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Networking the seceder model: Group formation in social and economic systems
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The seceder model illustrates how the desire to be different from the average can lead to formation of groups
in a population. We turn the original, agent based, seceder model into a model of network evolution. We find
that the structural characteristics of our model closely match empirical social networks. Statistics for the
dynamics of group formation are also given. Extensions of the model to networks of companies are also
discussed.
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|. INTRODUCTION kets are remote to more traditional markets, the networked

_ . , ) seceder model makes a good model of such company net-
Social networks have “community structure”—actors yqrks.

(verticeg with the same interests, profession, agad so

on), organize into tightly connected subnetworks, or commu-

nities[1-3]. Subnetworks are connected into larger conglom- Il. PRELIMINARIES
erates in a hierarchical structure of larger and more loosely
connected structures. Over the last few years the issue of
communities in social networks has ventured beyond sociol- The model we present produces a sequencé¢ime evo-
ogy into the area of physicists’ network studigs-6]. The  lution) of graphs{G}. Each graph in this sequence consists
problem of how to detect and quantify community structureof the same se¥ of N vertices, and a time specific set lf

in networks has been the topic of a number of pajp2y3,g, undirected edgeg&;. The model defines a Markov process
whereas a few others have been models of networks Witﬁnd is thus suitable for a Monte Carlo simulation. The num-
Community structurg9-11. In these models, the common ber of iterations of the algorithm defines the simulation time
properties defining the community are external to the nett=1, ... tmax

work evolution (in the sense that an individual does not We letd(i,j) denote the distana@umber of edges in the
choose the community to belong to by virtue of his or hershortest pathbetween two verticesandj. We will also need
position in the network In this paper we present a model the eccentricitydefined as the maximal distance franto
where the community structure emerges as an effect of thany other vertex.
agents personal rationales. We do this by constructing a net-

worked version of an agent based model—the seceder model

[12—15—of social group formation based on the assumption

that people actively try to be different than the average. In- The original seceder modgd2] is based orN individuals
dependence and the desire to be different play an importafith a real numbes(i) representing the trait®r personality
role in social group formatiofil6], this might be even more Of individuali. The algorithm is then to repeat the following
important in the social networking of adolescents. The im-Steps.

portant observation is that few want to be different from (1) Select three individuals,, i,, andi; with uniform
anyoneelse, rather one tries to affiliate to noncentral group.randomness. .

This type of mechanism is probably rather ubiquitous, so the (2) Pick the one(we call it i) of these whose-value is
connotations of eccentricity are not intended for the name ofarthest away from the averads(i,)+s(i,) +s(iz)]/3.

the model.(See Ref[17] for a nonscientific account of the (3) Replace thes value of a uniformly randomly chosen
formation of youth subcultures by these and similar Pre-agentj with s(f)+7;, where 7 is a random number from the

mises) normal distribution with mean zero and variance one.
Another system where the netwqueq seceder model €aN Note that the actual values afare irrelevant, only the

SErve as a dmlodel—or atRIeaic,t a direction fl?r e>r(]ten5|ﬁn Ofjiferences between of different agents. The output of the

present modelésee, e.g., Re{18])—is networks where the  go.0qer model is a complex pattern of individuals that stick

vertices are companies and the edges indicate a similar nic ether in well-defined arouns. The arouns have a life cvcle
(Such edges can be defined indirectly using stock-price cor g groups. group y

lati h blish - . of their own—they are born, spawn new groups, and die.
relations [19].) The establishment of new companies aregigticq| properties of the model are investigated in Ref.

naturally more frequent in new markets. Assuming new martlz]’ effects of a bounded trait space is studied in RES],
the fitness landscape is the issue of R&fl] and Ref.[15]
presents a generalization to higher-dimensional trait spaces.
*Electronic address: gronlund@tp.umu.se Our generalization of this model to a network model is
"Electronic address: holme@tp.umu.se based on the idea that if the system is embedded in a net-

A. Notations

B. The seceder model
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work, then the difference in personality is implicitly ex-

pressed through the network position. Thus, the identity (a) j% (b)

number (or vecto) s becomes superfluous in a network

model. The homophily assumptigi20]—that like attracts ! / ! /

like—means that the difference in character between two l'zo

verticesi andj (defined ags(i)—s(j)| in the traditional se- .

ceder modelcan be estimated by the graph distadgej) in (0 LN \

a networked model. The model we propose is then, starting

from any graph withN vertices andV edges, to iterate the 4 4

following steps. 7> oy
(1) Select three different verticds, i,, andis with uni- :

form randomness. o4 o7

(2) Pick the onei of these that is least central in the
following sense: If the graph is connected, vertices of highest
eccentricity are the least central. If the graph is disconnected
the most eccentric vertices within the smallest connected (© (d)
subgraph are the least central. If more than one vertex is least \ A

central, leti be a uniformly randomly chosen vertex in the / /
set of least central vertices.

(3) Select another verteiin V\{i} uniformly randomly. \ \
If deg j<dedg+1, rewire all ofj's edges ta and a random
selection ofi’s neighbors.(By rewire an edgdv,w) of a 7 o P i

vertexv we mean thatv ,w) is replaced byv,w’), v #w, in

E.) If deg j=deg+1, rewirej’s edges td, i's neighborhood 2;\ /l\

vertices andif deg j>deg+1) to degj—-dedg—1 randomly

selected other vertices.

abi(liégl Sor(tar\:\:i?g%ﬂeaslgs edges once more and, with a prob- 1 three verticed,, iy, andis, are chosen at randortb) In step 2 the
The rewiring of steps 3 and 4 are performed with thel_e_aSt central of the three vertices is relabeled 1o s_tep 3?a ver}ex

restriction that no multiple edges or loogsdges that go j is selected at random arid) the edges of are rewired td andis

from a vertex to itself are allowed. Steps 1-3 correspond neighborhoodand to a set of random other vertices if necessary

rather closely to the same steps of the original model. Thalfmte that, in(c), j is moved to the cluster it is rewired to. In step 4

. . ) . N ~ j's edges are rewired with a probability The shaded areas repre-
j’s edges are rewired mainly to the neighborhood ¢indi sent tightly connected subgraphs.
itself) reflect the inheritance of trait value in the original

model—by the homophily assumption, the neighborhood of the structure of the random graph is gone we run the con-
will have much the same traits as The main difference struction algorithm 18 sweeps through every vertex before

between the original and the networked seceder model is sti teegraph is samplediVe justify this number posterion
4 where some edges are rewired to distant vertices. The mo- Aﬁ illustration of the construction algorithm can be seen
tivation for this step is that long-range connections exist in. 9

real-world networkg21,22, and can in some situations be llrjh';'g'Vlélﬁéegcl'tzhailgorgg;;gﬁoﬂ%grgzg ISFgIrSFAZy\?; 'r;';'%' 2.
even more important than the strong links within a groupwe uF?se in most simulations the comrﬁunit structgre is less
[23]. This kind of rewiring, to obtain long-range connections . Y

has been used to model “small-world behavior” of networksiSiPle to the eye. Nevertheless—as we will see—the com-

[21] (i.e., a logarithmic, or slower, scaling of the averagemunity structure is still substantial for much larger values of
intervertex distance for ensembles of graphs with a constart
average degrept)).

To make the model consistent we also have to specify the
initial graph. As far as we can see, at least for firptethis
choice is irrelevant—the structure of the generated graphs i
the sameg(or at least very similgr We will not investigate
this point further. Instead we fix the initial graph to an instant ©
of Erdés and Rényi’'s random graph modeH] (for a mod-
ern survey of this model, see RgR5]): A graph with N FIG. 2. One realization of the networked seceder model. The
edges andVl edges is constructed by starting from isolatedmodel parameters arBl=50, M=150, andp=0. The indicated
vertices and then iteratively introduce edges between vertegroups are indentified with Newman’s clustering algoritiisee
pairs chosen by uniform randomness and with the restrictiosec. Il Q. This realization has modularit®=0.575, clustering co-
that no multiple edges or loops are allowed. To be sure thagfficient C=0.530, and assortative mixing coefficiert0.0456.

FIG. 1. lllustration of the networked seceder moda).In step
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C. Detecting communities 0.7 T T T T T
To analyze the structure of cohesive subgroups in our 06: |
model networks we use the community detection scheme .
. ) ! original .
presented in Ref26]. This algorithm starts from one-vertex .
os5F (a) O randomized 1

clusters andsomewhat reminiscent of the algorithm in Ref.
[27]) iteratively merge clusters to form clusters of increasing
size with relatively few edges to the outside. The crucial %[ o ©o O ©O ©O O O

ingredient of this scheme is a quality function o p— 000 1500 2000 2500 3000
N
Q, = 2 (eSS_ ag), (1) 0.8 1 T T T T T
seS
0.7
(b)

whereSis the set of subnetworks at a specific iteration of the 0.6
algorithm ande is the fraction of edges that goes between &

a vertex ins and a vertex irs’, andas;=>ye,y. The algo- 03 2 O
rithm performs a steepest accentQri space—at each itera- 0.4 o 0O
tion the two clusters that give the largest incregmesmall- - . . . . F‘ O
est decreageof Q' are merged. The iteration having the 1000 1200 1400 1600 1800 2000 2200 2400
highestQ’ value—which defines the modularity—qgives M
the partition into subgroups. T T T T - - - T T
0.6 -
D. Conditional uniform graph tests i ]
Q05 i
One can argue that some network structures are more be ) |
sic than others. Given such an assumption and a net@ork
an interesting issue is whether a certain structureXsa&yan 0.4 .
artifact of a more basic structure, sy One way to do this popogo, O, O @ @

0 01 02 03 04 05 06 07 08 09 1

is by a conditional uniform graph test: One compares the D

value of X(G) with X averaged over an ensemble of graphs

with the value ofY fixed to Y(G). This has(since Ref[28]) FIG. 3. The modularityQ as a function of the model parameters.
been a well established technique in social network analysig) showsQ as a function oN with M=3N andp=0.1.(b) displays
and has recently been brought over to physicil29] and  Q for different M for N=600 andp=0.1. In (c) we plot thep
biologists’ [30] network literature. A common assumption dependence of for N=200 andM =600. The gray line i) is a
[29-31] is that the degree distribution is such a very basicfit to an exponential. All error bars are smaller than the symbol size.
structure. We make this assumption too and perform a con-
ditional uniform graph test with respect to the degree se-|||. THE COMMUNITY STRUCTURE OF THE SECEDER
guence of the networks. To sample networks with a given MODEL
degree sequence we use the idea of R&f] to rewire the
edges of the network in such a way that the degree sequence The key quantity capturing the degree of community or-
remains unaltered. More precisely we go through all edgesger in the network is the modulari (defined in Sec. Il ¢
(i,j) € E and perform the following. R In Fig. 3@ we see that, if the average degree gnid kept
(1) Construct the seE’ of edges such that ifi,j) e E’  constant therQ converges to a high valu®Q~0.64 for p
then replacing(i, ) and (. by G.J) and () would not 202 SIS S S R O ke s curve has
mtroducg any Ioop$§tﬂzjf—edge}sor mult|ple edges. peak aroundN=1500 and decays for largé\, larger sizes
(2) Pick an edgéi 'J)F E’ by uniform randomness. would be needed to see @ converges to a finite value for
(3) Rewire(i,j) to (i,j) and(i,j) to (i,j). the randomized networks. With the analogy to the Watts-
For every realization of the seceder algorithm we sampleéstrogatz modefwhere a fractiorp of a circulant’'s[32] edges
Nsampie=t€n randomized reference networks as described eais rewired randomly we would say thap=0.1 is a rather
lier. The motivation for this rather low number is that all high value, stillQ is much higher for the networked seceder
guantities seem to be self-averagife fluctuations de- model than for random networks with the same degree dis-
crease withN) and many have symmetric distributions with tribution. From this we conclude that our model fulfills its
respect to rewiringgwhich implies that many realization av- purpose—it produces networks with a pronounced commu-
erages compensate for few rewiring averagd®e further  nity structure just as the original seceder model makes agents
motivate this smalhg;mgewe compare witmg,y,,=100 for  divide into well-defined groups in trait space. In FigbBwe
the smallest siz¢N=200, which, as mentioned, is most af- plot theM dependence d for fixed N=600 andp=0.1. We
fected by fluctuationsand find that the quantities typically see thatQ decreases witlvl for both the seceder model and
differ by 0.5% which we consider small. the randomized networks. Al approaches its maximum
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30 ' A+b? )

original (whereA is a constantwith an exponenB3=0.4006) for the
seceder model an@=0.1936) for the random networks
20 with the same degree distribution. The average community
size is given byN/b and will therefore also behave as a
< - power law, with exponent 18=0.6006). This fact—that
g= = the number and average size of the communities grow with
O = N—does not seem contradictory to the real world to us.
B Since a community, both in a social and economical interpre-
10 k . tation of the model, does not need to be controlled or super-
vised there is no natural upper limit to the number of com-
L munity members. Furthermore, there is no particular
=00 N 1000 2000 3000 constraint on the number of communities present in real
world systems. A thorough study of the scaling exponents
FIG. 4. The number of grougsas a function of the system size Would be interesting, but falls out of the scope of the present
N. The other parameter values a&e=3N andp=0.1. The lineisa Paper.
fit to a power-lawab?. For this set of parametey3=0.4006) for In Fig. 5 we display the average geodesic lengths within a
the seceder model and 0.183 for the reference graphs of the communityl,, and between vertices of different communi-
conditional uniform graph test. All error bars are smaller than theties |, for parameter values1=3N andp=0.1. To be pre-
symbol size. Note the double-logarithmic scale. cise, we consider the largest connected compoehich
typically contains 99% of the verticesand define

O randomized

value N(N-1)/2 the curves will converggsince the fully | 1 % S dow) (3a)
intra= v,

connected graph is unigyebut the figure shows that the
curves are separated for a wide parameter range. More im-
portantly it suggests that the quanti@y should be rescaled
by some appropriate function if networks of different aver-an
age degree are to be compared. In the rest of our paper, )
however, we will keep the degree constant. In Fig) 3ve 1
show thep dependence d. As expected) decays monoto- linter = N—E > _ > _d(U*W) (3b)
nously, in fact almost linearly, witlp. The curves for the ( )— Npyg - vEBWEB
seceder model converge to the curve of the randomized net- 2
works asp— 0. Q of the randomized reference networks is whereB' is theith cluster and
almostp independent. The fact that it is not completgly )
independent means that the degree distribution of the seceder i
model must vary withp. We will strengthen this claim later. Nintra = 2 <2>
Figure 4 shows the size dependencdrefthe number of =t
groups. We see that this function can be well described by & the number of pairs of vertices belonging to the same

Nintraizl vweB

(4)

constant plus a power law community. As seen in Figs(& and 5b) both|;,, andliner
55 T T T T T T T
original 451 . 1r T
5 . - el
O rewired A - .
L A ] sost -
4 ;
_as| (@) Ddil 3 (b) o £ (©)
g £ ~ r .
£ o £ l I
- T35t 1 Bos} .
Ar 2 T 2 2 Is; 1
|
35| i 3t 1 o4f O -
- D D e
[ | B
1 2.5 L 1 0.2 1 1 1 |D 17
500 1000 500 1000 0 1000 2000 3000
N N N

FIG. 5. Average distance between, and within, clustassidentified by the algorithm described in Sec. )l The gray lines are fits to
an exponential form. The slope of the original is the sam@jrand(b) [also the rewired line has the same slop&anand (b)]. All error
bars are smaller than the symbol size.
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grow logarithmically as functions dfl with the same slope 1p T T T r r
in a semilogarithmic plot. A logarithmic scaling of the aver- I
age shortest path lengtiwhich of course also holglss ex- 0.1 DDDDDDD seceder
pected(cf. Ref.[33]). But we could not anticipate the lack of [ o1 DEI O initial
qualitative difference between distances between vertices o 0,01 L5 O -
the same and different clusters. The actual valuels,@fis il Dl:l
significantly smaller than, and this difference holds as 3>10-3 | O ]
N—co: As seen in Fig. &) linier—linra CONverges to 0.6Q). 5—: I 0O
The same value for the randomized graphsliig,—lintra 1074 L O ]
=0.2048) which is expected—the detected communities in - O
the networked seceder model are more well defined anc 105 L O ]
tight-knit than the corresponding communities in a random - O
network with the same degree distribution. 10-6 L ) . . s .

0 5 10 15 20 25

IV. OTHER STRUCTURAL CHARACTERISTICS

o . . . FIG. 6. Degree distribution of the networked seceder model.
Apart from the quantities of the previous secti@il di The model parameters afg=1800, M=5400, andp=0.1. The

rectly r(:rI]ated t(I)I th? g?rrr]]mclj.ml"[[y s;[rucltl)re/ve also‘l_cl)_gk gt sfgzuares indicate the degree distribution of a random graph with the
Some other well established structural measures. The degrg es(N andM), i.e., the initial network before the iterations of the

distribution, the clustering coefficient, and the assortative,q.cqer model commence.
mixing coefficient.

phasize triad statistics for directed networksee Ref[47]

for a review—>but is also frequent in physicists’ literature
Following the works of Barabasi and co-work§gzt—34 since Ref.[48]. A plot of C as a function ofN is shown in

the degree distribution has been perhaps the most studiddg. 7(@). We see thaC for the seceder model converges to a

network structure. In some social networks—of telephoneconstant value rather rapidly. Similarly tkiefor the rewired

calls [37], e-mail communicatiorf38], and the network of networks goes to zero roughly over the same time scale. The

sexual contact§39]—the degree distribution fits well to a fact that community structure induces a high clustering is

power-law functional form. Other social network studies re-well known and modelef49], as is the fact that the cluster-

port right skewed degree distributions that deviate from dng vanishes like 1N in a random graph with Poisson degree

power law in either the high- or low-limit [40-43. Yet  distribution[4].

other studies have found social networks with Gaussian de- In Fig. 7(b) we plot the local clustering coefficient

gree distributiong§40,44,49, or exponential degree distribu-

A. Degree distribution

tions[3,46]. We conclude that the degree distribution of so- IT,|e

cial networks still is an open question with, most likely, not a C,= K (6)
single solution—different social networks may follow differ- ( )

ent degree distributions. The degree distribution of the net- 2

worked seceder model is displayed in Fig. 6. We note that

P(k) has an exponential tail, notably larger than the PoissoRs a function of the degrdeof the vertex(|H|z denotes the
degree distribution. Clearly this falls into one of the casesnumber of edges in a subgraph I', is the neighborhood of

mentioned earlier. v). C, [21] measures how well connected the neighborhood
of v is—if C,=0 none of the vertices in’s neighborhood
B. Clustering coefficient has an edge to any other,@ =1 there is an edge between

each pair of vertices in’s neighborhood. We find that for the
seceder model the local clustering coefficient is roughly in-
“versely proportional to the degree. For the rewired reference
network, on the other han@, is independent of the degree.
It is known that many real-world networks, including social
o(3) networks, show the sam€,~k™! scaling as the seceder
=—, (5)  model[50]. It is furthermore known that some simple net-
P(3) work models, like the Barabasi-Albert modg34], has a
wherec(n) denotes the number of representations of circuitk-independent local clustering—just as the randomized ref-
of lengthn and p(n) denotes the number of representationserence networkgs0].
of paths of lengthn. (By “representation” we mean an or-
dered triple such that one vertex is adjacent to the vertex
before or after. For example, a triangle has six
representations—all permutations of the three verticEsis The assortative mixing coefficief1] is the Pearson cor-
definition is common in sociologgalthough sociologists em- relation coefficient of the degrees at either side of an edge

The clustering coefficien® measures the fraction of con-
nected triples of vertices that form a triad. This type of sta
tistics has been popular since Rg1]. The definition we
use is slightly different from that of Ref21]:

C. Degree-degree correlations
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origina.
(a) fofis 0.5 b
0.28 O randomized (b)
00.26 N 1 1 1 1 1 1 1 1 0'2 B
T T T T -
004} _ © I
0.1F
002k 0.0045 : . : il
o g 0.004 &, 0O O oooo Dnnnnngﬁ%&#ﬂ
o 3 Be o nomowml oooossk . . .
200 600 1000 1400 1800 2200 2600 3000 5 10 20
N k
0.02 — T T T T 8.2
(c) I T ()]
; * ¢ ¥ 4 gl
0.01 F e
| 7.8}
0 I E 76 |
~ F g 6F
- o O O [m} O ] = Dnnununnnnnnnnungggunmi
o 741
-0.01F b I
721
_002 m 1 1 1 1 1 1 1 ’7 1 1 1 1
200 600 1000 1400 1800 2200 2600 3000 0 5 10 15 20 25
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FIG. 7. Common structural measurés). shows the clustering coefficie@tas a function of the number of vertices for the seceder model
and rewired networkgb) shows the local clustering coefficie@}, as a function of the degréeof v. The gray line is inversely proportional
to k. (Note the double logarithmic scajgc) displays the corresponding plot of the assortative mixing coefficigintshows the average
degree of the neighbors of a vertex as a function of the vertex's degree. The network paramdirs3irand p=0.1, in(b) and(d) N
=1800. Error bars are shown if they are larger than the symbol size.

A(KiKo) — (Ky + k2>2 V. CHARACTERISTICS OF COMMUNITY DYNAMICS

2K+ IB) — (ky + ko)?

(7
In this section we look at the dynamics of the communi-

. . .. ties. To do this we need criteria for if a clus@} at timet is
where subscript denotes théth argument and averaging is the same as clust@ > at timet—1. The idea is to find the
over the edge set. is known to be positive in many social , K’ . N
networks[51,52. It has been suggested that this assortativ€st possible matching of vertices between the_partltlon into
mixing can be related to community structys]. Against ~ clUsters of the two consecutive time slte(}see b'(:t')g' 8 To
this backdrop it is not surprising to note that the networkeddive & mathematical definition, &,=1{B;, ... B} be the
seceder model produces networks with markedly pos'rtjve partltlon of Gt into clusters by the algonthm described in
see Fig. 7¢). The reference networks with the same degreeSec. Il C and leb’=min[b(t),b(t-1)]. We define a mapping
sequences converge to zero from negative values, as also
observed in Ref[42]. It has been arguef?9,54 that net-
works formed by agents without any preference for the de-|
grees of the neighboring vertices gets negativiecom the
restriction that only one edge can go between one pair ol
vertices. This is probably the reason for the negativalues
of the rewired networks.

In Fig. 7(d) we give a more detailed picture of the degree- 4
degree correlations, we plot the average neighbor degree

t-1

Knn(v) = kl E K t +1

vwel’,

8

FIG. 8. lllustration of the identification of clusters at consecu-
against the degrei®5]. We see that the dissortativity mainly tive time steps. The vertex set is represented by the horizontal line.
stems from that the vertices of low degree tends to connect tPhe vertical tics demarcate cluster boundaries. The communities at
other vertices of low degree. For vertices of mid and highconsecutive time step are matched so that the ovéiftephorizon-
degree k,y(k) is almost independent & tal sum of shaded segmepts maximized.
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02 | | | | | | g

. Ry PPy ™ 49 @
—O.g | | AW " ! ! D

w0 0.3 5 (b)
0 4 | | | | | | ——

S 0.6 (©)

0.4 |es
75 ¢

> 50

a1

0 50 100 150 200 250 300 350 400
t

FIG. 9. Community dynamics for a typical run with the parameter vaNre400,M =300, andpo=0 and 100 iterations of the networked
seceder model. The different panels show different statistics for one single run of the algg@dttshows the time evolution of the
assortative mixing coefficientb) shows the clustering coefficie@t (c) shows the modularit®. (d) shows the maximal overlapbetween
consecutive time step) illustrates the time evolution of the communities. A vertical cross sectige)dives the respective relative sizes
of the different clusters. The clusters are sorted horizontally according to age—the oldest clusters are in the top of the panel.

f from b’ elements of 1,b(t—1)] to b’ elements of 1,b(t)]  would not fluctuate much and have stable positive vajass

such that the overlap seen in Fig. ®)]. The clustering coefficient as displayed in
Fig. 9b) shows a more stable evolutionary trajectory. Over a
b’ time scale roughly corresponding k=100 updating stepS
yl = D |Bk n Bf(k)| 9) goes from the value of the initial Eéd-Rényi graphs to the
e higher clustering coefficient of the networked seceder model.

This is natural since it is also roughly the time scale for all
. - P ; tices to be picked and rewired once. The value of the
is maximized(|-| denotes cardinalily Let y(t) denote this VEICES . ind_| e
maximizedy; value. To calculate this overlap we use the modularityQ, displayed in Fig. &), shows a similar behav-

. . . — . ~ior as the clustering coefficient as it increases from the value
straightforward method of testing all matchings. In prlnC|pIe,~0 4 of the original random graph te 0.6 of the seceder

this algorithm runs in exponential time, but since the ””mbe‘}nodel.c and Q seem to be strongly correlated, something
of groups is typically rather low, systems of a few hundred, ¢ seems very logical in the context of the seceder model—
vertices are numerically tractable. , the clustering coefficient increases when a high degree vertex
The evp]utlon of the group structure, Wlth the group struc-is rewired to a specific cluster, a process that also strengthens
ture identified as described above, is displayed in Fig. 9. IRhe community structure. If this stror@-Q correlation is a
Figs. 9a) and 9b) we see the time evolution of the assorta- ybiquitous property it is an interesting problem for future
tive mixing coefficientr and the clustering coefficiert, studies. In Fig. @) we plot the overlapy which fluctuates
whose average size scaling was studied in Sec. IV. We notgetween 25 and 75 with an average well below 50. These
that the assortative mixing coefficient fluctuates rather muchvalues are lower than we expectadriori, as it means that
Even though it is mostly positiveéemember that the average identity of more than half the group members change at a
value is significantly positiveit can also be negative. This is typical time step. Just as the fluctuations jrwe expect the
likely to be a finite size phenomenon—as the assortativéluctuations in the cluster structure to decrease with system
mixing coefficient is self-averaging42], larger systems size, thereforeg/N will increase withN. In Fig. 9e) the time
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development of different cluster sizes is illustrated. A hori-ence between these, however, is much larger for the net-
zontal cross section gives the size partitioning of the vertexvorked seceder model than for the random reference net-
set at a given time step. A demarcated area representsWworks. The general picture is thus that the networked seceder
group. Older groups are above younger groups. An observanodel generates well-defined communities just like the
tion from Fig. Qe) is that groups typically live between one agents of the original seceder model gets clustered in trait
and 100 time steps. The lifetime scale of groups seems tePace. . )
coincide with that of the initial relaxation to the seceder The networked seceder model gives networks of high
equilibrium. We also note that there seems to be no particuldf/UStering and positive assortative mixing by degree—
correlation between age and stability or size, a situation thaRfoperties that are known to be characteristic of acquaintance
would have produced skewed lifetime or cluster-size distri-"etworks. The degree distribution has a peak around the av-
butions. erage degree and exponentially decaying—also that consis-
The observations in this section were checked for a fewient With real world observations. o _

other runs and seem to be representative. Since they do not e dynamics of the communities was briefly investigated
hint some surprising phenomena we do not conduct any ex2y defining a mapping between consecutive time steps that

tensive statistical survey of the dynamical properties. maximizes an overlap function. Using this method we con-
clude that the speed of the dynamics is set by the size of the

system. We see that the clustering coefficient and modularity
are strongly correlated and that older groups are not neces-
sarily larger than younger.

We have proposed a model for network formation based To epitomize, the networked seceder model gives a
on the seceder model. The model captures how a communitypechanism of emergent community structure that is different
structure can emerge from the desire to be different, both iffom earlier proposed mechanisms in network models
social and economic systems. The community structure df9—11]. The mechanism is arguably present in, at least, social
our model is analyzed with a recent graph clustering schemeietworks[16]. We speculate that this model can be applied to
This scheme has the advantage that it gives a measure of thetworks of companies that are linked if they are active in
degree of community structure in a network—the modularitythe same market.

Q. We see that th® is much higher for our model networks
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