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I. INTRODUCTION

The problem of finding variable configurations that mini-
mize the energy of a system with competitive interactions
has been and still is a central one in the study of complex
systems, like spin glasses in physics, protein folding and
regulatory networks in biology, and optimization problems in
computer science(see e.g., Refs.[1–5]).

Among the tools for numerical investigations of complex
systems at low temperatures the simulated annealing(SA)
algorithm[6] and its variants have played a major role. Such
stochastic processes satisfy detailed balance and their behav-
ior can be compared with static and dynamical mean-field
calculations. However, in problems in which the interest is
focused on zero temperature ground states and where the
proliferation of metastable states causes an exponential slow-
down in the equilibration rate, the applicability of SA-like
algorithms is limited to relatively small system sizes.

In computer science the field of combinatorial optimiza-
tion [7] deals precisely with the general issue of classifying
the computational difficulty(“hardness”) of minimization
problems and of designing search algorithms. Similarly to
statistical physics models, a generic combinatorial optimiza-
tion problem is composed of many discrete variables—e.g.,
Boolean variables, finite sets of colors or Ising spins—which
interact through constraints typically involving a small num-
ber of variables, that in turn sum up to give the global cost-
energy function.

When the problem instances are extracted at random from
nontrivial ensembles(that is ensembles which contain many
instances that are hard to solve), computer science meets
physics in a very direct way: many of the models considered
to be of basic interest for computer science are nothing but
spin glasses defined over finite connectivity random graphs,
the well studied diluted spin glasses[8,9]. Their associated
energy function counts the number of violated constraints in
the original combinatorial problem(with ground states cor-
responding to optimal solutions). Understanding the onset of

hardness of such systems is at the same time central to com-
puter science and toT=0 statistical physics with surprisingly
concrete engineering applications. For instance, among the
most effective error correcting codes and data compression
methods are the low density parity check algorithms[10–12],
which indeed implement an energy minimization of a spin
glass energy defined over a sparse random graph. In such
problems, the choice of the graph ensemble is a part of the
designing techniques, a fact that makes spin glass theory
directly applicable.

The above example is however far from representing the
general scenario for combinatorial problems: in many situa-
tions the probabilistic set up is not defined and, consequently,
the notion of typical-case analysis does not play any obvious
role. The study of the connection(if any) between worst-case
and typical-case complexity is indeed an open one and very
few general results are known[13]. Still, a precise under-
standing of nontrivial random problem instances promises to
be important under many aspects. New algorithmic results as
well as many mathematical issues have been put forward by
the statistical physics studies, with examples ranging from
phase transitions[14,15] and out-of-equilibrium analysis of
randomized algorithms[16] to new classes of message-
passing algorithms[17,18].

The physical scenario for the diluted spin glasses version
of hard combinatorial problems predicts a trapping in meta-
stable states for exponentially long times of local search dy-
namic process satisfying detailed balance. Depending on the
models and on the details of the process—e.g., cooling rate
for SA—the long time dynamics is dominated by different
types of metastable states at different temperatures[19]. A
common feature is that at zero temperature and for simula-
tion times which are subexponential in the size of the prob-
lem there exists an extensive gap in energy which separates
the blocking states from true ground states.

Such behavior can be tested on concrete random instances
which therefore constitute a computational benchmark for
more general algorithms. Of particular interest for computer
science are randomized search processes which do not prop-
erly satisfy detailed balance and that are known(numeri-
cally) to be more efficient than SA-like algorithms in the
search for ground states[20]. Whether the physical blocking
scenario applies also to these artificial processes, which are
not necessarily characterized by a proper Boltzmann distri-
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bution at long times, is a difficult open problem. The avail-
able numerical results and some approximate analytical cal-
culations [21,22] seem to support the existence of a
thermodynamical gap, a fact which is of up-most importance
for optimization. For this reason(and independently from
physics), during the last decade the problem of finding mini-
mal energy configurations of random combinatorial problems
similar to diluted spin-glasses—e.g., randomK-satisfiability
(K-SAT) or graph coloring—has become a very popular al-
gorithmic benchmark in computer science[9].

In the last few years there has been a great progress in the
study of spin glasses over random graphs which has shed
new light on mean-field theory and has produced new algo-
rithmic tools for the study of low energy states in large single
problem instances. Quite surprisingly, problems which were
considered to be algorithmically hard for local search algo-
rithms, like for instance random K-SAT close to a phase
boundary, turned out to be efficiently solved by the survey
propagation (SP) algorithm arising from the replica
symmetry-broken(RSB) cavity approach to diluted spin
glasses. Such type of results calls for a rigorous theory of the
functioning of SP(which is a nonlocal process) and bring
new mathematical challenges of potential practical impact.

Scope of this paper is to display a set of numerical and
algorithmic results which complete previously published re-
sults on the SP algorithm. We shall deal only with the ran-
dom K-SAT problem even though we expect the algorithmic
outcomes to be applicable to other similar problems like, for
instance, the random graph coloring.

The paper is organized as follows. In Secs. II and III we
briefly review the known results on random K-SAT together
with the SP equations over single instances at finite pseudo-
temperature. We discuss as well in Sec. IV how the SP algo-
rithm can be modified in order to study the region of param-
eters with finite ground state energy(not satisfiable or UN-
SAT phase), where not all constraints of the underlying
random K-SAT problem can be satisfied simultaneously. In
Sec. V we discuss then the performance of SP as an optimi-
zation device. At variance with the SAT phase in which
many clusters of zero energy configurations coexist and
where SP works efficiently without need of correcting vari-
able assignments, in the UNSAT phase an efficient imple-
mentation of SP requires the introduction of—at least—a
very simple form of backtracking procedure(similar to the
one proposed in Ref.[23]). We show that a linear time back-
track is enough to reach energies compatible with those pre-
dicted by the analytic calculations in the infinite size limit in
the relevant region of parameters. We give moreover numeri-
cal evidence for the existence of threshold states for one of
the most efficient randomized local search algorithms for
solving random K-SAT, namelyWALKSAT [24]. We display a
blocking mechanism at an energy level which is definitely
above the lower bound for the dynamical threshold states
predicted by the stability analysis of the 1-RSB cavity equa-
tions. Finally, for the deep UNSAT phase, we report on nu-
merical data on convergence times for bothWALKSAT and SA
which are in agreement with the predicted existence of full
RSB phases. Conclusions and perspectives are briefly dis-
cussed in Sec. VI.

II. BRIEF REVIEW OF RANDOM K-SAT

K-SAT is a NP-complete problem[25] (for K.2) which
lies at the root of combinatorial optimization. It is very easy
to state: GivenN Boolean variables andM constraints taking
the form of clauses, K-SAT consists in asking whether it
exists an assignment of the variables that satisfies all con-
straints. Each clause contains exactlyK variables, either di-
rected or negated, and its truth value is given by theOR

function. Since the same variable may appear directed or
negated in different clauses, competitive interactions among
clauses may set in.

As mentioned in the Introduction, in the last decade there
has been a lot of interest on the random version of K-SAT:
for each clause the variables are chosen uniformly at random
(with no repetitions) and negated with probability 1/2.

In the largeN limit, random K-SAT displays a very inter-
esting threshold phenomenon. Taking as control parameter
the ratio of number of clauses to number of variables,a
=M /N, there exists a phase transition at a finite valueacsKd
of this ratio. Fora,acsKd the generic problem is satisfiable
(SAT), for a.acsKd the generic problem is not satisfiable
(UNSAT).

This phase transition has been seen numerically[26] and
it is of special interest since extensive experiments[9] have
shown that the instances which are algorithmically hard to
solve are exactly those wherea is close toac. Therefore, the
study of the SAT-UNSAT phase transition is considered of
crucial relevance for understanding the onset of computa-
tional complexity in typical instances[8]. A lot of work has
been focused on the study of both the decision problem(i.e.,
determining with a YES/NO answer whether a satisfying as-
signment exists), and the optimization version in which one
is interested in minimizing the number of violated clauses
when the problem is UNSAT(random MAX-K-SAT
problem).

On the analytical side, there exists a proof that the thresh-
old phenomenon exists at largeN [27], although the fact that
the correspondingac has a limit whenN→` has not yet
been established rigorously. Upper boundsaUBsKd on ac

have been found using first moment methods[28] and varia-
tional interpolation methods[29], and lower boundsaLBsKd
have been found using either explicit analysis of some algo-
rithms [30], or some second moment methods[31]. For ran-
dom MAX-K-SAT theoretical bounds are also known
[32,33], as well as rigorous results on the running times of
random walk and approximation algorithms[34–36].

Recently, the cavity method of statistical physics has been
applied to K-SAT[15,17,37] and the thresholds have been
computed with high accuracy. A lot of work is going on in
order to provide a rigorous foundation to the cavity results
and we refer to Ref.[37] for a more complete discussion of
these aspects.

In what follows we shall concentrate on theK=3 case and
we will be interested in analyzing the behavior of different
algorithms in the region of parameter in which the random
formulas are expected to be hard to solve or to minimize.
The energy function which is used in the zero temperature
statistical mechanics studies is taken proportional to the
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number of violated clauses in a given problem so that a zero
energy ground state corresponds to a satisfying assignment.
The energy of a single clause is positive(equals 2 for tech-
nical reasons) if the clause is violated and zero if it is satis-
fied. The overall energy is obtained by summing over clauses
and reads

E = 2o
a

pi=1
3 s1 + Ja,isi

ad
2

, s1d

wheresi
a is the ith binary(spin) variable appearing in clause

a and the couplingJa,i takes the value 1(respectively, −1) if
the corresponding variable appears not negated(respectively,
negated) in clausea. For instance the clausesx1∨ x̄2∨x3d has
an energy1

4s1+s1ds1−s2ds1+s3d where the Boolean variables
xi =h0,1j are connected to the spin variables by the transfor-
mationsi =s−1dxi.

The phase diagram of the random 3-SAT problem as aris-
ing from the statistical physics studies can be very briefly
summarized as follows.

For a,3.86, theT=0 phase is at zero energy(the prob-
lem is SAT). The entropy density is finite and the phase is
replica symmetric(RS) and unfrozen. Roughly speaking, this
means that there exists one giant cluster of nearby solutions
and that the effective fields vanish linearly with the
temperature.

For 3.86,a,3.92, there is a full RSB phase. The solu-
tion space breaks in clusters and the order parameter be-
comes a nested probability measure in the space of probabil-
ity distribution describing cluster to cluster fluctuations. The
phase is still SAT and unfrozen[38,39].

At a.3.92 there is a discontinuous transition toward a
clustered frozen phase[15,17]. Up to a=4.15 the phase is
full RSB while above the 1-RSB solution becomes stable
[40]. The complexity, that is the normalized logarithm of the
number of clusters, is finite in this region. At finite energy
there exist even more metastable states which act as dynami-
cal traps. The 1-RSB metastable states become unstable at
some energy densityEGsad which constitutes a lower bound
to the true dynamical threshold energy(see Sec. III for more
details).

At a=4.2667 the ground state energy becomes positive
and therefore the typical random 3-SAT problem becomes
UNSAT. At the same point the complexity vanishes. The
phase remains 1-RSB up toa=4.39 where an instability to-
ward a zero complexity full RSB phase appears.

In the region 4.15,a,4.39, the 1-RSB ansatz for the
ground state is stable against higher orders of RSB, but the
1-RSB predictions become unstable for energies larger than
the Gardner energy. The instability line intersects with the
1-RSB ground state estimation at the two extremes of the
interval, inside which it provides a lower bound to the true
threshold energy(see Ref. [40] for a comprehensive
discussion).

Further (preliminary) full-RSB corrections suggest that
the true threshold states have energies very close to the lower
bound and hence the intervalA=f4.15,4.39g should be taken
as the region where to take really hard benchmarks for algo-
rithm testing. As displayed in Fig. 1, the actual value of the

energy gap is very small close to the end points ofA. In
order to avoid systematic finite size errors, numerical simu-
lations should be done close to the SAT-UNSAT point, i.e.,
far from the end point ofA. Consistently with the fact that
finite size fluctuations are relatively bigfOsÎNdg, even close
to ac problem sizes of the order at least ofN=105 are nec-
essary in order to observe a matching with the analytic
predictions.

III. BRIEF REVIEW OF SP EQUATIONS

The 1-RSB cavity equations which have been used to
study the typical phase diagram of random K-SAT become
the SP equations once reformulated to run over single prob-
lem instance[17]. This is done by avoiding the averaging
process with respect to the underlying random graphs.
Thanks to the self-averaging property of the random K-SAT
free energy[41], the SP equations can be used both to re-
derive the phase diagram of the problem and, more impor-
tant, to access detailed information of algorithmic relevance
about a given problem instance. In particular, the SP equa-
tions provide information about the statistical behavior of the
single variables in the stable and metastable states of given
energy density.

The 1-RSB cavity equations are iterative equations(aver-
aged over the disorder) for the probability distribution func-
tions (PDF) of effective fields that describe their cluster-to-
cluster fluctuations. The order parameter is a probability
measure in the space of PDF’s; it tells the probability that a
randomly chosen variable has a certain associated PDF in
states at a given energy density.

In SP and more in general in the cavity approach, one
assumes to know PDF’s of the fields of all variables in the

FIG. 1. The solid line is an estimation for the ground state
energy, while the dashed curve represents the Gardner energy, pro-
viding a lower bound for the threshold states(numerical data
adapted from Ref.[40]). In the inset we show that the difference
between the Gardner and the ground state energy is strictly positive
in the small 1-RSB stable region around the SAT/UNSAT transition
critical point (indicated by the vertical line): it is expected that it is
hard for heuristics based on local search to find assignments inside
the closed area delimited by the energy gap curve.
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temporary absence of one of them. Then one writes the in-
duced PDF of the local field acting on this “cavity” variable
in absence of some other variable interacting with it(i.e., the
so-called Bethe lattice approximation for the problem).
These relations define a closed set of equations for the PDF’s
that can be solved iteratively. The equations are exact if the
cavity variables acting as inputs are uncorrelated, e.g., over
trees, or are conjectured to be an asymptotically exact ap-
proximation over locally treelike structures[17] where the
typical distance between randomly chosen variables diverges
in the largeN limit (as lnN for diluted random graphs). The
full list of the cavity fields over the entire underlying graph,
in the SP implementation, constitutes the order parameter.
From the cavity fields one may determine the total field act-
ing on each variable in all metastable states of given energy
density and this information can be used for algorithmic
purposes.

A clear formalism for the single sample analysis is given
by the factor graph representation[42] of K-SAT: variables
are represented byN circular “variable nodes” labeled with
letters i , j ,k, . . . whereas the K-body interactions are repre-
sented byM square “function nodes”(carrying the clause
energies) labeled bya,b,c, . . . (see Fig. 2).

For random 3-SAT, function nodes have connectivity 3,
variable nodes have a Poisson connectivity of average 3a
and the overall graph is bipartite. The total energy is nothing
but the sum of energies of all function nodes as given by
Eq. (1).

Adopting the message-passing notation and strictly fol-
lowing [17], we callu-messages the contribution to the cav-
ity fields coming from the different connected branches of
the graph. In SP the messages along the links of the factor
graph have a functional nature carrying information about
distributions ofu-messages over the states at a given value of
the energy, fixed by a Lagrange multipliery: we call these
distributions of messagesu-surveys. The SP equations can be
written at any “temperature”(the inverse of the Lagrange
multiplier y is actually a pseudotemperature, see Ref.[17]).
However they acquire a particularly simple form in the limit
1 /y→0, which is the limit of interest for optimization pur-
poses, at least in the SAT region.

In K-SAT, the u-surveys are parametrized by two real
numbers and SP can be implemented very efficiently. Each
edge a→ i, from a function nodea to a variable nodei,
carries au-survey Qa→isud. From theseu-surveys one can
compute the cavity fieldshi→b for every neighborb, which in

turn determine new outputu-surveys(see Fig. 3).
Very schematically, the SP equations can be implemented

as follows. LetVsid be the set of function nodes connected to
the variablei, Vsad the set of variables connected to the
function nodea; let us denote byVsid \a andVsad \ i the same
sets deprived, respectively, of the clausea and of the variable
i. Given then a random initialization of all theu-surveys
Qa→isud, the function nodes are selected sequentially at ran-
dom and theu-surveys are updated according to a complete
set of coupled functional equations(see Fig. 3 for the
notation):

Pj→ashj→ad = Cj→aE DQj ,adSh − o
bPVs jd\a

ub→ jD
3 expSySU o

bPVs jd\a
ub→ jU − o

bPVs jd\a
uub→ juDD ,

s2d

Qa→isud =E DPa,idsu − ûa→ishhj→ajdd, s3d

where theCi→a’s are normalization constants, the function
ûa→i is

ûa→ishhj→ajd = Ja,i p
jPVsad\i

usJa,jhj→ad, s4d

and the integration measures are given by

DQj ,a = p
bPVs jd\a

Qb→ jsub→ jddub→ j , s5d

DPa,i = p
jPVsad\i

Pj→ashj→addhj→a. s6d

Parametrizing theu-surveys as

Qa→isud = ha→i
0 dsud + ha→i

+ dsu − 1d + ha→i
− dsu + 1d, s7d

whereha→i
0 =1−ha→i

+ −ha→i
− , the above set of equations(2)

and (3) defines a nonlinear map over theh’s.
Once a fixed point is reached, from the list of the

u-surveys one may compute the normalized PDF of the local
field acting on each variable,

FIG. 2. Factor graph representation. Variables are represented by
circles, and are connected by function nodes, represented by
squares; if a variable appears negated in a clause, the connecting
line is dashed. FIG. 3. Cavity fields andu-messages. Theu-survey for the

u-messageua→i depends on the PDF’s of the cavity fieldshj1→a and
hj2→a. These are on the other side dependent on theu-surveys for
the u-messages incoming to the variablesj1 and j2.
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PisHd = Ci E DQ̂i dSH − o
bPVsid

ub→iD
3 expSySU o

bPVsid
ub→iU − o

bPVsid
uub→iuDD , s8d

DQ̂i = p
bPVsid

Qb→isub→iddub→i . s9d

It should be remarked thatPisHd is in general different from
the family of cavity fields PDF’sPi→bshd computed by mean
of (2).

From the knowledge of the cavity and local fields PDF’s,
one derives the(Bethe) free energy at the level of 1-RSB,

Fsyd =
1

N
So

a=1

M

Fa
f syd − o

i=1

N

Fi
vsydsGi − 1dD , s10d

whereGi is the connectivity of the variablei and

Fa
f syd = −

1

y
lnHE p

iPVsad
DQi,a expF− y min

hsi,iPVsadjSEa − o
iPVsad

F o
bPVsid\a

ub→iGsi + o
bPVsid\a

uub→iuDGJ ,

Fi
vsyd = −

1

y
lnHE DQ̂i expFySU o

aPVsid
ua→iU − o

aPVsid
uua→iuDGJ = −

1

y
lnsCid. s11d

Here,Ea is the energy contribution of the function nodea.
The maximum value of the free-energy functional provides a
lower bound estimation of the ground state energy of the
Hamiltonian(1) defined on the sample. In the SAT region the
free-energy functionalFsyd is always nonpositive and it is
increasing in the limity→`; in the UNSAT region, on the
contrary, it exhibits a positive maximum fory=y* (see[17]).

From the free-energy density of a given instance, it is
straightforward to compute numerically its complexitySsyd
=] Fsyd /] s1/yd and its energy densityesyd=] fyFsydg /] y.
We remind that the complexity is linked to the number of
pure states(i.e., clusters of configurations) of energyE, by
the defining relationNsEd=expfNSsEdg. The energy level
represented by the largest number of configurations,eth, is
given by

Ssethd = max
E

fSsEdg. s12d

Further RSB corrections may be needed to locate the precise
value ofeth, which is in any case lower bounded the largest
energy of 1-RSB stable states, the so-called Gardner energy
EG. It is expected that local search strategies get trapped at
energies close, but not necessarily equal, to the threshold
energy(see Ref.[19] for a throrough discussion on the role
of the isocomplexity states[43]). More elaborated strategies
not properly satisfying detailed balance(e.g., WALKSAT for
the K-SAT problem) could in principle overcome this type of
barriers; however, the available numerical and analytical re-
sults suggest that also these more sophisticated randomized
searches undergo an exponential slowdown, with different
layers of states acting as dynamical traps, depending on the
details of the heuristics.

IV. SP IN THE UNSAT REGION

In the SAT phase, where they→` limit is taken, the
convolutions(2) filter out completely any clause-violating
truth value assignment. This feature is extremely useful for
satisfiable formulas, but it becomes undesired when our
sample is presumably unsatisfiable.

In the UNSAT region the SP equations require a finite
value of the Lagrange multipliery. The filtering action of the
exponential reweighting term in(2) is then weakened and the
messages computed by the SP equations can vehicle infor-
mation pointing to states with a nonvanishing number of
violated constraints.

A. The finite pseudotemperature recursive equations

The SP equations simplify considerably in they→` limit
and lead to extremely efficient algorithmic implementations,
as discussed in great detail in Ref.[18]. In the case of finite
pseudotemperature 1/y the same simplification cannot take
place because of the presence of a nontrivial reweighting
factor. Still, a relatively fast recursive procedure can be writ-
ten. Let us consider a variablej havingG j neighboring func-
tion nodes and let us compute the cavity field PDFPj→ashd
wherea[Vs jd. We start by randomly picking up one func-
tion node in Vs jd \a, denoted asb1, and we calculate the
following “h-survey”:

P̃j→a
s1d shd = hb1→i

0 dshd + hb1→i
+ dsh − 1d + hb1→i

− dsh + 1d.

s13d

The functionP̃j→a
s1d shd would correspond to the true local field

PDF of the variablej in the case in whichb1 was the only
neighboring clause(as denoted by the upper index).
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The following steps of the recursive procedure consist in
adding the contributions of all the other function nodes in
Vs jd \a, clause by clause(Fig. 4):

P̃j→a
sgd shd = hbg→ j

0 P̃j→a
sg−1dshd

+ hbg→ j
+ P̃j→a

sg−1dsh − 1dexpf− 2yûs− hdg

+ hbg→ j
− P̃j→a

sg−1dsh + 1dexpf− 2yûshdg. s14d

Here P̃j→a
sgd shd is an unnormalized PDF andûshd is a step

function equal to 1 forhù0 and zero otherwise. The recur-
sion ends afterg=G j −1 steps, when the influence of every
clause inVs jd \a has been taken in account. The final cavity-
field PDF Pj→ashd can be found straightforwardly by com-

puting the PDF P̃j→a
sG j−1dshd for all values of the field

−G j +1,h,G j −1 and by normalizing it.
As already pointed out in Sec. III, the knowledge of

K−1 input cavity-field PDF’s can be used to obtain a single
output u-survey. Let us compute for instance theu-survey
Qa→isud (see always Fig. 3 for the notation). In order to do
that, we need first the cavity field PDF’sPj→ashd for every
j [Vsad \ i. The parametershha→i

0 ,ha→i
+ ,ha→i

− j are then up-
dated according to the formulas

ha→i
Ja,i = p

n=1

K−1

Wjn→a
Jjn,a , ha→i

−Ja,i = 0, ha→i
0 = 1 −ha→i

Ja,i , s15d

where we introduced the weight factors

Wj→a
+ = o

h=1

G j−1

Pj→ashd, Wj→a
− = o

h=−G j+1

−1

Pj→ashd. s16d

It should be remarked thatQa→isud depends only on one
single nontrivialha→i

Ja,i (from now simply referred to asha→i).
We could say that a single kind of message can be produced,
telling the receiver literal to assume the truth value “TRUE”;
this message is transmitted along the edgea→ i with a prob-
ability ha→i, corresponding to the probability that the only
way of not violating the constrainta is to set appropriately
the truth value ofi.

Starting from a full collection ofu-surveys at a given
time, it is possible to realize a complete update of all the
parametershha→ij by systematical application of the recur-
sions(13) and(14) and of the relation(15); from the new set
of u-surveys, new cavity field PDF’s can be computed and
the procedure continues until when self-consistence ofh’s is
reached. This procedure can be efficiently implemented nu-
merically and allows us to determine the fixed point of the
population-dynamics equations(2) and (3), for a general
value ofy.

B. The SP-Y algorithm

In the usual SP-inspired decimation[18], the computation
of the local field PDF’sPisHd is used to decide a truth value
assignment for the most biased variables. Indeed, it is rea-
sonable that a spin tends to align itself with the most prob-
able direction of the local field. A ranking can be realized by
finding all the probability weights

Wj
+ = o

H=1

G j

PjsHd, Wj
− = o

H=−G j

−1

PjsHd, s17d

and by sorting the variables according to the values of a bias
function

bfixs jd = uWj
+ − Wj

−u. s18d

The local field PDF’sPjsHd can be naturally calculated re-
sorting to the iterations(13) and (14): computation is done
simply by sweeping over the whole set of neighboring func-
tion nodes Vs jd, including also the contribution of the
skipped edgea→ j . By fixing in the right direction the spin
of the most biased variable, we actually reduce the originalN
variable problem to a new one withN−1 variables. New
u-surveys are then computed. Doing that we have to take
care of fixed variables: ifi is fixed, its cavity field PDF’s
must be of the form

Pi→ashd = dsh − Ja,isid, s19d

regardless of the recursions(13) and(14). The complete po-
larization reflects the knowledge of the truth value of the
literals depending on the spinsi.

The procedure of decimation continues until when a full
truth assignment has been generated or until when conver-
gence has been lost or a paramagnetic state has been reached;
in the latter cases the original formula is simplified according
to the partial truth assignment already generated and the sim-
plified formula is passed to a specialized heuristic. Our
choice of preference is theWALKSAT algorithm[24], which is
by far more efficient than SA in the hard region of the 3-SAT
problem, as we have checked exhaustively. Very briefly, the
strategy ofWALKSAT is the following one: at each time step
the current assignment is changed by randomly alternating
greedy moves(where the variable which maximizes the
number of satisfied clauses is fixed) and random-walk steps
(in which a variable belonging to a randomly chosen unsat-
isfied clause is selected and flipped). WALKSAT stops if either
a satisfying assignment is found or if the maximum number
of allowed spin flips(the “cutoff”) is reached(see Ref.[44]

FIG. 4. Computing recursively a cavity PDF.(a) In order to find
a single cavity PDFPj→ashd, a single clauseb1 in Vs jd \a is picked
up at random and theu-surveyQb1→ j is used to compute Eq.(13);
(b) the contributions of all the other function nodes inVs jd \a are
then added, clause by clause;(c) the PDF computed recursively
after G j −1 iterations coincides withPj→ashd.
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for another recently analyzed and very efficient heuristics).
When working at finite pseudotemperature, we have to

take in account the possibility that some nonoptimal fixing is
done in presence of thermal “noise.” After several updates of
theu-surveys some biases of fixed spins may become smaller
than the value they had at the time when the corresponding
spin was fixed. Certain local fields can even revert their ori-
entation. Small or positive values of an index function like

bbacktracks jd = − sjsWj
+ − Wj

−d s20d

can track the appearance of such dangerous fixed spins and
this information can be used to implement some “error re-
moval” procedure; for instance, a simple strategy can be de-
vised where both unfixing and fixing moves are performed at
a fixed ratio 0ø r ,0.5 (see Ref.[23] for another backtrack-
ing implementation).

The actual SP with finitey simplification procedure
(SP-Y) will depend not only on the backtracking fractionr,
but even more on the choice of the inverse pseudotempera-
ture y. The simplest possibility is to keep it fixed during the

simplification, but one may choose to dynamically update it,
in order to stay as close as possible to the maximumy* of
the free energy functionalFsyd (which corresponds to select
the ground state in the 1-RSB framework, as we have seen in
Sec. III).

The equations(10) and (11) can be rewritten in the fol-
lowing form, suitable for numerical computation:

Fa
f syd = −

1

yFlnS1 + se−y − 1d p
i[Vsad

Wi→a
Ja,i D − lnS p

i[Vsad
Ci→aDG ,

s21d

Fi
vsyd = −

1

y
lnsCid. s22d

In Fig. 5 we give a summary of the simplification procedure
in a standard pseudocode notation. The first release of the
SP-Y code can be downloaded from Ref.[45].

FIG. 5. The SP-Y simplification algorithm.
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V. OPTIMIZING THE ENERGY BELOW THE THRESHOLD
STATES

As we have already discussed in Sec. III, it is expected
that, in the thermodynamical limit, any local search algo-
rithm gets trapped in the vicinity of exponentially numerous
threshold states with energyeth and that any local heuristics
is in general unable to find the optimal assignment in the
thermodynamical limit. To verify this prediction, we con-
ducted various experiments, both in the SAT and in the
UNSAT phase, focusing on the comparison between the
WALKSAT heuristics performance after and before different
kinds of SP-Y simplification. In most of the situations, we
decided to analyze carefully single large-sized samples in-
stead of a larger number of smaller problems: we verified in
fact that the sample-to-sample fluctuations tend to be unrel-
evant for size of order 104 and larger.

A. SAT region

The aim of the first set of experiments was to check the
actual existence of the threshold effect. We ranWALKSAT

over different formulas in the frozen-SAT region, with fixed
a=4.24 and sizes varying betweenN=103 and N=105,
reaching a maximum cutoff of 1010 spin flips. The obtained
results are plotted in Fig. 6; the Gardner energy is also re-
ported for comparison with the data. Even if for small-size
samples the local search algorithm is able to find a SAT
assignment, for larger formulasfN,Os104dg WALKSAT does
not succeed in reaching the ground state, its relaxation pro-
file suffers of critical slowdown, and saturates at some well
defined level. This is actually expected, because the Gardner
energy becomesOs1d only for N,104 or larger, and for a
smaller number of variables the threshold effect should be

negligible when compared to finite size effects.
We remind thatWALKSAT cannot be considered as an equi-

librium stochastic process and that it is not possible to infer
that its saturation level coincides with the sample threshold
energy; we can anyway claim thatWALKSAT is unable to
explore the full energy landscape of the problem, and that the
enormous number of nonoptimal valleys is unavoidably hid-
ing the true ground states. Plateaus in the relaxation profiles
of WALKSAT have indeed been already discussed in Refs.
[21,22] and ascribed to metastable states acting as dynamical
traps.

For theN=104 formula a trapping effect becomes clearly
visible in our experiments, but the saturation plateau is be-
low the Gardner lower bound. The finite-size fluctuations are
still of the same order of the energy gap between the ground
and the threshold states and the experimental conditions are
distant from the thermodynamical limit. When the size is
increased up to 105 variables, the saturation level moves fi-
nally between the full RSB lower bound and the 1-RSB up-
per bound foreth.

The efficiency of the SP-Y simplification strategy against
the glass threshold is discussed in Fig. 7. We simplified a
single randomly generated formulasN=105,a=4.24d at sev-
eral fixed values of pseudotemperature. The solid line shows
for comparison theWALKSAT results after a standard SP deci-
mation (i.e., y→`): the ground state,E=0, is reached as
expected, after a rather small number of spin flips. The same
happens after SP-Y simplifications performed at a large
enough inverse pseudotemperaturesy.4d; one should re-
mind indeed that in the SAT region the optimal value fory
would be infinite, and that in that limit the SP-Y recursions
reduce to the SP equations. After simplification with smaller
y’s, the WALKSAT cooling curves reach again a saturation

FIG. 6. Threshold energy effect in SAT region. TheWALKSAT

performance for various samples of different sizes anda=4.24 is
presented. With increasing size the curves appear to saturate above
the Gardner energy. An arrow indicates that the next data point
corresponds to a SAT assignment.

FIG. 7. Efficiency of SP-Y in the SAT region(single sample
with N=105 variables anda=4.24). After SP-Y simplification,
WALKSAT is generally able to find solutions below the Gardner
threshold; in some cases, it succeeds even in finding complete sat-
isfying assignment. An arrow indicates that the next data point cor-
responds to a SAT assignment.
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level, which is nevertheless below the Gardner energy, unless
y is too small: the threshold states of the original formula
have not been able to trap the local search, even if the ground
state becomes inaccessible. As we have indeed already dis-
cussed, working at finite temperature increases the probabil-
ity of violating a clause when doing a spin fixing, and this is
particularly evident in the SAT region where every assign-
ment that does not satisfy some constraint should be filtered
out.

The procedure is intrinsically error prone, and it will al-
low us in general to reach only “good states,” but not the true
optimal solutions(the smaller the parametery, the higher the
saturation level will be). As we shall discuss in the next
section, the use of backtracking partially cures the accumu-
lation of errors at finitey: the saturation level can in fact be
significantly lowered by keeping the same pseudotempera-
ture and introducing a small fraction of backtrack moves
during the simplification. In Fig. 7 the data fory=1.5 show
the importance of backtracking. While the run of SP-Y with-
out backtracking has led to a plateau above Gardner energy,
with the introduction of backtrack moves we find energies
well below the threshold.

B. UNSAT region

When entering the UNSAT region, the task of looking for
the optimal state becomes harder. The expected presence of
violated constraints in the optimal assignments really forces
us to run the simplification at a finite pseudotemperature.
Unfortunately, after many spin fixings, the recursions(13)
and (14) stop to converge for some finite value ofy before
the maximum of the free energy is reached, most likely be-
cause the subproblem has entered a full RSB phase. At this
point one should switch to a 2-RSB version of SP which we
did not realize, yet. Alternatively, one could try to run di-
rectly the final heuristic search(hoping that the full RSB
subsystem is not exponentially hard to optimize) or more
simply one may continue the decimation process by selecting
the largesty for which the computations converge. We de-
cided to implement the latter choice until either convergence
is lost independently from the value ofy or a paramagnetic
state is reached.

In our experiments we studied several 3-SAT sample
problems belonging to the 1-RSB stable UNSAT phase. We
employed WALKSAT as an example of standard well-
performing heuristics. AlthoughWALKSAT is not optimized
for unsatisfiable problems, in the 1-RSB stable UNSAT re-
gion it performs still much better than any basic implemen-
tation of SA. We observed anyway that, even after 1010 spin
flips, the WALKSAT best assignments were still quite distant
from the Gardner energy, for various samples of different
size anda. In Fig. 8 we show the results relative to many
different SP-Y simplifications with various values ofy andr
for a single sample withN=105 and a=4.29. The simplifi-
cation produced always an improvement in theWALKSAT per-
formance, but, in absence of backtracking, we were unable to
go below the Gardner lower bound(although we touched it
in some cases: in Fig. 8 we show the data for a simplification
at fixedy=2.5; a simplification with runtime optimization of
y reached the same level).

The relative inefficiency of these first attempts of simpli-
fication was not due to the threshold effect alone, but also to
an extreme sensitivity to the choice ofy, as pointed out by a
second set of experiments making use of backtracking. We
performed first an extensive analysis of the simultaneous op-
timization of y andr, using smaller samples in order to pro-
duce more experimental points. After some trials, the frac-
tion r =0.2 appeared to be the optimal one, at least for our
implementation, and in the small region under investigation
of the K-SAT phase diagram. The data in Fig. 9 refer to a
formula withN=104 variables anda=4.35. The dashed hori-
zontal line shows theWALKSAT best energy obtained on the
original formula after 109 spin flips. TheWALKSAT perfor-
mance was seriously degraded when simplifying at too small
values ofy, but the introduction of backtracking cured the
problem, identifying and repairing most of the wrong assign-
ments. TheWALKSAT efficiency became actually almost in-
dependent from the choice of pseudotemperature, whereas in
absence of error correction a time consuming parameter tun-
ing was required for optimization.

Coming back to the analysis of the sample of Fig. 8, the
backtracking simplifications allowed us to access states defi-
nitely below the Gardner lower bound. The combination of
runtime y optimization and of error correction was even
more effective: after a rather small number of spin flips,
WALKSAT reached a saturation level strikingly closer to the
ground state lower bound than to the Gardner energy. A fur-
ther valuable effect of introduction of the backtracking was
the increased efficiency of the formula simplification itself:
in the backtracking experiments, SP-Y was able to determine
a truth value for more than 80% of the variables before los-
ing convergence, while without backtracking, the algorithm
stopped on average after only 40% of fixings.

All the samples analyzed in the preceding sections were
taken from the 1-RSB stable region of the 3-SAT problem,

FIG. 8. SP-Y performance in the UNSAT region(single sample
with N=105 variables anda=4.29). Several simplification strate-
gies are compared; the need for backtracking is readily visible, and
its introduction allows us to reach energies closer to the ground
state than to the Gardner lower bound.
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where the equations(2) and (3) are considered to be exact.
For a.4.39, the phase becomes full RSB and SP loses con-
vergence before the free energyFsyd reaches its maximum
from the very first step of the decimation procedure. While a
full RSB version of SP would most likely provide very good

results, SP-Y still can be used in a suboptimal way by select-
ing the largest value ofy for which convergence is reached.
Numerical experiment shows that indeed the performance of
SP-Y is in good agreement with the analytical expectations.
However, it should be noticed that in this region the use of
SP is not necessary. Although the performance ofWALKSAT

and SA can be improved by the SP simplification, the SA
alone is already able of finding close-to-optimum assign-
ments efficiently(as expected for a full RSB scenario) and
behaves definitely better thanWALKSAT.

VI. CONCLUSIONS

In this paper, we have displayed the performance of SP as
an optimization device and shown that configurations well
below the threshold states can be found efficiently. Similar
results are expected to hold also for random satisfiable in-
stances very close to the critical point for which the com-
bined use of finite pseudotemperature and backtracking
could give access to the SAT optima.

It would be of some interest to analyze further improve-
ments of the decimation strategies as well as to consider
more structured factor graphs within a variational frame-
work, in which some correlations can be put under control.

A possible application of SP-Y-type algorithms can be
found in information theory: lossy data compression based
on low density parity check schemes leads to optimization
problems which are indeed very similar to the one discussed
in this paper.
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