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Monolayer cluster growth in far-from-equilibrium systems is investigated by applying simulation and ana-
lytic techniques to minimal hard core particfexclusion models. The first mode(l), for postdeposition
coarsening dynamics, contains mechanisms of diffusion, attachment, and slow activated detéahraémt
e<1) of particles on a line. Simulation shows three successive regimes of cluster growth: fast attachment of
isolated particles; detachment allowing furttien'/® coarsening of average cluster size; and? approach to
a saturation size varying as2 Model Il generalizes the first one in having an additional mechanism of
particle deposition into cluster gaps, suppressed for the smallest gaps. This model exhibits early rapid filling,
leading to slowing deposition due to the increasing scarcity of deposition sites, and then continued power law
[(et)?] cluster size coarsening through the redistribution allowed by slow detachment. The(&#<fc
domain growth laws ane*/? saturation in model | are explained by a simple scaling picture involving the time
for a particle to detach and diffuse to the next cluster. A second, fuller approach is presented that employs a
mapping of cluster configurations to a column picture and an approximate factorization of the cluster configu-
ration probability within the resulting master equation. This allows, through the steady state solution of the
corresponding equation for a cluster probability generating function, quantitative results for the saturation of
model | in excellent agreement with the simulation results. For model Il, it provides a one-variable scaling
function solution for the coarsening probability distribution, and in particular quantitative agreement with the
cluster length scaling and its amplitude.

DOI: 10.1103/PhysRevE.70.036109 PACS nunder05.50:+q, 05.40-a, 68.43.Jk

I. INTRODUCTION hard core particles. The diffusion rates arel when the
This paper is concerned with domain growth in far-from- Particles are free, i.e., when they have two empty nearest-

i i BT -
equilibrium systems. This is a subject of increasing interesp€ighbor sites, and=e~e™=" (whereE is the related energy
because of both the wide range of behaviors and the larg arrien when they have one occupied nearest-ne|9hbor site
number of applications, which range from phase separatiot '9: l(a)]i/|3:pre<1 (T—0), the average aggregate’s length
in mixtures to island formation and coarsening during depo9roWs ast~~in a long time range, and eventually approaches

sition of a thin film or submonolayefl,2], among other Saturation atw_e_l/z with a SlOWt_llz decay(Sec. I). In the
systems. limit e— 0, this model is equivalent to the Ising model with

Our aim is to discuss a series of one-dimensional exclulk@wasaki dynamics previously studied by Correllal. [5],

sion models with particle diffusion, reversible or irreversible Who focused on its zero-temperature features. However, the
ynamic rules are mainly motivated by the Clarke-

attachment to clusters, and deposition mechanisms that re?/ et
resent, for example, volume reduction effects after clusteVVedensky model for thin films or submonolayer grow,

coalescence. Diffusion processes tend to bring these syster@écluding the deposition processes. In the simplest versions
to equilibrium steady states, but pressure and other extern8f that model, an isolated adatom has to overcome an energy
influences may drive the system to new steady states. AParrierEs to diffuse, while when it is attached o nearest
though not usually related to a specific real problem, thes@€ighbors the energy barrier increasestenk,, wherek,
one-dimensional models may reveal interesting features that @ bonding energy. This model and related ones have al-
help to understand more complex and realistic surface angfFady Peen intensively studied in two dimensions during the
bulk systemg3,4], with the advantage of being more trac- J€POSItion procesgs—8), but a few works have considered
table both analytically and numerically. We will discuss a'he POSt-deposition coarsening dynamigh

series of plausible physical situations in systems with diffu- 11 £ £
sion and mechanisms that drive them out of equilibrium, in (8 _O_ O0_ -00
order to understand the details of domain growth and con-
vergence to steady states, if it occurs. 1(;3 1(? 1(? Q
In the first model, hereafter called model I, a fixed frac- X
(b) ___ -0 O__ 0_0

tion p of a one-dimensional lattice is randomly filled with

FIG. 1. (a) Diffusion and detachment processes of model |, with
the corresponding rategh) Added deposition processes of model
*Email address: reis@if.uff.br I, with the corresponding rates. The deposition at sites with two
"Email address: r.stinchcombel@physics.ox.ac.uk occupied neighbordast proceskis forbidden.
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Subsequently, we will generalize the previous hard core 15 (i)
. iii) |

dynamical system by introducing deposition of parti¢kese,

e.g., Refs[10,11)), but allowing deposition only atempty)

sites with at least one empty nearest neightsag. 1(b)]. In

this model(referred to as model )] the domain coalescence,
which generates larger vacancies between aggregates, is fol-
lowed by a density increase. The exclusion of deposition at (i)
single holes between clusters represents the geometrical frus- 0.5 —
tration of real systems. In Sec. lll, we will show that this 0 2 4 6 8
model exhibits at*> domain growth. This is among other log,,(t)
results we have obtained by simulation studies, which are ) ) ) )
presented for both models | and 11 in Secs. Il and IlI, respec- /G- 2. (Color onling Typical time evolution of the average
tively. cluster lengthd in model I, with three different regimes. Data in the

Our models share some aspects with diffusion limitecP'®t Were obtained fop=0.5 ande=10".
coalescence modeld14-1§ and with fragmentation- ¢=1073 and for p=0.5 we performed simulations unté
aggregation modelgl2,13. They are similarly described in =105,
terms of cluster or interval probabilities, and like the frag- The sequence of characteristic behaviors of model I, as
mentation models they are amenable to analytic investigatioshown by simulation results, at® early fast attachment of
based on an independent cluster approximatibe indepen- isolated particles to each other to form clustgiig;an inter-
dent interval approximation to the joint cluster length prob-mediate regime in which detachment sets in, allowing further
ability occurring in the master equatipriWe use this ap- coarseningfiii) finally, a diffusive approach to a saturated
proach to explain properties of models | and Il, including Sstate where the clusters have a large steady mean size that
distributions of cluster siz€Secs. Il and Il). Further, a depends ore.
simple scaling picture can be developed in order to describe The three regimes are well separated at sraallhis is

the basic domain growth laws; we use this at the beginnindllustrated in the plot of log,d versus loggt, shown in Fig. 2,
of Sec. Il. whered is the mean size of clusters of two or more particles;

dis given in terms of the probabilit®,(m) that an arbitrarily
chosen cluster has sizer mas$ m at timet by

log,,(d)

Il. MODEL I: DIFFUSION, DETACHMENT, ®
AND REATTACHMENT OF PARTICLES 2 mP,(m)
A. Processes d= m:j— (1)
The model studied in this section has the particle hopping > P(m)
processes depicted in Fig(al Isolated particles hop sym- m=2

metrically on a chain at unit raiédiffusion”), while a single
particle with a left handright hand neighbor can hop to an
empty right(left) neighbor with rates (detachment So clus-
ters evolve by detachment and reattachment of particles. Th
model is of exclusion type: no site can accommodate mor
than one patrticle.

This model is clearly particle conserving, so the dengity
is fixed. The case&<1 is of particular interest since, as re- d~te. (2)
ported in the simulation studies below and explained in th
following subsection, very large clusters emerge.

The early time dependence dfin region(i) (at smalle)
starts with a characteristic increase with rate proportional to
high power ofe, and then crosses over to a form allowing
ata collapse in terms of the reduced time variatileas

shown in Fig. 3.
In region(ii), d increases as

eI'he apparent exponents, defined as the local slope of the
log dXxlogt plot, was calculated numerically. is shown

. . N RARE RARE RS RARE RN

B. Simulations ]

We simulated model | in one-dimensional lattices of 15 ‘f J
length L=8000. This length is sufficiently large to ensure i',i C o]
that finite size effects are negligible, as shown by compari- & . F &; B
sons of some results with data from lattices wlith 16 000 - 8 - .
(particularly for the smallest values ef this comparison is r _uﬂ' .
essentlal 0'5 -_I Ix‘:alAulg)lmlxnlxl 111 I 11 | 1 I_-

Initially, the lattice is randomly filled with a density of
particlesp. We simulated three values of the dengity0.1,
p=0.5, andp=0.9, which are representative of the range of
intermediate densities, i.e., densities not too sifsit 0) or FIG. 3. (Color onling Average cluster length as a function of the
too large(p=1). For p=0.1 andp=0.9, we considered sev- scaling variablelog;o(et), for model | with p=0.5 and e=1073
eral values of the diffusion rate ranging frome=10"1to  (squarey e=107* (triangley, ande=5x 10°° (crosses

-4 -2 0 2 4
log,,(te)
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FIG. 4. (Color onling Effective exponentsy, defined as local 0 10 20 30 40
slopes of the logl X log t plots, for model | withp=0.5 ande=5 e-1/2
X 107° (bottom, blug, e=2x10"° (medium, greenand e=107°
(top, red. FIG. 6. (Color onling Saturation value of the average cluster

length as a function o€ 2 in model I. The dotted line is a least
in Fig. 4 as a function ofet)™* for three different values of. squares fit of the data.
It appears to approach the valae1/3 in thelimit of small

€ and correspondingly large which is consistent with the to a neighboring one. The second case provides the sharing

prediction of a simple scaling descriptignext subsection  which sets the mean cluster sideAt densities of ordep
Figure 5 shows the diffusive approach of the mean cluster 1/2, the cluster size is roughly of the order of cluster sepa-

size to its saturation valud... This approach is well de- ration [see Fig. {a)]. Thus the equilibrium of detachment

scribed byd=d,,~C/t"/2 for t—o, with C constant. The time (1/¢) and time of diffusion to a neighboring cluster
dependence o of the saturation valuel. is illustrated in  (~d2) gives the observed saturation result
Fig. 6 for p=0.5. The least squares fit in Fig. 6 gives

d, ~0.72¢ 12+ 1.93, 3) d~e'2 (4)

N . . >y
in which the dominantproportional toe™*) and the sub-  Tpjs argument can be generalized rather obviously to explain
dominant(additive constantterms were estimated. Like EQ. g t-1/2 approach to saturation.

(2) with @=1/3, this result follows from the analytic work in

A more interesting application is the explanation of the
Sec. Il C.

early cluster size growth lafEg. (2)]. Here, unlike the satu-

ration just described, the cluster separations are such that the
C. Theory detached particle is likely to return and reattach many times
. _ . . before it eventually diffuses to the next clusié&igs. 1a)

The characteristic results just described have been integng 7p)). Its likelihood of returning to the origin means that
preted by simple heuristic scaling arguments and by detaileghe getachment rate needs to be replaced by an effective
analytlc stqd|es startlng.from the master equation and eMpytez= €P i, WhereP,;, is the(migration probability that a
ploying an independent interval approximation. This secongeely diffusing particle does not return to the detachment
approach is capable of yielding cluster length distributionssjte hefore diffusing the distanced to the next cluster. In
and their evolution. _ _ other wordgsee Fig. )], this is the probability that a free

To begin with, we focus on the asymptotic cluster size atparticle at positiony=1 does not return to the origify=0)
small e. This asymptotics occurs in the regime where loneyqtore a time of orded?, which is the typical time for dif-
particles are rare, and those that are present are in the procggsion along a distance. Considering that
of reattaching themselves to the clusters they came from or

€
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0 5x10* 10-8

1/t1/2 FIG. 7. (a) Detachment of a particlén gray) at the border of a

cluster, with ratee. In model |, the mean cluster lengthdsand the

FIG. 5. (Color online Average cluster size at long timéss a  typical cluster separation is, asymptotically, also of omi&sr den-

function of 142, for p=0.5 ande=1073 in model I. The dashed sities not too small nor too largéb) A free particle(in gray) im-
line is a least squares fit of the data foP£0t<1C8. mediately after its detachment from the right cluster.
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@ o0 00 6 0 We denote byP,(m) the probability that a randomly cho-
T~ N YY VY sen clustefequivalently, columhhas sizem at timet. Then
/ P fo the gain(loss from in (out) processes provides the following
(b) 4 K R master equation, in an independent interval approximation in
Y(\ mY N oo which joint probabilities are factorized:
E— l' 1’ ,' "
__ Pesa(m) = Py(m) = Ay
z ' " " ’1
fLr EP«m—l)o(m—l)[yE Pm)
F 9~ m=2
[ P +1P(m' = 1)] +P(m+ 1)
L] L L
FIG. 8. (a) Example of particle-hole configuration on a line and X[y6(m+1-2)+ 15m,0]

the map(dashed arrowsinto a column problem(b) The processes
of particle detachment from clusters, with rageand of free par-

- F’t(m)[ YO =2)+ 15,1+ y
ticles diffusion, with rate 1, in the corresponding column picture.

X > P(m') +1P(m’ = 1)]. (10)
2 /=
QY. = r3’2exp(— o ) (5) e

(4mD)*2 4Dt The corresponding equation for the generating function

is the probability that the first passage of a random walker at G(s) = X P(m)s™ (11
pointy occurs at time [17] (D is the diffusion coefficient m=0
Pmig IS given by is

Prig~ f C Qdt~ . ©  Cnl9=G(9|L+san+) —y—a<t>}+s<y—1>m<1)
d2

In terms of the effective rate, the required time for a +[yP0) + (1 = pP(D)] - ZPI(O), (12
particle to transfer to the next cluster is of ordefelThus, S
the time required for doubling the size of a cluster by  where a(t)=9{1-P,(0)]+(1-y)P,(1). It is easy to check
successive gain and loss of particlesdf§e~ d®/e. So the probability and mass conservation usi@g0) andG; (0).

cluster growth proceeds according to The steady state distributioR(m) and generating func-
tion G(s) resulting from Eq(12) are given by
d d
—_—d ~ , 7 - _ -1 _ _
a’ (e (7) G(s) = (y—sa[yP(0) —s(1 - y)P(1)], (13
A m-1
and hence P(m) = <—> P(1), m>1, (14)
Y
d~ (et)'2. (8 and
P(1) = AP(0), (15

This explains the behavior seen in the simulatigfgs. 3

and 4. The situation is analogous to domain scaling in Isingwith A=+{1-P(0)][1-(1-y»)P(0)]™*. So the steady state

chains where, with Kawasaki dynami¢s], spins split off  cluster size distribution is exponential. The mean size of

from domain edges and migrate across to increase the deaultiparticle clusters[Eqg. (1)] and the mean masgm)

main size by one lattice unit. =X7_, mP(m) are then obtainable in terms Bf0), as is the
We turn next to the more powerful analysis starting fromdensityp. So, in particular, the mean cluster lengtks (m)

a version of the master equation, which can provide a fulcan be found in terms gf. The result simplifies at smatl

description of the process. This is more easily set up bysmall¢) to

reformulating the process using a column picture, in which a

column of heightm represents a cluster of sime and then - y—1/2[

the original detachment and diffusion processes correspond

to those shown in Fig. 8. Since one cluster has two edges but {

p }1’1 [p/(1-p) +3]
(1-p) 2

p ]1’2+[p/(1—p)+3]
2(1-p) 2 ’

where the dominant and the first subdominant terms are
v=2e. (9)  shown. This form is consistent with the scaling regdjtand

corresponds to a single column, the one-particle detachment =12
rate in the column picture is

(16)
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B . 2411 Lo b a1
C i 0 2 4 6
- ’ log,o(1/€)
0.17 I R R R R
0 0.005 FIG. 10. (Color onling Ratio between the estimated amplitude
1/t1/2 B of the scaling of average cluster lendfq. (17)] and €2, as a

function of logy(1/e), in model I1.
FIG. 9. (Color onling Long time scaling of the mean cluster

length(d) in model II. analysis given in the next subsection, including the estimate
of the amplitudeb.
is in very good agreement with the simulation resiy, The dependence of the evolving density on tinaad rate

including the subdominant constant term: Ef6) givesd € has also been studied. The simulation results shown in Fig.
=0.7071..€ 2+ 2 for p=0.5(see also Fig. 6 In the same 11 imply that the density is a function of the scaling variable
limit, this is also, apart from a numerical factor, the charac-(et)*/? and, at very long times, it converges to 1 as

teristic size in the exponential cluster mass distribution.

1-p~ (et) 2 (19
Il MODEL II: DIEFUSION AND DEPOSITION ;’2;2 form is also in agreement with the theoretical analysis
OF PARTICLES W-
A. Processes
C. Theory

Model Il is a generalization of model I, different only by
having the deposition processes depicted in Fib),in ad- The characteristics presented in the foregoing subsection
dition to the diffusion and detachment processes of Fig.. 1 can be interpreted using an analytic investigation along the
This makes the model non-particle-conserving, which lead$nes of the detailed discussion given in Sec. Il C.
to continued coarsening and other scaling properties and We have to include the effects of the extra deposition
Crossover. process, which leads to a decrease of the total number of

clusters and of the number of holes between the clusters as
) ) time increases. On the other hand, the lerigtf the line in
B. Simulations which particles are deposited and diffuse is kept constant.

The characteristic behavior of model Il, as exhibited byConsequently, in order to adopt the column picture of Sec.
simulation results, is as follows. For initial densities not too!l C (see Fig. §, it is necessary to consider that the lenggh
nearp=1, there ig(i) an early regime of rapid filling, due to ©of the corresponding column problem decreases in time
deposition, and cluster evolution due to both procesdis; (these lengths are related lag=L—M, whereM is the total
an intermediate regime where deposition slows because #fass or total number of particles, for periodic boundary con-
the scarcity of deposition sites due to the increased density-ditions).
the exclusion constraint of course applies. The slow detach- The evolution equation here is written for cluster numbers
ment process allows redistribution of particles, opening ufS
new deposition sites and allowing a continually slowing

coarseningwith no saturation ap&lt;1). IR L B

Figure 9 shows simulation results for the evolution of the 0.4 .__,,p 7

mean cluster sizd. That plot shows thad(t) is well fitted by ng 38 E P ]

the form e s, B

Q B ]

d(t) - Btl/2(1 + Ct—1/2+ .. ) (17) 1,0.36 - °s 7]

~ F 4 ]

In Fig. 10 we show the ratio between the estimates of the 0.34 - .

amplitudeB and €'/ for several values ot. Those results Lo b a1 ]
give 0 0.05 0.1

1/(et)1/2

B(e) ~ be'’?, (18 . . : o

. - _ . FIG. 11. (Color onling Scaling plot of the particle density in

with  negligible corrections to scaling, whereb  model II, for e=102 (squarey e=5x1073 (triangley, and e
=0.252+0.002. This result is in accord with theoretical=10"2 (crosses
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N(m,t+ 1) - N(m,t) = Lo(Apn+ By), (20) 1 (m
oA B P(m)=2g| ). (26)
where the diffusion contributiont,, is given in Eq.(10) and
the deposition contribution is with
Bm: Pt(O)[20(m— 2) Pt(m_ 1) - 20(m— 1) Pt(m) + 5m,1pt(0) f(X) - Jw g(y)e—xydy' (27)
0

- 280 (21
It turns out that the consistent scaling solution &) =0,
so the 1t* contribution toP,(0) vanishes, leaving a leading
term of lower-than-scaling order,

The length of the lattice in which the column problem is
defined varies due to deposition as

Lo(t+1) — Lo(t) c/2
Lo ORROL @2 P(O)=5. (28
In these equations, the cluster probability is wherec is a constant. Equatio24) leads to the dynamical
exponent
p(m) = S 23
and to the following equation for the one-variable scaling

They preserve conservation of probability, but mass is n
longer conserved.

The resulting equation is similar to ones occurring in coa- xf'(x) — 2cf(x) — 2yx?f(x) + 2c = 0. (30)
lescence modelgl4—14. From this we expect that the large
time and smalle limit discussed subsequently is equivalent

?uncﬁon:

Even without solving Eq(30) we can infer that

to the model in Ref[14]. Our approach, which exploits the c/2
generating function method, becomes equivalent, in the scal- P(0) = T (31)
ing limit, although in a conjugate space, to continuum ap-
roximations used in the coalescence studies of Refs.
F14,1q. (), ~ Y212 ~ U212, (32)
Now the generating functiofEq. (11)] satisfies and
Gua(9[1 —P(0)] - Gy(s) 1-p~y Va2~ Va2, (33)
Y % These hold in the long time scaling limit we have introduced
=(s= 1| G(s)|alt) - s (y=DP(D) + gPt(O) and agree with the observed simulation results in Egs.
(17~19).
+P0)[2(s— 1)Gy(s) =sR(0) +2(P(0) - 1)].  (24) Equation(30) can be formally solved for the scaling func-

. . _ tion f(x) by using the variableZ=x? and considering the
In the right hand site of Eq24), the first term corresponds function f(x)x"2. The result is

to diffusion processes and the second one to deposition pro-

cesses. c(” <l o,
Because deposition slowly fills the system, we expect the fx)=— f (1 + _> e dv. (34)
configurations to coarsen and presumably to go into some vlo Y
scaling asymptotics where mass scales with some power of The largex expansion of (x) and Eq.(27) provides the small
andP,(m), andG,(s) each become one-variable scaling func-y expansion ofy(y):
tions. So we look for a long time scaling solution of the
above equation. - _ g(y)zig<L> (35)
At long times, the finite differencé,,,(s)-Gy(s) in Eq. Y27\ A2 )7
(24) can be taken as a derivative. The scaling variable will be

some combination df (large) andu=1-s (small), the latter Wwhere
because large cluster sizes arise from structur@(s) at s “oc(c+1)---(c+m)
~1. The variableu is actually conjugate ton (see below Gu=> (2m+1)! (-1mu™ (36)
Coarsening will correspond to the scalenofist?, with some m=0 '
powerz, in which case the one-variable form will be This confirms thaig(0)=0. The cluster distribution has the
G(s) = uf(ud), (25) following form, in terms of the odd functiog:
1 m
with some functionf. Normalization requirese=0 and P(m) = o g( - (t))’ (37)

f(0)=1. In the scaling limit, the relationship of the generat-
ing function to the probability?,(m) requires the latter to be where m"=(y)Y2~ (et)2. It explains the scaling variable
of the form (et)Y2 used to collapse the simulation data in Fig. 11.
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The conditions thaG must be non-negative and normal- saturation cluster size in quantitative agreement with numeri-
izable are satisfied witb=1/2 in Eq.(28), which leads to  cal data.
Model Il generalizes model | in having also particle depo-
G(u) = Yew2? (3g)  sition: this is allowed only at empty sites with one or two
2 empty nearest neighbors. Simulation results show continuous
coarsening with & increase of the average cluster size and
an increase of the density with/? corrections. These scal-
ing forms are justified by analytical investigations, again us-
(M, = Vr;(yt)1/2_ (39) ing an independent cluster approximation, which provides
o ) ) good quantitative agreement with the simulations.
Considering relation9), the amplitude of cluster length scal- ~ \\e expect that the models presented above and the com-
ing is B=\2me!?~2.50%'. It quantitatively agrees with pination of different methods to explain their scaling behav-

The mean cluster magsluster length in the original prob-
lem) is easily obtained as

the result obtained in simulatioriSec. Il B). iors can be used to understand further nonequilibrium sys-
tems. Of particular interest would be the extension of
IV. CONCLUSION theoretical methods(e.g., scaling approacheso two-

) ) ) ) . dimensional systems such as adatom islands on surfaces, or
We studied two one-dimensional exclusion models withihe extension of the one-dimensional models to include other
particle diffusion, reversible or irreversible attachment t0echanisms that drive the systems to new nonequilibrium

clusters, and deposition mechanisms. _ steady states or that lead to anomalous coarsening.
In model I, starting from a randomly filled lattice, only

particle diffusion is allowed, with small detachment rates
for particles at the edges of the clusters. Simulation results
show an initial regime with formation of small clusters, a F.D.A.A.R. thanks the Department of Theoretical Physics
regime of cluster size growth a$~t3 and a regime of at Oxford University, where part of this work was done, for
cluster size saturation @~ € /2. These results can be ex- their hospitality, and acknowledges support by CNPq and
plained using heuristic scaling arguments. The analyticaFINEP (Brazilian agencies R.B.S. acknowledges support
treatment of the master equation with an independent clustérom the EPSRC under the Oxford Condensed Matter
approximation for joint probability distributions predicts a Theory, Grants No. GR/R83712/01 and No. GR/M04426.
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