.2. Intersections are found to occur near the transition point
-04 0.18-0.22 -1.2@8) -0.7(2) between the algebraic and the flat SOS phases. The four lines con-
-0.2 0.21-0.22 -3.3(5 -0.3(1) necting the data points represent, with increasing slope, system
-0.1 0.23-0.25 -5.q10) -0.2(1) sizesL=24, 36, 48, and 60, respectively. The numerical uncertainty

margins are much smaller than the size of the data points.
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2
CZKm
15

FIG. 10. The complete phase diagram in the
three-parameter spacel, Ko, €<m). The solid
lines denote second-order phase transitions, and
the heavy dotted line is the tricritical line separat-
ing the three-state Potts critical sheet from the
first-order sheet which is shown by heavy dashed
lines. The three-state Potts critical surface is be-
lieved to connect to the?m=0 plane at the KT
line near the origin, and at th€,,, axis until the
appearance of the critical phase. The algebraic
phases foH=0 and forT=0 are lightly shaded,
and the thin dashed lines are projection lines
added for clarity. The error margins are at most of
the same order as the thickness of the lines.

1
0.5

XKy Ky Hy L) = 115 (18) resylts shpwn in Table II,.and included ip Fig..lo. In com-

parison with transfer-matrix calculations involving onfy,

from which one can estimate critical pOintS by SOlVing for the memory requirements are somewhat |arger_ As a conse-

one of the three variable&, Koy, H) for specified values  quence only three values bfup to 18 could be used. But we

of the other two, and subsequent extrapolatioh. toe. We  found that finite-size corrections are relatively small, and we

thus calculated critical points on several lines at fixed valuegre confident that the tricritical line is well determined.

of H. The results are shown as lines connecting these points For sufficiently large fieldH, triangles may contain at

in Fig. 10. In order to zoom in on the connection of the most one minus-spin and the tricritical line approaches a

three-state Potts transition surface and the transition lines igicritical lattice-gas limit. In this limit the nearest-neighbor

the (Kynn, Knn) plane, we have also estimated critical valuescoupling and the field satisfy a linear relation

of H at fixed values oK, for a suitably chosen range of

Knnn Results forK,,=—0.8,-0.1,-0.15 are included in Fig. H

10. They fit well with the qualitative predictions for the Knn:_g+c' (19

shape of the critical surfadd] for smallH. Furthermore, our

data for the critical points aK,,,=0.0667, corresponding As illustrated in Fig. 11, the numerical data fit this expres-

with g,=3, agree with the linear behavior as mentioned insion well, except at smaMi. In order to obtain a satisfactory

Sec. Il A. fit to the numerical data foH=1, we added terms propor-

Our results confirm that, when the next-nearest-neighboftional to €2"3 and e™*3 to Eq. (19). This fit yielded C

coupling K,,, becomes sufficiently strong, the transition =-0.014 815). A similar fit without a term proportional tél

from the disordered phase to the ordered phase changes chgieldedK,,,,=0.235 147) for the tricritical lattice gas limit.

acter at a tricritical line, beyond which the transition turns  \We have used Monte Carlo simulations to determine the

first order. We have located the tricritical line using transfer-jocation of the sheet of first-order transitionsat,,=0.3. We

matrix calculations. By solving Eqg6) and (9) simulta-  found that, depending oK,,, andH, a randomly initialized

neously fork,, andK, at specified values dff, we obtain  system evolved to a phase either largely magnetized, or re-
sembling one of the three ordered Potts states. The threshold

TABLE II. Tricritical points as obtained by the transfer matrix

method for several values ¢f. The decoupling poinK,,=0 is 0 %
included here as the end point of the tricritical line, although it does
itself not belong to the tricritical three-state Potts universality class. 02
H Kin Knnn -04
0.00 0.0000 (0) In(3)/4 (0) J 06}
0.05 -0.0107(12) 0.269 (1)
0.10 -0.0214(10) 0.2654 (5) -0.8 f
0.5 -0.0937 (5) 0.2572(5) 1l
1.0 -0.1799 (2) 0.2500 (2)
1.5 -0.2644 (2) 0.2452 (2) 12 . . . A .
2.0 -0.3481 (2 0.2421(2) 0 1 2 3 4 5 6
3.0 -0.5150 (1) 0.238458) H
4.0 -0.6816 (1) 0.236788) FIG. 11. The tricritical line shown &, versusH. The numeri-
5.0 -0.84823(5) 0.235998) cally determined tricritical points are shown as circles, and the solid
6.0 -1.01487(5) 0.235608) line represents the tricritical lattice-gas limit a$,,=-H/6
—-0.014 81.
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values between these two regimes are shown by the heawffective attraction between the hard hexagons, induced by
dashed lines in Fig. 10. They fit smoothly with the resultsentropic effects associated with the small hexagons.

obtained in the critical range and for the tricritical line. An Ising-type ftricritical point is known to occur also in
the analogous case of the hard-square lattice]2823,24.
V. DISCUSSION Our result thus confirms that tricriticality is a generic prop-

) ] erty of hard-core lattice gases with attractive next-nearest-
We have determined the phase diagram of the model Egyejghhor interactions.

(1) for Kypn=0. We locate a surface of phase transitions. Since we do not doubt the universality class of the
This surface divides into a three-state Potts-type critical shegficritical line, we have not explicitly determined its critical
and a first-order part. The two parts are separated by a trixponents. However, we remark that the fast apparent con-
critical line. While the determination of tricritical line bg- vergence of the estimated tricritical points confirms that the
comes less accurate for sml,|, our data suggest that it yaues of the Potts tricritical exponerits, andX,, as used to
spans the whole rangex<K,,<0. This is in agreement gg|ye Eqs(6) and(9), do indeed apply.
with the minimal renormalization scenario in which the tri-  Renormalization analysis predicts that the uniform mag-
cr_ltlcal I|.ne is a floyv !|pe Ie.adlng Q|rectly from the decou- netic field H is relevant, except for a small range<@js
pling point to the tricritical fixed point. _ <9/4. Thus the planél=0 qualifies as a possible locus of
~ ForH— o, minus-spins are excluded on nearest-neighbohe universality classes, in line with the existence of a criti-
sites and the the substitution=(1-s)/2 reduces the model ¢4 phase such as predicted by the renormalization scenario
to a hard-hexagon lattice gas described by the reducegnd confirmed numerically. We finally note that the renor-
Hamiltonian malization equations for the KT transitions imply that the
line of KT transitions, as shown in Fig. 2 on the left-hand
HilkgT = Vin2 010)+ Vo 2 0k01 = w2 07, (20) boundary of the critical phase, shouldgcome in as a straight
(nny [nnn] m . . . . . .
line on the horizontal axis, in contrast with the numerical
where the site variables assume values=0, 1 and results which display a small part with a sudden curvature.
Von— so that nearest-neighbor exclusion applies. TheMe believe that this is a finite-size effect, explained by the
chemical potential of the lattice-gas particles depends on theame renormalization equations, which involve the margin-
Ising parameters ag=-12K,,,—12K,,,—2H, and the next- ally irrelevant temperature field parametrizing the line of KT
nearest-neighbor potential &,,=-4K,.» For V,,,=0 this  transitions. This scaling field generates slowly converging
model reduces to Baxter’s hard-hexagon lattice[@as Ac- finite-size corrections. This field and its associated finite-size
cording to the analysis presented in Sec. IV, the tricriticaleffects vanish aK,,=-%.
line persists in the lattice-gas limit. The Ising parametérs
andK,,,,determine the tricritical parameters of the lattice gas
as o
=-2.6441) and V,,,=—0.94063). Our findings may be We are indebted to Jouke R. Heringa for his contribution
compared with those of Verberkmoes and Nienligg fora  to the development of the geometric cluster algorithm used
model with V,,,=0 but including additional smaller hexa- in this work, and to Bernard Nienhuis for valuable discus-
gons. They also report a tricritical point, attributed to ansions.
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