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Minimizing energy below the glass thresholds
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Focusing on the optimization version of the randirsatisfiability problem, the MAXK-SAT problem, we
study the performance of the finite energy version of the survey propagation algorithm. We show that a simple
(linear time backtrack decimation strategy is sufficient to reach configurations well below the lower bound for
the dynamic threshold energy and very close to the analytic prediction for the optimal ground states. A
comparative numerical study on one of the most efficient local search procedures is also given.
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[. INTRODUCTION hardness of such systems is at the same time central to com-
o ) i i __ puter science and t6=0 statistical physics with surprisingly
The problem of finding variable configurations that mini- concrete engineering applications. For instance, among the
mize the energy of a system with competitive interactionsmost effective error correcting codes and data compression
has been and still is a central one in the study of complexnethods are the low density parity check algorit®-13,
systems, like spin glasses in physics, protein folding andvhich indeed implement an energy minimization of a spin
regulatory networks in biology, and optimization problems inglass energy defined over a sparse random graph. In such
computer sciencésee e.g., Refd1-5]). problems, the choice of the graph ensemble is a part of the
Among the tools for numerical investigations of complex designing techniques, a fact that makes spin glass theory
systems at low temperatures the simulated annegldfy  directly applicable.
algorithm[6] and its variants have played a major role. Such  The above example is however far from representing the
stochastic processes satisfy detailed balance and their behdieneral scenario for combinatorial problems: in many situa-
ior can be compared with static and dynamical mean-fieldions the probabilistic set up is not defined and, consequently,
calculations. However, in problems in which the interest isthe notion of typical-case analysis does not play any obvious
focused on zero temperature ground states and where tff@l€. The study of the connectiii any) between worst-case
proliferation of metastable states causes an exponential slod typical-case complexity is indeed an open one and very

down in the equilibration rate, the applicability of SA-like '€W general results are know3]. Still, a precise under-
algorithms is limited to relatively small system sizes. standing of nontrivial random problem instances promises to

. ' : . . _.__ be important under many aspects. New algorithmic results as
_In computer science the field of comt_)lnatorlal optimiza well as many mathematical issues have been put forward by
tion [7] deals _preC|se_Iy_ with the general ISsue (.)f <_:Ias_5|fy|ngthe statistical physics studies, with examples ranging from
the computational difficulty(*hardness) of minimization '

. . o h t iti 4,1 d out-of-equilibri lysis of
problems and of designing search algorithms. Similarly t phase transitiongl4,19 and out-of-equilibrium analysis o

‘stical phvsi del : bi 21 ontimi %randomized algorithmg16] to new classes of message-
statistical physics models, a generic combinatoria Opt'm'zabassing algorithm§l7,18.

tion problem is composed of many discrete variables—e.g., The physical scenario for the diluted spin glasses version

Boolean variables, f|n|te_sets Of. color_s or Is_mg sp|ns—wh|chof hard combinatorial problems predicts a trapping in meta-
interact through constraints typically involving a small num-

ber of variabl hat i ve the dlobal stable states for exponentially long times of local search dy-
er of variables, that in turn sum up to give the global costy,, e process satisfying detailed balance. Depending on the
energy function.

models and on the details of the process—e.g., cooling rate
Tor SA—the long time dynamics is dominated by different
types of metastable states at different temperat[t8s A
ommon feature is that at zero temperature and for simula-
ion times which are subexponential in the size of the prob-
bm there exists an extensive gap in energy which separates

nontrivial ensemblegthat is ensembles which contain many
instances that are hard to solveomputer science meets
physics in a very direct way: many of the models considere
to be of basic interest for computer science are nothing bul
spin glasses _defiqed over finite connectivity .random'graphsthe blocking states from true ground states.

the well studied diluted spin glassg,9]. Their associated  g,0h pehavior can be tested on concrete random instances

energy function counts the number of violated constraints iQNhich therefore constitute a computational benchmark for

the ongmal comb!natorlal probler(wnh grognd states cor- - 4re general algorithms. Of particular interest for computer
responding to optimal solutionsnderstanding the onset of gjence are randomized search processes which do not prop-

erly satisfy detailed balance and that are knogmomeri-
cally) to be more efficient than SA-like algorithms in the

*Electronic address: battagli@sissa.it search for ground stat¢20]. Whether the physical blocking
"Electronic address: kolarmi@sissa.it scenario applies also to these artificial processes, which are
*Electronic address: zecchina@ctp.trieste.it not necessarily characterized by a proper Boltzmann distri-
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bution at long times, is a difficult open problem. The avail- Il. BRIEF REVIEW OF RANDOM K-SAT

able numerical results and some approximate analytical cal-

culations [21,22 seem to support the existence of a K-SAT is aNP-complete problenj25] (for K> 2) which
thermodynamical gap, a fact which is of up-most importancdies at the root of combinatorial optimization. It is very easy
for optimization. For this reasofand independently from to state: GiverN Boolean variables anill constraints taking
physicg, during the last decade the problem of finding mini- the form of clauses, K-SAT consists in asking whether it
mal energy configurations of random combinatorial problem&XiSts an assignment of the variables that satisfies all con-
similar to diluted spin-glasses—e.g., randé@satisfiability ~ Straints. Each clause contains exadiyariables, either di-
(K-SAT) or graph coloring—has become a very popular al-récted or negated, and its truth value is given by dre
gorithmic benchmark in computer scieni@. function. Since the same variable may appear directed or

In the last few years there has been a great progress in tmeogated in dlffere_nt clauses, competitive interactions among
study of spin glasses over random graphs which has shed@uses may set in. o
new light on mean-field theory and has produced new algo- AS mentioned in the Introduction, in the Iast.decade there
rithmic tools for the study of low energy states in large singleh@s been a lot of interest on the random version of K-SAT:
problem instances. Quite surprisingly, problems which Weré‘or_ each cIaus_e_ the variables are chosen unlf_o_rmly at random
considered to be algorithmically hard for local search algo{With no repetitiony and negated with probability 1/2.
rithms, like for instance random K-SAT close to a phase !N the largeN limit, random K-SAT displays a very inter-
boundary, turned out to be efficiently solved by the surveyesting _threshold phenomenon. Taking as control parameter
propagation (SP algorithm arising from the replica the ratio of number of clauses to number of variables,
symmetry-broken(RSB) cavity approach to diluted spin =M/N, there exists a phase transition at a finite valJ@)
glasses. Such type of results calls for a rigorous theory of thef this ratio. Fora < a(K) the generic problem is satisfiable
functioning of SP(which is a nonlocal processand bring  (SAT), for a> a(K) the generic problem is not satisfiable
new mathematical challenges of potential practical impact. (UNSAT).

Scope of this paper is to display a set of numerical and This phase transition has been seen numeri¢atly and
algorithmic results which complete previously published re-it is of special interest since extensive experimg@ishave
sults on the SP algorithm. We shall deal only with the ran-shown that the instances which are algorithmically hard to
dom K-SAT problem even though we expect the algorithmicsolve are exactly those wheteis close toa.. Therefore, the
outcomes to be applicable to other similar problems like, forstudy of the SAT-UNSAT phase transition is considered of
instance, the random graph coloring. crucial relevance for understanding the onset of computa-

The paper is organized as follows. In Secs. Il and Il wetional complexity in typical instance$]. A lot of work has
briefly review the known results on random K-SAT togetherbeen focused on the study of both the decision prolgiesm
with the SP equations over single instances at finite pseuddgletermining with a YES/NO answer whether a satisfying as-
temperature. We discuss as well in Sec. IV how the SP algosignment exists and the optimization version in which one
rithm can be modified in order to study the region of param-s interested in minimizing the number of violated clauses
eters with finite ground state energyot satisfiable or UN- when the problem is UNSAT(random MAX-K-SAT
SAT phasg where not all constraints of the underlying problem.
random K-SAT problem can be satisfied simultaneously. In  On the analytical side, there exists a proof that the thresh-
Sec. V we discuss then the performance of SP as an optim@ld phenomenon exists at lar§e[27], although the fact that
zation device. At variance with the SAT phase in whichthe correspondingy, has a limit whenN— -« has not yet
many clusters of zero energy configurations coexist andeen established rigorously. Upper boungg(K) on a¢
where SP works efficiently without need of correcting vari- have been found using first moment meth{@8| and varia-
able assignments, in the UNSAT phase an efficient impletional interpolation methodg29], and lower boundsy g(K)
mentation of SP requires the introduction of—at least—ahave been found using either explicit analysis of some algo-
very simple form of backtracking procedu¢similar to the  rithms[30], or some second moment methd84]. For ran-
one proposed in Ref23]). We show that a linear time back- dom MAX-K-SAT theoretical bounds are also known
track is enough to reach energies compatible with those prd32,33, as well as rigorous results on the running times of
dicted by the analytic calculations in the infinite size limit in random walk and approximation algorithri$4—36.
the relevant region of parameters. We give moreover numeri- Recently, the cavity method of statistical physics has been
cal evidence for the existence of threshold states for one applied to K-SAT[15,17,37 and the thresholds have been
the most efficient randomized local search algorithms forromputed with high accuracy. A lot of work is going on in
solving random K-SAT, namelwALKSAT [24]. We display a  order to provide a rigorous foundation to the cavity results
blocking mechanism at an energy level which is definitelyand we refer to Ref37] for a more complete discussion of
above the lower bound for the dynamical threshold statethese aspects.
predicted by the stability analysis of the 1-RSB cavity equa- In what follows we shall concentrate on tHe=3 case and
tions. Finally, for the deep UNSAT phase, we report on nu-we will be interested in analyzing the behavior of different
merical data on convergence times for ba#iLksAT and SA  algorithms in the region of parameter in which the random
which are in agreement with the predicted existence of fulformulas are expected to be hard to solve or to minimize.
RSB phases. Conclusions and perspectives are briefly did+he energy function which is used in the zero temperature
cussed in Sec. VI. statistical mechanics studies is taken proportional to the
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number of violated clauses in a given problem so that a zero 0.0025 — ;
energy ground state corresponds to a satisfying assignment. S 00007 7
The energy of a single clause is positiggguals 2 for tech- 0.002 £ 00005 [~ sarf Unsar — 1
. . . . P . . c L 7 AN 4
nical reasonif the clause is violated and zero if it is satis- g 3390 4
fied. The overall energy is obtained by summing over clauses & 39902
and reads z oo015) 2 M L
@ 415 425 435
[}
I3(1+3,87) = ;
Eex T @ F oo e /] gm
a FROZEN /
w RSSAT i o ot
(i : . T I , - noar
wheres? is theith binary(spin) variable appearing in clause 0.0005 - ; |

a and the couplingl,; takes the value respectively, —1if

the corresponding variable appears not negatesbectively,

negateglin clausea. For instance the clausg; [x,[x;) has 0 S — et L

an ener yl(l +5)(1-5,)(1+s;) where the Boolean variables 87 38 39 4 4l 42 43 44 45

9Ys 1 52 S3 . . Clauses to variables ratio

x;={0, 1} are connected to the spin variables by the transfor-

mations =(-1). FIG. 1. The solid line is an estimation for the ground state
The phase diagram of the random 3-SAT problem as arisenergy, while the dashed curve represents the Gardner energy, pro-

ing from the statistical physics studies can be very brieflyviding a lower bound for the threshold statesumerical data
summarized as follows. adapted from Ref{40]). In the inset we show that the difference

For < 3.86, theT=0 phase is at zero energthe prob- _between the Gardner and the_ground state energy is strictly po_s_itive
lem is SAT). The entropy density is finite and the phase isln_t_he smgll 1_-R$B stable region grourjd t_he_ SAT/UNSAT tra_r1§|t|0n
replica symmetri¢RS) and unfrozen. Roughly speaking, this critical p0|nt(!nQ|cated by the vertical line it |s_expect_ed that it is
means that there exists one giant cluster of nearby Solutior{ﬁard for heuristics l?as.ed on local search to find assignments inside
and that the effective fields vanish linearly with the ! e closed area delimited by the energy gap curve.
temperature.

For 3.86< «<3.92, there is a full RSB phase. The solu- €nergy gap is very small close to the end pointsAofin
tion space breaks in clusters and the order parameter berder to avoid systematic finite size errors, numerical simu-
comes a nested probability measure in the space of probabiptions should be done close to the SAT-UNSAT point, i.e.,
ity distribution describing cluster to cluster fluctuations. Thefar from the end point oA. Consistently with the fact that
phase is still SAT and unfroze38,39. finite size fluctuations are relatively bj@(VN)], even close

At a=3.92 there is a discontinuous transition toward ato a; problem sizes of the order at least & 10° are nec-
clustered frozen phagd5,17. Up to a=4.15 the phase is e€ssary in order to observe a matching with the analytic
full RSB while above the 1-RSB solution becomes stablepredictions.

[40]. The complexity, that is the normalized logarithm of the
number of clusters, is finite in this region. At finite energy
there exist even more metastable states which act as dynami-
cal traps. The 1-RSB metastable states become unstable atThe 1-RSB cavity equations which have been used to
some energy densitiys(a) which constitutes a lower bound study the typical phase diagram of random K-SAT become
to the true dynamical threshold ener@gee Sec. Ill for more the SP equations once reformulated to run over single prob-
details. lem instance[17]. This is done by avoiding the averaging

At «=4.2667 the ground state energy becomes positiv@rocess with respect to the underlying random graphs.
and therefore the typical random 3-SAT problem become&hanks to the self-averaging property of the random K-SAT
UNSAT. At the same point the complexity vanishes. Thefree energy{41], the SP equations can be used both to re-
phase remains 1-RSB up to=4.39 where an instability to- derive the phase diagram of the problem and, more impor-
ward a zero complexity full RSB phase appears. tant, to access detailed information of algorithmic relevance

In the region 4.15 «<4.39, the 1-RSB ansatz for the about a given problem instance. In particular, the SP equa-
ground state is stable against higher orders of RSB, but thgons provide information about the statistical behavior of the
1-RSB predictions become unstable for energies larger thasingle variables in the stable and metastable states of given
the Gardner energy. The instability line intersects with theenergy density.
1-RSB ground state estimation at the two extremes of the The 1-RSB cavity equations are iterative equatitnser-
interval, inside which it provides a lower bound to the trueaged over the disordgfor the probability distribution func-
threshold energy(see Ref. [40] for a comprehensive tions (PDF of effective fields that describe their cluster-to-
discussion cluster fluctuations. The order parameter is a probability

Further (preliminary) full-RSB corrections suggest that measure in the space of PDF’s; it tells the probability that a
the true threshold states have energies very close to the lowggndomly chosen variable has a certain associated PDF in
bound and hence the intervak[4.15,4.39 should be taken states at a given energy density.
as the region where to take really hard benchmarks for algo- In SP and more in general in the cavity approach, one
rithm testing. As displayed in Fig. 1, the actual value of theassumes to know PDF’s of the fields of all variables in the

Ill. BRIEF REVIEW OF SP EQUATIONS
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FIG. 2. Factor graph representation. Variables are represented by
circles, and are connected by function nodes, represented by

squares; if a variable appears negated in a clause, the connecting
line is dashed. FIG. 3. Cavity fields andu-messages. The-survey for the

u-messagel,_,; depends on the PDF’s of the cavity fielgg_., and

temporary absence of one of them. Then one writes the ink-'i%a' These are on the other side dependent orutsarveys for

duced PDF of the local field acting on this “cavity” variable the u-messages incoming to the variablgsand .
in absence of some other variable interacting witt.&., the i .
so-called Bethe lattice approximation for the probjem tUrn determine new outputsurveys(see Fig. 3.
These relations define a closed set of equations for the PDF’s Very schematically, the SP equations can be implemented
that can be solved iteratively. The equations are exact if th&S follows. Letv(i) be the set of function nodes connected to
cavity variables acting as inputs are uncorrelated, e.g., ovdhe variablei, V(a) the set of variables connected to the
trees, or are conjectured to be an asymptotically exact aglinction nodes; let us denote by/(i)\a andV(a)\i the same
proximation over locally treelike structurdd7] where the Sets deprived, respectively, of the claasgnd of the variable
typical distance between randomly chosen variables divergds Given then a random initialization of all the-surveys
in the largeN limit (as InN for diluted random graphsThe ~ Qa.i(u), the function nodes are selected sequentially at ran-
full list of the cavity fields over the entire underlying graph, dom and theu-surveys are updated according to a complete
in the SP implementation, constitutes the order parameteget of coupled functional equationsee Fig. 3 for the
From the cavity fields one may determine the total field act-notation):
ing on each variable in all metastable states of given energy
density and this information can be used for algorithmic Pj—»a(hj—>a):Cj—>af,DQj,a5<h_ 2 ub—»j)
purposes. beV(j)\a

A clear formalism for the single sample analysis is given » exp(y(

E Up—j

by the factor graph representatipf2] of K-SAT: variables be V(j)\
eV(j)\a

are represented b circular “variable nodes” labeled with
lettersi,j,k,... whereas the K-body interactions are repre- (2
sented byM square “function nodes(carrying the clause
energie$ labeled bya,b,c,... (see Fig. 2

For random 3-SAT, function nodes have connectivity 3, Qai(w) :JDPaﬁ(U—Oa—»i({hj—»a})). 3)
variable nodes have a Poisson connectivity of average 3
and the overall graph is bipartite. The total energy is nothingvhere theC,_,'s are normalization constants, the function
but the sum of energies of all function nodes as given by, ,; is

-3 |ubﬂ-|)),

beV(j)a

Eq. (1). i
Adopting the message-passing notation and strictly fol- Uai(thj—a}) = Jaj. IT 0Ja5hia), (4)
lowing [17], we callu-messages the contribution to the cav- jeva@n

ity fields coming from the different connected branches ofgnd the integration measures are given by
the graph. In SP the messages along the links of the factor

graph have a functional nature carrying information about DQja= 11 Qp—j(Up—j)dUy_j, (5)

distributions ofu-messages over the states at a given value of beV(j)a

the energy, fixed by a Lagrange multipligr we call these

distributions of messagessurveys. The SP equations can be P, = [] P _.h Jdh; (6)
H m . a,l J—a\]— ]—ar

written at any “temperature{the inverse of the Lagrange jeV(ani

multiplier y is actually a pseudotemperature, see RET)).
However they acquire a particularly simple form in the limit
1/y—0, which is the limit of interest for optimization pur- (=0 + e -
poses, at least in the SAT region. QW) = 75U + 7 U= D + 70U+ 1), (7)

In K-SAT, the u-surveys are parametrized by two real where ngﬂizl—n;_,i—n;_)i, the above set of equationig)
numbers and SP can be implemented very efficiently. Eachnd(3) defines a nonlinear map over thgs.
edgea—i, from a function nodea to a variable node, Once a fixed point is reached, from the list of the
carries au-survey Q,_,;(u). From theseu-surveys one can u-surveys one may compute the normalized PDF of the local
compute the cavity fields;_,, for every neighbob, whichin  field acting on each variable,

Parametrizing thel-surveys as
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R From the knowledge of the cavity and local fields PDF’s,
Pi(H) =C; J DQ 5("' - DEV(_) Ub—»i) one derives théBethe free energy at the level of 1-RSB,
e V(I
X ex%y( 2 ubai’ - 2 |ub~>i|>)! (8)
be V(i) be V(i)
1 M N
- == e v o

DQ = I Qu.i(up)duy ;. 9 Py = N(gq)a(y) 21 I 1))’ (10)

be V(i)

It should be remarked th#;(H) is in general different from
the family of cavity fields PDF'®;_,,(h) computed by mean
of (2). wherel; is the connectivity of the variablieand

CD;(y):—%In{ I1 DQi,anP[‘y min (Ea_ > [ > ub—>i]0'i+ > |Ub—>i|>]},

ieV(a) {ojieV(a)} ieV(a) | beV(a beV(i)\a
v 1 - 1
®ly) =-=In{ | DG exp{y( > uaﬁi‘ -3 Iuaql)] =-=In(C). (11)
y ae V(i) ae V(i) y
|
Here, E, is the energy contribution of the function node IV. SP IN THE UNSAT REGION

The maximum value of the free-energy functional provides a Lo
lower bound estimation of the ground state energy of the In the SAT phase, where thg—co limit is taken, the

Hamiltonian(1) defined on the sample. In the SAT region the convolutions(Z). filter out cpmpletely any clause-violating
free-energy functionalb(y) is always nonpositive and it is truth value assignment. This feature is extremely useful for

increasing in the limity—soo: in the UNSAT region, on the satisfiable formulas, but it becomes undesired when our

> L . . sample is presumably unsatisfiable.
contrary, it exhibits a positive maximum fgpy*_(see[l?])._ . In the UNSAT region the SP equations require a finite
From the free-energy density of a given instance, it is

. ) 4 value of the Lagrange multipligr. The filtering action of the
straightforward to compute numerically its complexiyy) : o2 A
—9d(y)/a(1ly) and its energy densitg(y)=a[yd(y)]/ay. exponential reweighting term i2) is then weakened and the

, hat th lexity is link h fmessages computed by the SP equations can vehicle infor-
We remind that the complexity is linked to the number of 4400 pointing to states with a nonvanishing number of
pure stategi.e., clusters of configuration®f energyE, by  ioiated constraints

the defining relationV(E)=exdN2(E)]. The energy level '
;\%ﬁss;]ted by the largest number of configuratiegs.is A. The finite pseudotemperature recursive equations

The SP equations simplify considerably in the: oo limit

and lead to extremely efficient algorithmic implementations,
as discussed in great detail in REES]. In the case of finite

pseudotemperature } the same simplification cannot take

Further RSB corrections may be needed to locate the preci éifoer %etﬁﬁgsfelg;\}gle fpar setsreer::?Jersic\)/fea rr;zgtcgalrlglc;enwt?égmi?-g
value ofey,, which is in any case lower bounded the largest ' ' y P

energy of 1-RSB stable states, the so-called Gardner energ%.er:q' hg;g: ;?,gsfgf L: Xg&%ﬂi%'g%l; {/ :5'22%03%?:222;:

Eg. It is expected that local search strategies get trapped a ) .
energies close, but not necessarily equal, to the threshowhereaev(”' We start by randomly picking up one func-

energy(see Ref[19] for a throrough discussion on the role tion n.ode“ inV(j)\a',“denoted ash;, and we calculate the
of the isocomplexity stateft3]). More elaborated strategies following “h-survey”:

2(en) = mEa>{E(E)]. (12

not properly satisfying detailed balan¢e.g., WALKSAT for =) 0 + B _
the K-SAT problem could in principle overcome this type of Pimal) = 75, i 8(0) + 735, ;AN = 1) + 7, _; 8+ 1).
barriers; however, the available numerical and analytical re- (13

sults suggest that also these more sophisticated randomized _

searches undergo an exponential slowdown, with differenThe functionP?ﬂa(h) would correspond to the true local field
layers of states acting as dynamical traps, depending on tHeDF of the variablg in the case in whiclb; was the only
details of the heuristics. neighboring clauséas denoted by the upper index
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Lo Starting from a full collection ofu-surveys at a given
L a time, it is possible to realize a complete update of all the
E - parameterg s, .;} by systematical application of the recur-
I T
b Vo

sions(13) and(14) and of the relatiori15); from the new set
of u-surveys, new cavity field PDF’'s can be computed and

TN _bz the procedure continues until when self-consistencg'®fs
reached. This procedure can be efficiently implemented nu-
_/ merically and allows us to determine the fixed point of the
(@) (b) ©) population-dynamics equation®) and (3), for a general
value ofy.
FIG. 4. Computing recursively a cavity PD@) In order to find
a single cavity PDFP;_,(h), a single clausé, in V(j)\a is picked B. The SP-Y algorithm

up at random and the—survebeﬁj is used to compute E@l13);
(b) the contributions of all the other function nodes\iyj)\a are
then added, clause by clause) the PDF computed recursively
afterI'; -1 iterations coincides with;_ ().

In the usual SP-inspired decimatift8], the computation
of the local field PDF'sP;(H) is used to decide a truth value
assignment for the most biased variables. Indeed, it is rea-
sonable that a spin tends to align itself with the most prob-

. . ... able direction of the local field. A ranking can be realized by
The following steps of the recursive procedure consist Ninding all the probability weights
adding the contributions of all the other function nodes in
V(j)\a, clause by clauseFig. 4: T -1
W =2 Pi(H), W= 2 PiH), (17)
A L H=1 H=-T

P = P

. =) - and by sorting the variables according to the values of a bias
*+7piPiLa’(h = Lexd - 2y6(-h)] function
+oi, P2+ Dexd-2y6(h)].  (14) br () = W = W. (18)
The local field PDF'sP;(H) can be naturally calculated re-
sorting to the iteration$13) and (14): computation is done
simply by sweeping over the whole set of neighboring func-
tion nodesV(j), including also the contribution of the

Here?}ﬁa(h) is an unnormalized PDF ana(h) is a step

function equal to 1 foh=0 and zero otherwise. The recur-
sion ends aftery=I";—1 steps, when the influence of every
clause inV(j)\a has been taken in account. The final cavity- skipped edge— . By fixing in the right direction the spin

field PDF Pi*a(h)fan be found straightforwardly by com- of the most biased variable, we actually reduce the oridihal

puting the PDF Pfi;l)(h) for all values of the field variable problem to a new one witN—1 variables. New

-I';+1<h<T;-1 and by normalizing it. u-surveys are then computed. Doing that we have to take
As already pointed out in Sec. lll, the knowledge of care of fixed variables: if is fixed, its cavity field PDF’s

K-1 input cavity-field PDF’s can be used to obtain a singlemust be of the form

output u-survey. Let us compute for instance thesurvey

Q._.i(u) (see always Fig. 3 for the notatiprin order to do Pi_a(h) = d(h-J,;s), (19

that, we need first the cavity field PDF%_,(h) for every  regardiess of the recursiofis3) and(14). The complete po-
jEV(a)\i. The parameter$s) ., 7; i, 7, .} are then up- |arization reflects the knowledge of the truth value of the
dated according to the formulas literals depending on the spa
Ke1 The procedure of decimation continues until when a full
Jai — i ~Jaj — 0 —1_Jai truth assignment has been generated or until when conver-
a=i HI:[l WJ']n—>a’ 150, e =17t (19 gence has been lost or a paramagnetic state has been reached;

in the latter cases the original formula is simplified according
where we introduced the weight factors to the partial truth assignment already generated and the sim-
plified formula is passed to a specialized heuristic. Our

-1 -1 ; . : P
_ . _ ' choice of preference is theaLksAT algorithm[24], which is
Wi_a= gl Pialh), Wi_a= h_§{+l Pi—a().  (16) by far more efficient than SA in the hard region of the 3-SAT
- |

problem, as we have checked exhaustively. Very briefly, the
It should be remarked thaD,_;(u) depends only on one strategy ofwALKSAT is the following one: at each time step

single nontrivialz2. (from now simply referred to as, ;).  the current assignment is changed by randomly alternating

We could say thaat aI single kind of message can be producedreedy moves(where the variable which maximizes the
telling the receiver literal to assume the truth value “TRUE”; number of satisfied clauses is fixeahd random-walk steps
this message is transmitted along the edgei with a prob-  (in which a variable belonging to a randomly chosen unsat-
ability 7,_,;, corresponding to the probability that the only isfied clause is selected and flippedaALKSAT stops if either
way of not violating the constraird is to set appropriately a satisfying assignment is found or if the maximum number

the truth value of. of allowed spin flips(the “cutoff”) is reachedsee Ref[44]
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INPUT: a Boolean formula F in conjunctive normal form; a backtracking

ratio r; optionally, a fixed inverse pseudo-temperature y;,

OUTPUT: a simplified Boolean formula ' in conjunctive normal form
(ideally empty) and a partial truth value assignment for the variables

of F (ideally a complete one)

0. For each edge a — 2 of the factor graph, randomly initialize the 7),_; €

{0,1}

1. IF there is a fixed yi» as input, put ¥* = y;,, ELSE after a fixed number
of steps, determine by bisection the position of the free-energy maximum

*

Y

2. Compute all the fixed point u-surveys, using equations (13), (14), (15)

and putting y =y*

3. IF the population dynamics equations converge, FIG. 5. The SP-Y simplification algorithm.

3.1 FOR every unfixed variable i, compute the local field pdf using
(13, (14
3.2 Extract a random number ¢ in [0,1]

3.3 IF q > r, Sort the variables according to the index function (18),

and fix the most biased variable

3.4 ELSE IF ¢ < r, Sort the variables according to the index function

(20) and unfix the highest ranked variable

3.5 IF all the variables are fixed, RETURN the full truth value

assignment and an empty sub-formula, ELSE, go to 1.

4. ELSE IF the population dynamics equations do not converge, simplify
the formula by imposing the already assigned truth values, RETURN the

partial solution and the obtained sub-formula

for another recently analyzed and very efficient heurigtics simplification, but one may choose to dynamically update it,
When working at finite pseudotemperature, we have tan order to stay as close as possible to the maxinyinof

take in account the possibility that some nonoptimal fixing isthe free energy functionab(y) (which corresponds to select

done in presence of thermal “noise.” After several updates ofhe ground state in the 1-RSB framework, as we have seen in

theu-surveys some biases of fixed spins may become smallegec. Il).

than the value they had at the time when the corresponding The equationg10) and (11) can be rewritten in the fol-

spin was fixed. Certain local fields can even revert their oridowing form, suitable for numerical computation:

entation. Small or positive values of an index function like

N 1

bbacktract(]) =-S5 (\NJ+ - ij_) (20) (b;(y) =- [In(l + (e—y -1 H Vvi]iia) - |n( H Ciﬂa):| )
can track the appearance of such dangerous fixed spins and y IEvia) iev@
this information can be used to implement some “error re- (21)

moval” procedure; for instance, a simple strategy can be de-
vised where both unfixing and fixing moves are performed at
a fix_ed ratio 0= r< 0.5 (see Ref[23] for another backtrack- PU(y) = - 1 In(Cy). (22)
ing implementation y
The actual SP with finitey simplification procedure
(SP-Y) will depend not only on the backtracking fraction  In Fig. 5 we give a summary of the simplification procedure
but even more on the choice of the inverse pseudotemper# a standard pseudocode notation. The first release of the
turey. The simplest possibility is to keep it fixed during the SP-Y code can be downloaded from Rf5].
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N = 1x10° before decimation —=— 100 ' Before decimétion e J
100 | N = 5x107 before decimation =% | SP-Y = 1.5 decimation &
N = 1x10 before decimation =@ ® SP-Y = 1.5 (backtracking) ~-o--
- N = 5x107 before decimation * R SP-Y = 3.5 decimation - 4---
5] N = 1x10” before decimation - -- A e, SP-Y = 4.5 decimation =
e m Gardner energy ------ 107 | SP decimation
107! o o m Gardner energy ------
0 ¢ e © ° = @
@ [
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FIG. 6. Threshold energy effect in SAT region. ThaLKSAT FIG. 7. Efficiency of SP-Y in the SAT regiotsingle sample

performance for various samples of different sizes amdt.24 is  with N=1C° variables anda=4.24). After SP-Y simplification,
presented. With increasing size the curves appear to saturate aboweLksAT is generally able to find solutions below the Gardner
the Gardner energy. An arrow indicates that the next data pointhreshold; in some cases, it succeeds even in finding complete sat-
corresponds to a SAT assignment. isfying assignment. An arrow indicates that the next data point cor-
responds to a SAT assignment.
V. OPTIMIZING THE ENERGY BELOW THE THRESHOLD
STATES negligible when compared to finite size effects.

, ) o We remind thatvALKSAT cannot be considered as an equi-

As we have already discussed in Sec. Ill, it is expectedyyiym stochastic process and that it is not possible to infer
that, in the thermodynamical limit, any local search algo-iat its saturation level coincides with the sample threshold
rithm gets trapped.m the vicinity of exponentially ”“”_”'e,rousenergy; we can anyway claim thatALKSAT is unable to
threshold states with energy, and that any local heuristics oy 1ore the full energy landscape of the problem, and that the
is in general unable to find the optimal assignment in thenormous number of nonoptimal valleys is unavoidably hid-
thermodynamical limit. To verify this prediction, we €on- g the trye ground states. Plateaus in the relaxation profiles
ducted various experiments, both in the SAT and in they \ya ksar have indeed been already discussed in Refs.
UNSAT phase, focusing on the comparison between they; 55 anq ascribed to metastable states acting as dynamical
WALKSAT heuristics performance after and before d|fferenttraps_
kmd; of SP-Y simplification. In_ most of the_ situations, we  £or theN=10* formula a trapping effect becomes clearly
decided to analyze carefully single large-sized samples ingigipie in our experiments, but the saturation plateau is be-
stead of a larger number of smaller problems: we verified ing,y the Gardner lower bound. The finite-size fluctuations are
fact that th_e sample-to-sample fluctuations tend to be unrels;iii of the same order of the energy gap between the ground
evant for size of order 0and larger. and the threshold states and the experimental conditions are
distant from the thermodynamical limit. When the size is
increased up to Povariables, the saturation level moves fi-
nally between the full RSB lower bound and the 1-RSB up-

The aim of the first set of experiments was to check theper bound forey,.
actual existence of the threshold effect. We mamLKSAT The efficiency of the SP-Y simplification strategy against
over different formulas in the frozen-SAT region, with fixed the glass threshold is discussed in Fig. 7. We simplified a
a@=4.24 and sizes varying betweed=10° and N=1C°,  single randomly generated formulbl=10°, a=4.24 at sev-
reaching a maximum cutoff of #®spin flips. The obtained eral fixed values of pseudotemperature. The solid line shows
results are plotted in Fig. 6; the Gardner energy is also refor comparison thevALKSAT results after a standard SP deci-
ported for comparison with the data. Even if for small-sizemation (i.e., y—«): the ground stateE=0, is reached as
samples the local search algorithm is able to find a SATexpected, after a rather small number of spin flips. The same
assignment, for larger formuldsl~O(10*)] WALKSAT does  happens after SP-Y simplifications performed at a large
not succeed in reaching the ground state, its relaxation pranough inverse pseudotemperatiye>4); one should re-
file suffers of critical slowdown, and saturates at some welimind indeed that in the SAT region the optimal value yor
defined level. This is actually expected, because the Gardnefould be infinite, and that in that limit the SP-Y recursions
energy become&)(1) only for N~ 10" or larger, and for a reduce to the SP equations. After simplification with smaller
smaller number of variables the threshold effect should bg's, the WALKSAT cooling curves reach again a saturation

A. SAT region
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level, which is nevertheless below the Gardner energy, unles: ' . ' " Before decimation —a—

y is too small: the threshold states of the original formula 41| © a Vil v B

have not been able to trap the local search, even if the groun : o B SPN et Y 02 e

state becomes inaccessible. As we have indeed already dis . - Gardner energy ------
. - . . © Ground state lower bound -~

cussed, working at finite temperature increases the probabil s =

ity of violating a clause when doing a spin fixing, and this is % o " .

particularly evident in the SAT region where every assign- & » . ° .

ment that does not satisfy some constraint should be fiIterecé a € c ¥

out. g ° .

The procedure is intrinsically error prone, and it will al- & L ¢ . "em -
low us in general to reach only “good states,” but not the true & L © o e .
optimal solutiongthe smaller the parametgrthe higher the . s, ¢
saturation level will bg As we shall discuss in the next L U SRR
section, the use of backtracking partially cures the accumu- s . T R N
lation of errors at finitey: the saturation level can in fact be *® 90 ¢ 000 600 s
significantly lowered by keeping the same pseudotempera:
ture and introducing a small fraction of backtrack moves 10 10% 106 107 108 109 1010
during the simplification. In Fig. 7 the data fg=1.5 show Cutoff

the importance of backtracking. While the run of SP-Y with-
out backtracking has led to a plateau above Gardner energy,
with the introduction of backtrack moves we find energies
well below the threshold.

FIG. 8. SP-Y performance in the UNSAT regi¢single sample

h N=10° variables andv=4.29. Several simplification strate-
gies are compared; the need for backtracking is readily visible, and
its introduction allows us to reach energies closer to the ground
B. UNSAT region state than to the Gardner lower bound.

When entering the UNSAT region, the task of looking for ~ The relative inefficiency of these first attempts of simpli-
the optimal state becomes harder. The expected presence fifation was not due to the threshold effect alone, but also to
violated constraints in the optimal assignments really forcean extreme sensitivity to the choice yfas pointed out by a
us to run the simplification at a finite pseudotemperaturesecond set of experiments making use of backtracking. We
Unfortunately, after many spin fixings, the recursiqis) performed first an extensive analysis of the simultaneous op-
and (14) stop to converge for some finite value yphbefore timization ofy andr, using smaller samples in order to pro-
the maximum of the free energy is reached, most likely beduce more experimental points. After some trials, the frac-
cause the subproblem has entered a full RSB phase. At thi®on r=0.2 appeared to be the optimal one, at least for our
point one should switch to a 2-RSB version of SP which weimplementation, and in the small region under investigation
did not realize, yet. Alternatively, one could try to run di- of the K-SAT phase diagram. The data in Fig. 9 refer to a
rectly the final heuristic searcthoping that the full RSB formula withN=10* variables andv=4.35. The dashed hori-
subsystem is not exponentially hard to optimize more  zontal line shows thevaLKSAT best energy obtained on the
simply one may continue the decimation process by selectingriginal formula after 18 spin flips. ThewALKSAT perfor-
the largesty for which the computations converge. We de- mance was seriously degraded when simplifying at too small
cided to implement the latter choice until either convergencevalues ofy, but the introduction of backtracking cured the
is lost independently from the value gfor a paramagnetic problem, identifying and repairing most of the wrong assign-
state is reached. ments. ThewaLKSAT efficiency became actually almost in-

In our experiments we studied several 3-SAT sampledependent from the choice of pseudotemperature, whereas in
problems belonging to the 1-RSB stable UNSAT phase. Websence of error correction a time consuming parameter tun-
employed WALKSAT as an example of standard well- ing was required for optimization.
performing heuristics. AlthougRvALKSAT is not optimized Coming back to the analysis of the sample of Fig. 8, the
for unsatisfiable problems, in the 1-RSB stable UNSAT re-backtracking simplifications allowed us to access states defi-
gion it performs still much better than any basic implemen-nitely below the Gardner lower bound. The combination of
tation of SA. We observed anyway that, even aftef’Epin  runtime y optimization and of error correction was even
flips, the WALKSAT best assignments were still quite distantmore effective: after a rather small number of spin flips,
from the Gardner energy, for various samples of differentwALKSAT reached a saturation level strikingly closer to the
size anda. In Fig. 8 we show the results relative to many ground state lower bound than to the Gardner energy. A fur-
different SP-Y simplifications with various values ypandr ther valuable effect of introduction of the backtracking was
for a single sample witiN=10° and #=4.29. The simplifi-  the increased efficiency of the formula simplification itself:
cation produced always an improvement in e KSAT per-  in the backtracking experiments, SP-Y was able to determine
formance, but, in absence of backtracking, we were unable ta truth value for more than 80% of the variables before los-
go below the Gardner lower bouridlthough we touched it ing convergence, while without backtracking, the algorithm
in some cases: in Fig. 8 we show the data for a simplificatiorstopped on average after only 40% of fixings.
at fixedy=2.5; a simplification with runtime optimization of All the samples analyzed in the preceding sections were
y reached the same leyel taken from the 1-RSB stable region of the 3-SAT problem,
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0.007 ' " Without Backtracking ~——— results, SP-Y still can be used in a suboptimal way by select-
o Vgg’;aﬁfgggggg'ggé&?fg . ing the. largest vglue of for which convergence is reached.
h Contradiction = Numerical experiment shows that indeed the performance of
0008 1 55 e eeeton SP-Y is in good agreement with the analytical expectations.
i However, it should be noticed that in this region the use of
g 0005 1 ?SD‘;DDE | SP is not necessary. Although the peerrmE_iUCGYAlfKSAT
N RN and SA can be improved by the SP simplification, the SA
3 Toe alone is already able of finding close-to-optimum assign-
§ 0.004 | 8 mp o | ments efficiently(as expected for a full RSB scenariand
3 ' TR behaves definitely better thamLKSAT.
&
0003+ % o o g B ] VI. CONCLUSIONS
In this paper, we have displayed the performance of SP as
0002 1 an optimization device and shown that configurations well
below the threshold states can be found efficiently. Similar

results are expected to hold also for random satisfiable in-
stances very close to the critical point for which the com-
bined use of finite pseudotemperature and backtracking
FIG. 9. Backtracking efficiency. Many SP-Y simplifications of a could give access to the SAT optima.
single sample wittN=10* variables andx=4.35 have been per- It would be of some interest to analyze further improve-
formed at fixed but different values of pseudotemperature; the inments of the decimation strategies as well as to consider
troduction of a small fraction of backtracking moves eliminatesmore structured factor graphs within a variational frame-
essentially the need for a time consuming optimization of the pawork, in which some correlations can be put under control.
rametery. The empty points refer to simplifications without back- A possible application of SP-Y-type algorithms can be
tracking, the full points to simplifications with a backtracking ratio found in information theory: lossy data compression based
r=0.2. A diamond indicates that the simplification process stoppegn |ow density parity check schemes leads to optimization

because of loss of convergence, a circle because of finding a congyoplems which are indeed very similar to the one discussed
pletely unbiased paramagnetic state, and the squares indicate thatipig paper.

the loss of convergence happened at an advanced stage where some
clause-violating assignments have already been introduced by SP-Y.

0.5 1 15 2 25
Inverse pseudo-temperature v
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