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We discuss a dynamic procedure that makes fractional derivatives emerge in the time asymptotic limit of
non-Poisson processes. We find that two-state fluctuations, with an inverse power-law distribution of waiting
times, finite first moment, and divergent second moment, namely, with the power jindexhe interval
2< u<3, yield a generalized master equation equivalent to the sum of an ordinary Markov contribution and
a fractional derivative term. We show that the order of the fractional derivative depends on the age of the
process under study. If the system is infinitely old, the order of the fractional derivatii@given by,=3
— . A brand new system is characterized by the degreg—2. If the system is prepared at timé¢,<0 and
the observation begins at tinte=0, we derive the following scenario. For times<@<t, the system is
satisfactorily described by the fractional derivative with3—-x. Upon time increase the system undergoes a
rejuvenation process that in the time limit, yields »=w—2. The intermediate time regime is probably
incompatible with a picture based on fractional derivatives, or, at least, with a mono-order fractional derivative.
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[. INTRODUCTION the system. This property is summarized in the well known
The fractional calculus has recently received a great dedluctuation-dissipation theorem, which has even been gener-

of attention in the physics literature, through the publication®/iZ€d to the case where the fluctuations in the bath do not

of books[1,2] and review articleg3,4], as well as an ever '€Jress instantaneoudys]. . .
increasing number of research papers, some of which are 1he dynamics of the physical variables to which the On-

quoted herg5-12. The blossoming interest in the fractional S29€r principle apply are described by two different kinds of
calculus is due, in part, to the fact that it provides one of thefduations(l) the Langevin equation, a stochastic differential
dynamical foundations for fractal stochastic proceg@eg. ~ cduation for the dynamical variable ac@) the phase space

- : : equation for the probability density. Two distinct methods
The adoption of the fractional calculus by the physics com have been developed to describe the phase space evolution of

the probability density: the master equation introduced by

experimental evidence for its need. The disciplines of statisl-Dauli and the continuous time random walRTRW) ap-

ti_cal physics ant_j thermodynamic_s were thought to be su_ffi- roach of Montroll and Weis§16]. The CTRW formalism
cient for describing complex physical phenomena solely Withyegcrines a random walk in which the walker pauses after
the use and modifications of analytic funct|ons.. Th|s VieWeach jump for a sojourn specified by a waiting time distribu-
was supported by the successes of such physicists as Ofjsny function. It was shown by Bedeawt al. [17] that the
sager, who through the use of simple physical arguments wag@arkov master equation is equivalent to a CTRW if the wait-
able to relate apparently independent transport processes iy time distribution is Poissonian. However, when the wait-
one another, even though these processes are associated Vifii§§ time distribution is not exponential, the case we consider
quite different physical phenomerja4]. His general argu- here, the equivalence between the two approaches is main-
ments rested on three assumptiofiy: microscopic dynam- tained only by generalizing to the non-Markov master equa-
ics have time-reversal symmetr§2) fluctuations of the heat tion, the so-called generalized master equati®@ME) [18].
bath decay at the same rate as do macroscopic deviatiofecently, Metzlef19] argued that the GME unifies the frac-
from equilibrium; and(3) physical systems are aged. We tional calculus and the CTRW.
refer to assumption 2 as the Onsager principle and show that Allegrini et al. [13] have shown that creating a master
it is tied up with assumption 3. equation compatible with the Onsager principle requires that
Onsager’s arguments focused on a system that is in corthe system be entangled with the bath in such a way as to
tact with a heat bath sufficiently long that the bath has comeealize a condition of stable thermodynamic equilibrium.
to thermal equilibrium and consequently the system is agedlhis system-bath entanglement is the result of a rearrange-
In statistical physics we know that the bath is responsible foment process that may take an infinitely long time to com-
both fluctuations and dissipation, and if the fluctuations arelete, leading to the replacement of the GME of Kenddtral.
white the regression of perturbations of the bath to equilib{18], which corresponds to the nonstationary condition, with
rium is instantaneous. This means that the energy absorbednew GME compatible with the stationary condition, and
from the system of interest by the bath, through macroscopiconsequently with the Onsager principle. Herein, we extend
dissipation, is distributed over the bath degrees of freedonthat discussion to include the connection with the fractional
on a very much shorter time scale than the relaxation time o€alculus in both infinitely and not infinitely aged condition.
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This will allow us to go beyond the discussion of Sokolov 1 -1
and Metzler[12], whose fractional derivative refers to the K= <_ 11 ) (7)
young state. We shall find a fractional derivative operator

with a different index, corresponding to the infinitely agedthereby reducing EqJ5) to

condition, and we shall show that the condition of Sokolov -

and Metzler is an attractor for all the systems that are par- <i>(u) _ ug(u) ©8)
tially aged and not infinitely aged. y

1-Hu)
o This relation between the Laplace transform of the memory
Beyond the Onsager principle kernel and the Laplace transform of the waiting time distri-
We approach the subject of fractional derivatives from abution function was first obtained by Kenkee al. [18] and
perspective similar to that of Sokolov and Metzlgr2].  is reviewed by Montroll and We420].

More specifically, we address the problem of the connection In the case when the lattice has only two sites, a left and
between the GME18] and the stationary version of the @ rightsite, the random walker corresponds to a dichotomous
CTRW [16]. The GME considered by Allegrirét al.[13] is  Signal¢, with the valuesé(t)=-1, for the left site, and(t)

the two-site version of the f0||owing equation: =1, for the I’Ight site. For the sake of SImpIICIIy, we assume
. the two states to have the same statistical weight. Also in the

d _ , N tar two-state CTRW, if we adopt a discrete time representation,

d—tp(t) - JO O(t-t)Kp(t)at', (1) the motion of the random walker corresponds to a symbolic

sequencdé}, with the form{+++++++—-+-—++++-——
wherep(t) is them-dimensional population vector afisites, --—-...} which shows a significant persistence of both
K is a transition matrix between the sites, abd) is the  states. The waiting time distributiog(t) is the distribution
memory kernel. The CTRW prescription for this processof the patches filled with either +'s or —’s.

yields We assume symmetry between the two states and a finite
o first moment ofy(t) making it possible for us to define the
p)=> [ dt'y(t)¥(t-t')M"p(0). ) autocorrelation function for the fluctuatiogét),
e _ (1) = EQEW) ©
Note thaty,(t) is the probability thah jumps occurred and € (&

that the last jump took place at timet’, implying the re- ) i o
newal theory relation because the process is stationary in tif2&]. The problem

. of how to related(t) to this persistent fluctuation is delicate
, N e and will be discussed with some detail in Sec. | B. Here we
'/’”(t)_fo Yna(t =) (t)d, ®) limit ourselves to noticing that the Onsager principle by-
passes the technical difficulties with the connection between
where y4(t) is the waiting time distribution function/(t)  the Langevin and the master equation pictures, either ordi-
introduced into the CTRW andgy(t)=4(t). While M is the  nary or generalized. In fact, the master equation is a prescrip-
transition matrix connecting the sites after one jump has oction to determine the probability of occupying a given state.
curred, the probability that no jump occurs in the time inter-In the case under study here, the master equation makes it
val (0,t) is possible to determing(t), at timet, with i=1,2. TheLange-
" vin equation, or in general any theoretical tool driving the
) :f W)t (4) motion of a variable£(t) in the case under study here, af-
t fords a convenient means to determigé), and conse-

h iting time distribution f . dth K quently the autocorrelation function of E).
The waiting time distribution function and the memory ker- =, ‘his original work Onsager considered the case of a

nel can be related to one another by taking the Laplace trangy croscopic fluctuation that regresses to equilibrium through
form of the GME(1) and the CTRW2). This comparison, e phenomenological equations of motion. Here we adopt
after some algebrgl3], yields an extension of the Onsager principle made by Allegeini
. ufp(u) al. [13] to the case of two states, using the probability of the
d(U)K = ——(M -1), (5) random walker being in state=1,2 p;(t), at timet, which
1-¢(u) allows us to determine the autocorrelation function of 9.
without any need to establish the Langevin-like picture

wherel is themxm Linit matrix and the Laplace transform equivalent to the GME under study here. In fact, we adopt
of the functionf(t) is f(u). Here, as in Allegriniet al. [13],  the following equality:

we limit our discussion to the two-state case where

pa(t) — pa(t)

D(t) = , 10
M:@ ﬂ (6) 0 P1(0) = p2(0) (10

10 . : : . .
which yields an immediate connection between the GME of

and Eq. (1) and the autocorrelation function of E), provided
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that the system is initially in the out of equilibrium state  The authors of Ref[13] determined that the problem of
corresponding ta,(0)—p,(0) # 0. Assuming a regression to how to make these processes compatible with the Onsager
equilibrium in such a way as to retain E(L0O) we obtain  principle could be solved by expressing the CTRW in sta-

from the GME(1) using the coupling matrix7) tionary form, resulting in the GME memory kernel
dd (1) ! -
av o _ ) ’ ’ ~ U[l lﬂ(u)]

— 21 - ()] + UL+ fw)]r
Thus, the Laplace transform of the autocorrelation function h is th e
can be related to the Laplace transform of the memory kernef"€T€ 7 IS the average waiting time,
by o
A 1 7'=f ty(t)dt. (16)
D) = (12) 0

u+20(u) The form of the memory kernel given by E@.5) is consis-
It is interesting to notice that in the Poisson case, namelyient with the equation of motion for the autocorrelation func-
when ¢(t) is an exponential function of time, the memory tion (11), and consequently E@15) is equivalent to
kernel of the GME, given by Eq8) turns out to be equiva-
lent to a Diracé function of time, thereby implying that the <i>(u) _ 1( 1 u). 17
bath responsible for the fluctuations of the variableas a 2 &)g(u)
time scale infinitely smaller than the system of interest. In
this specific case, with the help of E{.2) we see that the
autocorrelation function®,(t) decays exponentially with B. Theoretical waiting time distribution
time. This is a condition behind the ordinary Onsager prin-
ciple. Following the authors of Ref13] we want to go be-
yond the ordinary Onsager principle.

The authors of Ref{13] studied the case where the auto
correlation function departs from the exponential relaxatio
and has the the following time asymptotic property:

We have to remind the reader that the stationary autocor-
relation function of¢ is not related directly tax(t). Zumofen
_and Klafter[25] provided a prescription for deriving the cor-
r{esponding equilibrium autocorrelation function &ffrom

J(t). Their result rests on the observation thét) is an

experimental function, evaluated by observing the time du-
ration of the two states. The connection with renewal theory
is established by assuming that the time duration of a state is

- ) o ) ) determined by two processes; one is the extraction of a ran-
The waiting time distribution/d(t) corresponding to this au- gom number from a theoretical inverse power-law distribu-
tocorrelation function has the following time asymptotic tjgn ' (7), with the same power indep, and the other is a
property[13]: coin tossing procedure that determines the sign of this lami-

1 nar region. Thus, a given experimental sojourn time in one of
PO~ (14 the two states may correspond to an arbitrarily large number
t of drawings and coin tossings. Renewal theory is used to
with > 2 to fit the stationary condition. At first sight, one relate the autocorrelation functich,(t) to the waiting time
might be surprised about our decision to make these complettistribution functiony/(t). In fact, from the renewal theory
processes obey the Onsager principle. Such processes hgd2d] we obtain the following important result:
exotic thermodynamical properties, and in some cases they
are even shown to be nonergod®2] and to produce aging D (1) = ifm (t' =) (t)dt
effects [23,26. Another interesting effect emerging from ¢ 7 ), '
these processes was described in R24]. These authors
used a fractional Fokker-Planck equation, which is closelywhere 7" is the mean waiting time of the’'(t)-distribution
related to the GME used in this paper, and they found thagiensity. It is interesting to notice that this equation implies
the response of their GME to external perturbation is quitethat the second derivative of the autocorrelation function is
different from the response of the corresponding CTRW, inproportional toy (t),
conflict with the fact that their GME is equivalent to a
CTRW in the absence of perturbation. All these surprising d? W (1)

) i o — D (t) =
properties, however, refer to the cgsel 2, where no invari die ¢
ant measure exists. The cage>2, under study here, is in
principle compatible with the Onsager principle, and as a In Sec. Il the departure point of our calculations is given
consequence our request is not absurd. Nevertheless, ¥ the autocorrelation functiod®.(t) of Eq.(18). In this case
shall see that the Onsager principle requires that the systei# convenient to assign to this equilibrium autocorrelation
is infinitely aged, an ideal condition, and that an even apparfunction a simple analytical form. This is done as follows.
ently negligible departure from this condition yields a strik-  First of all we assign tay'(t) the following analytical
ing effect: a rejuvenation process. form:

D)~ —

=t (13)

(18)

(19

* -
T
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* -1 C. Purpose of this paper

— =, 20 . . .
(t+TH)* (20 The purpose of this paper is to prove that a dichotomous

_ ) ) fluctuation &, with the waiting time distribution of Eq.14),
which, as can be proved with the help of E84), is com-  can be described by a GME that, in turn, is well represented
patible with ¢(t) getting the time asymptotic form of Eq. py a fractional derivative operator. The fractional index cor-

Yy =(u-1)

(14). This makes it possible for us to writé as follows: responds to the realization of the Onsager condition, as sur-
. . prising as this fact might be in the condition~3.> 2, which
7 :J ty/ (dt = T . (21) is so far from the Poisson limjz=«. The Onsager principle
0 m—2 is not totally foreign to this anomalous physical condition,

thanks to the fact that > 2 is compatible with the existence
With the choice of Eq(20) for (1), the autocorrelation of thermodynamical equilibrium. However, the time neces-
function @, of Eq. (18) gets the attractive analytical form sary to reach this thermodynamical condition is infinite, and

the system, observed at finite times, no matter how long,

T \# shows a surprising rejuvenation effect. Through this rejuve-
0= (t+T*> g (22 nation effect, the fractional order compatible with the On-
sager principle slowly turns into that established by Sokolov
where and Metzler[12].
The ouline of the paper is as follows. In Sec. Il, using the
B=u-2. (23 inverse Laplace transform of E¢L7) we determine the un-

known memory kernetb(t), making it possible to discuss
how to express the GME in terms of fractional derivatives.
The case where 2 u<3 is compared to the recent work of
Sokolov and Metzle{12]. We find that the index of the
fractional derivative is 3, rather thanu—-2, as predicted
Qoy Sokolov and Metzler. In Sec. lll, we prove that this dif-
ference in index is due to the fact that we adopt a stationary
N condition, while Sokolov and Metzler do not. In Sec. IV, we
- M (24) also prove that in the case of a finite, rather than infinite, age
1+fp(u)' our GME makes a transition from th@-u)th to the (u
—2)th order. The stationary case becomes stable only in the
This important relation allows us to establish a connectionimiting case of infinite age. In Appendix A, the interested

Thus, in the casg < 3, the autocorrelation function of the
fluctuations is not integrable.

Zumofen and Klaftef25], in addition to explaining with
clear physical arguments the connection betweén and
W (t), established that the Laplace transforms of the tw
functions are related to one other by

)

betweenr and 7, which turns out to be reader can find details on how to establish the order of the
. fractional operator in the GME, in the whole range 1. <3,
T=27. (25 when only the brand new condition of E@) is considered.

In conclusion, there are two different waiting time distri- 1 "€ &ccuracy of the analytical expressions that we use in

butions with the time asymptotic behavior of Ed4), the Sec. IV to illustrate the rejuvenation process is discussed in
experimental waiting time distributio(t) and the theoreti- APPendix B.- _

cal waiting time distributiony’(t). The theoretical distribu- inglgf&r(]acwslroknc;foAnlltehgeriﬁineet glar[“lj 3\]N?/vshr|]ces i!g;rto(\)/r(]e;hti rgsa”'
tion is necessary to define the autocorrelation funclig(t). a subordination to a Markov master equation through the

Thus, a theoretical treatment involving the autocorrelation’, .. o : L
function will force us to depend o (t), In this case it is stationary distribution of first exit times. On the other hand,

) : P we extend the approach to systems of any age and reveal the
convenient to adopt th.e analytical form O.f EQD) for ¢/ (1), phenomenon of a continuous time random walk with rejuve-
and Secs. Il and Il will rest on this choice. In other cases

: _ . nation. To accomplish this dual role we rely heavily on the
Sec. IV, Appendix A, and Appendix B, the theoretical treat- results recently obtained by Barki6] and, fo a lesser ex-
ment will use the experimental waiting time distributigtt). !

o : . tent the results of Allegrinét al. [13]. However, this allows
In these cases it is convenient to adopt the analytical form s+, reveal a dependence of the fractional derivative order

on the aging and rejuvenation process, which was not previ-
(26)  ously identified.

u—1

T
(1) = (u 1)(t+T)“'
However, whatever choice is made, either the analytical form
of Eq. (20) for ¢(t) or the analytical form of Eq(26) for
(1), in both cases, thanks to E@4), the two waiting time
distributions maintain the same time asymptotic behavior, To establish the form of the unknown memory kernel
with the sameu. So do the two different expression for the ®(t), we make a few preliminary observations. First of all,
equilibrium autocorrelation function, both decaying as Eq.we note that through Eq17) we establish a direct connec-
(13). For the main purpose of this paper the time asymptotidion with the autocorrelation functiod(t) and that this
behavior is in fact the property that matters. auto-correlation function is, in turn, directly related to the

II. THE INVERSE LAPLACE TRANSFORM OF THE
MEMORY KERNEL

036105-4



AGING AND REJUVENATION WITH FRACTIONAL...

waiting time distributiony (t), through Eq(18). Thus, with

no loss of generality for the reasons illustrated in Sec. | it is

convenient to refer tay (t) rather than toy(t) and conse-

quently, according to the prescriptions illustrated at the end

of Sec. | B, to the analytical form of Eq20).
For simplicity, we sefl” =1 throughout this section. Thus,
the Laplace transform of the autocorrelation functiofi2ig]

F(l ,3)

g( u)= (€ U_Efa—l): (27)
where 0<B<1, given the fact that we are considering
2<,u<3 andEB , is a generalized exponential funcnﬁl’]
Thus, ® ¢(u) diverges asi—0 and Eq.(12) ylelds<I> 0)=0.
We explore the opposite limii— < using Eq.(15), which
y|elds<I>(u) 1/7=1/27". In the time representation, the lat-
ter limit is equivalent tab(t) = 8(t)/ 27 for t— 0. Therefore,

PHYSICAL REVIEW E 70, 036105(2004)

< 0,004}

-0.008

150 200 250
t

50 100 300
FIG. 1. The slow component of the memory kerdgl), P,(t),

as a function of time. The black dots denote the result of the nu-

merical inversion of the expression in the Laplace transform result-

ing from Eqgs.(15) and(28) for 8=0.5; the continuous line is the

we segment the Laplace transform of the GME memory keranalytical approximation given by E@6).

nel into two parts as follows:

d(u) = D,(u).

(28)

In the limiting caset — o we neglect the second term on
the left-hand side of this equation. This is a natural conse-
quence of the assumption that the memory kernel must tend

The first term models the short-time limit, while the secondto zero with a negative tail as an inverse power law. With this
term is responsible for the long-time behavior. In the timeassumption it is straightforward to prove that the modulus of

representation we have

()

d(t) = +D(1). (29

Note that this division of the memory kernel into a white-

noise contribution and a slow term corresponds to a similar

partition made by Futiski [28].

Thus, for the time evolution equation of the autocorrela-

tion function of &(t), we derive the following equation:

dd.(t)

1 : Neb (411l
- Zaw-2[ ea-vea. @

Using EQ.(9) and substituting into it the explicit expression
of 7 as a function ofu, after some algebra, we obtain

T A B f
(t+T) Tt+T) f()T(t+T)_ 2 cha(t
—t)Dt)dt . (30)

The two terms on the left-hand side E®1) are positive.

Due to the negative sign on the right-hand side of this equa

tion we conclude that it might well be thdt,(t) is always
negative.

Let us concentrate on the cage< 1: using the autocorre-
lation function®(t) of Eq. (22) (with T"=1) and using the
change of time variablg +1—1’, we rewrite Eq(31) in the
form

t+1 1 1
—2] (Da(t+1—t’)t,—ﬁdt’+2f D (t+1- t)—dt’
0

Bt

= (t+—1)ﬁ+l (32

the first term becomes much larger than that of the second
term on the left-hand side of this equation. The consequences
of this crucial assumption are supported by the numerical
results depicted in Fig. 1. With this assumption E2R) sim-
plifies to

Bt

t
—2f a(t—t) dt’—(H—l)ﬁﬂ, (33

which can be solved by means of the fractional calclif}s
We use the Riemann-LiouvilléRL) definition of the frac-
tional integral:

1
'
which is the antiderivative of the fractional derivative with

orderq, with g<1. Consequently, foB<<1 we can express
Eq. (33) in terms of the RL fractional integral

pt
2r(1-p) (t+ 1P

Uf(t)dt

D)= 5 | e

(34)

D D, (0]=-

so that inverting this equation we have the formal expression
for the slow part of the memory kernel

Bt
D; _B[,th)g,,eﬂ(t)] .

Dy(t) = -

Dl‘ﬁ{
2r(1-p) ' [ (t+1)F*1

- 35
2r(1-p) (39

We denote the autocorrelation function with the inverse

power (8+1) by the symbol®, z.,(t). Carrying out the re-

quired calculations on the right-hand side of E85), we

obtain(see, for example, West al. [[2], p. 90,
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B t &)

, <1. (36 d(t)=—

2I'(1-B)I(1+p) (t+1)? p (36 ® 27
A comparison with numerical inversion of the kernel is With 7-*=T*_/(,L_L—2)=1/,8, thanks to the fact that we sat

shown in Fig. 1. =1. Substituting the decomposition of the memory kernel

For the sake of completeness, it is worth noticing that wento Ed.(38), we obtain
can proceed in a similar way in the cage-1 also. In this dp,(t) _ Po(t) = py(t) N Jt

Py(t) = - +Dy(t) (42)

case we find, for the contributiob,(t) of the GME, the
following time asymptotic behavior:

Dot = 1)[p2(7) = pa(7)Jd7.

*

dt 27 0

(43
-1 t
D, (t) = - S0 5 ) EIVGL B>1. (370 Writing ®,(t) as the derivative of an as yet unspecified func-
(t+1) tion f(t), and using the property
d t t
ll. THE EMERGENCE OF FRACTIONAL dt Of(t_T)g(T)def(o)g(t)+Jof (t=7g(ndr
OPERATORS (44)
In this section we show that in the two-site case we are ., ., .. _ .

discussing the GME has the form of a transport equation\,'\”th f"()=(d/df(t), we obtain
with two terms on the right-hand side. The first has the form dp,(t) p,(t) - p;(t) d !
afforded by the ordinary master equation and consequently dlt =2 o7 = - H(0)[pa(t) - pa(D)] + d_tf f(t-7)
satisfies the Onsager principle, giving a relaxation dependent 0
on the average waiting time of the CTRW. The second term X[po(7) = py(7)]d7. (45)

corresponds to a fractional derivative in time, and extends ) ]
the Onsager principle to the case of a relaxation with a fa}/Vé also found that in the case<(B<'1 the asymptotic be-
tail. To obtain these results, we use what we have learned ifavior of the memory kernel is expressed by
the preceding section. B t8

First of all, since we are dealing with the two-site case, ®a(t) = - ~ 5
using the form ofM and K matrices withz=x=-1 andy A1 -prL+p)(t+1)

=1, we rewrite Eq(1) in the following form: - B B2 tw T=1
. t ar(L-pre+p T
d—tpl(t) = f O(t = 7)[p2(7) = pa(7]dr, (39 (46)
° Rewriting Eq.(47) as
D, (1) = = Etﬁ‘l, (47)

S 2r(1-Br(B)(B-1)dt

we identify f(t) with [1/2(1-8)I'(1-B)I'(B)]t#* for t— .
The memory kerne is related to the autocorrelation func- Choosingf(0)=0 and using the properties of thefunction,
tion of the dichotomous variabk, through Eq(17). Insert-  we assign to the time asymptotic equation of motion the
ing Eq. (17) into the Laplace transform of the set of the form
two-site dynamical equations, solving the resulting set of

d t
ozl :J O(t = 7)(pa(7) =~ pa(7))dr. (39)
0

equations, and taking the corresponding inverse Laplace  9Pit) __ pu(t) ‘*pz(t) N 1 d f t (t
transforms yields the solutions dt 27 2(2-pr(p)dtl,
1 = D pa(7) — pu(n)]d7 (48)
P1(D) = 5{1 = POLP2(0) = P2 (O]}, (40) or, in terms of the RL fractional integraB4),
dpy(t) (t) = pa(t) 1 ,
Ao B R DI [py(0) - pa(t)].

1 = —D;
PO =L+ 000 -pO)].  @n S
(49

Note that these solutions can be combined to yield the genthe same procedure applied to the equation of motion for
eralized Onsager principle given by Ed0) in terms of the  Pa(t) yields
difference in the probabilities. _
We now want to find a formal equation of evolution for dp(V) _ _ Po(Y) *pl(t) — DI Apy(t) — pa()].
o . . d > oT'(2 - t LP1 P2
the probabilities involving fractional operators. We know t T 2-p
from the preceding section that (50
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The difference between these two equations yields at t=-t,+n, and ending at=-t,+m+m,, and so on. The
1 waiting time distribution of age,, denoted by;/fta(t), is de-
d - =— Pa(®) ~ (D) _ DL B, (t termined by the first of these time intervals overlapping with
[pa(t) — po(1)] g i Ipa(t) .
dt r@2-p) t>0. The time length of that overlap is the time length
- p(H)] (51) whose distribution determinaﬁ[a(t). We make the assump-

tion that the beginning of the first time interval overlapping
clearly showing the two kinds of contribution to the gener-ywjith t>0 occurs with equal probability at any point between
alized Onsager principle. The first term gives the relaxation=—t, andt=0. The validity of this assumption is discussed
of the perturbation away from equilibrium at the macro-jn Appendix B, which establishes that this assumption is very
scopic rate required by Onsager. The second term gives thgyod fort,— 0 andt,— . In between the asymptotic limits
additional slow relaxation in the form of the fractional inte- the resulting prediction is not exact. However, since it yields
gral. simple analytical formulas, we adopt this simplifying as-

sumption for any age. Thus, we have that

IV. AGING ORDER

ta

We have to remark that the condition of E2) refers to . yit+y)dy
the stationary condition explicitly considered by Klafter and Y (1) = , (53)
Zumofen[29]. In this section we prove that there is a con- é (ta)

nection between a system’s age and the ord_er of the fra%hereg(ta) is the normalization factor defined by
tional derivative in the relaxation process. A sign of the de-

pendence of the fractional derivative order on age is given by ta
the discrepancy between the results of Sec. Il and Ré&j. g(t) = f W(t")dt', (54)
Let us compare Eq49) to Eg.(16) of Ref.[12]. We obtain 0

the fractional index 18 rather thang as in the work of  5qy(t) is the probability that no event occurs throughout
Sokolov E.md Metzler. In Appe_ndlx A we prove 'Fhat our time 6 time interval of length. Using for ¢(t), according to the
asymptotic apprgat(:jhbto fre:(ct:onal (?jenvanlves, ml(;hehnonsta- rescription adopted in this paper, the analytical form of Eq.
tionary case studied by Sokolov and Metzler, yields the sam o ; : in th
index as they obtaifiLl2]. Thus, the discrepancy between our 6), it is easy to prove that Eq53) can be written in the

o " orm
prediction and the prediction of Sokolov and Metzler de-
pends on the fact that we consider a condition consistent t+T) T = (t+ T +t,)
with the Onsager principle, whereas Sokolov and Metzler do O = (=G TS = (55
a

not. Furthermore, if the system is not infinitely aged, a sort
of rejuvenation process is expected to take place that wilThis formula proves that for<t, the index of the distribu-
lead to the fractional order of Sokolov and Metzler. tion is u—1, whereas fot>t, the index becomeg. This

To support our remarks concerning the relation betweemesult for the age-dependent waiting time distribution func-
aging and the order of the fractional operator, here we distion agrees with the predictions by Barki@6] and by the
cuss how to define a waiting time distribution of any age.authors of Ref[13]. Notice that the formula Eq(55) is
The authors of Ref[13] have shown that the waiting time equivalent to drawing the initial condition fgrfrom an aged
distribution ¢(t) of Eq. (14) is obtained from the following distribution of this variable.

dynamic model. A particle moves in an the intervial Here, we are in a position to evaluate the waiting time
=[0,1] driven by the equation of motion index at a generic time, where we Wriyea(t) as
dy/dt= ay?, (52 AT t)
() = (T Tyrer®’ (56)

with z>1. When the particle reaches the borgerl, it is
injected back to an initial condition betweg0 andy=1
with uniform probability. The age of the CTRW is deter-
mined by the distribution of first exit times. The ordinary

Using Eq.(55) we arrive at the following formula for the
time dependence of the effective power-law index:

CTRW is based on identifying this distribution witi(t). In[(t+ )& = (t+ T +1t,) 2]

This means that the CTRW is equivalent to assuming that the Hef(t) = In[t+T] : (57)
system is prepared in a flat distributiontatO, which coin-

cides with the beginning of the observation process. Figure 2 illustrates the regression of the effective power-

Let us discuss now the consequence of beginning the obaw index tou with two different ages, and shows clearly
servation a significant time after the preparation. Let ughat the regression is slower for older systems. This formula
imagine that the system is prepared in a flat distribution at @oes more than explain the discrepancy between (E9).
time t=-t,<0, and that the observation beginstaD. This  and Eq.(16) of Ref.[12]. In fact, it shows that it is possible
means that the flat distribution begins producing a sequena® build a GME that at short times follows the prescription
of time intervals of sizer, according to the distribution of of our GME and at long times moves into the basin of at-
Eq. (14); more precisely, the time interval beginning att traction of Sokolov and Metzler. This is certainly the case if
=-t, and ending at=-t,+ 7, the time interval, beginning  t,> -,
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FIG. 2. The effective power indep#(t) as a function of time, FIG. 3. The Laplace transform of thig-old memory kernel
for ©=2.3. The curves refer, from top to bottom, t{g=100, 1000, (I)ta(t),cbta(u)’ as a function ofi, for ©=2.3. The curves refer, from
10 000. top to bottom, tat,=0,0.1,1,10%.

This aspect is important and needs a more exhaustive il- |et us substitute Eq62) into Eq. (58), from which we
lustration. We note that the approach of REf3] can be obtain the Laplace transform of the memory kernel for an
easily extended to the case where the distribution of first exigrbitrary age. In Fig. 3 we show the Laplace transform of the
times has a finite age. It is enough to follow the procedure ofnemory kernel corresponding to a number of different ages.
Ref. [13] and to replace the first exit time distribution with Moving from the top to the bottom curve the age increases
i (1) rather than with/..(t) = ¢4 -—..(t), as done in Refl13].  from the brand new kerndk,=0) to the infinitely aged or
The result of this procedure yields for the GME the follow- stationary kerne{t,=).
ing form for the Laplace transform of the memory kernel:

Uy (U) (59 V. CONCLUDING REMARKS

1+y(u) - 24 (u) The adoption of a two-state model to generate anomalous
diffusion is not unusual in the random walk literature. For
instance, Shushif80] also generated anomalous diffusion by
means of a two-state model. However, to properly locate in
u;//(u) the literature of anomalous diffusion the model of the present
—, (59) paper, we have to point out that the diffusion generator in
1-y(u) Ref.[30] is a two-state Markov equation modulated by time-
. ) . dependent transition parameters that obey non-Poisson statis-
In fact, the general prescription of E53) immediately (e The model studied in the present paper might be
yields ¢ (t)=y(t) for t,;=0. To derive the memory kemel ,qqonted to generate anomalous diffusion as well, but is quite
corresponding to the infinitely aged condition of E&§5) we gifferent from that of Sushin. The extended time of sojourn
have to notice first that Eq53) yields, in accordance with i, one of the two states would produce uniform motion, with

b (u)=

It is straightforward to prove that fdp,=0 Eq.(58) reduces
to

D,__o(u) =

Refs.[26] and[13], no randomness involved, as discussed by the authors of Ref.
1 [12], which rests in fact on the same model as that adopted
Uo(t) =ty —o(t) = —f dt’ y(t’). (60) here.
° Tt In this paper we establish that an infinitely old system,

with the power-law index in the interval2 4 < 3, yields the
fractional order 1-8=3-u. The prediction of Ref[12], on
the other hand, yields the fractional orger 2, correspond-
Sy ing to the brand new condition. If the system is not infinitely
e (y)dy aged, namelyt, <, the short-time behavior of the system
,:/,t (u) = , (6D for t<t, is expected to be that of an aged system. At large
2 g(ty) observation timest>t,, rejuvenation begins. This can be
that is, explained using the dynamical model of E&2). In fact,
aging has to do with the slow regression to equilibrium, if it
N _ _ exists, of the variablg/, which mimics a real bath slowly
[1-¢uw]l-e uta)+ueutaf e (y)dy regressing to equilibrium. The aging effects discussed by
0 Barkai [26] correspond taz>2 and thus tou<2. In this
ug(ta) case the dynamic model under discussion does not have an
(62) invariant distribution, and, consequently, any observation is

To illustrate the change of the memory kernel with time,
notice that the Laplace transform of E&5) is

t

W(U)(1 - ') + gita J

0

ta

‘Aﬂta(u) =
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done while the bath is drifting toward a condition that will usingy(t) rather thany’(t). Thus, according to the procedure

never be reached. This aging effect affects the form of theadopted in this paper, we use the analytical form of @26).

first exit time distribution, whose index js—1 rather thanu. For the reader’s convenience, we rewrite this expression

However, after the first exit the trajectories are injected backere,

with a uniform probability, and thus all the ensuing jumps

are determined by the ordinary waiting time distributifs(). () =(u-1) —.
It would be desirable to have an equation of motion with T+t

a fractional operator order that changes as a function of time ;¢ important to stress that in the text we made the choice
from 3-u to u—2. However, there are technical and concep-y¢ Eq. (20) for ¢/ (t), in this way determining, through Eq.

trualli;jlfftlrc]:iultles Itr:ﬁtfm?ke It ;:I(;l?fr:cu:t, tlr]: not rlmpoi}\s/lbleé tot 4), a form for (1) that departs from EqALl). However,
realize this goa'. In fact, according 1o the perspective atoptey ., icas lead to the same time asymptotic behavior of
in this paper, the order of the fractional operator is estabs

. LS . . Eq. (14) for both the waiting time distributions.

lished using time asymptotic arguments. Thust, i~ we o -

can associate a time<t, with the order.=u -2 of the frac- We note that foru— < we get a finite valueb(e)=(u
tional derivative. This is so because fott, the calculations ~1)/T corresponding ta(0) in t space. As in Sec. II, we
would be virtually equivalent to those done in Appendix A. It Separate the kernel into two contributionsd(t)=[(x

is not clear how to proceed wheris of the order oft,, this ~ —1)/T]8(t)+®4(t), and insert the Laplace transform of sepa-
being the first reason why assigning a fractional derivativeration into Eq.(8), to write

order to any time might be difficult. There also exists a

u—1
(A1)

physical reason that might make it impossible to move from B, (u) = ug(u) — (p =1 + (p = Du)

the order 3w to u—2. Physically, this extremely extended 1- fp(u)

transition process might involve a mixture of fractional de- R .

rivatives of different orders. It has been shoy&1] that the Yp(u) + (= 1) (u)

Lévy walk does not have well-defined scaling, due to aging = 1- z:[/(u) : (A2)
effects. Similarly, the adoption of a fractional time deriva-

tive, with time-dependent order, might be inadequate t0 Xy introducey,(u) as the Laplace transform of the distribu-
plore the regime of transition from the order g-to the tion's derivative ' (t)=—u(u—- DT+ L/(T+t)#*L using the

order u—2. In conclusion, the fractional operator and its or- : L
Lapl ransform of an inver wer law an ituting i
der reflect a stable condition, of a brand new or infinitely old aplace transform of a erse power law and substituting it

system. The regime of transition from the dynamic to any 01J nto Eq.(A2) we have
these two thermodynamic regimes, and the regime of transi- (w=1)°T(1 - w)(e" - Ez_l)
tion from the earlier to the Iattgr thermpdynami_c regime,. is U = (- DL - w)(e' - EY_)
not yet a fully understood physical condition, an issue calling
for further investigation. _ (= DI'(= wu(e! - EZ)

Itis interesting to notice that, even if we select-2 and U — (u = DI - ) (e~ El ) '
consequently adopt a condition compatible with the station- o o
ary condition, the effective index of the first exit distribution Where, as usual, for simplicity we have 3et1. Anticipating
is located in the nonstationary regiongf< 1. This is prob-  the c;onvolu'uon form of the solution we cross-multiply to
ably the reason why the memory kernel seems to share tHbtain
same properties as those adopted in Rgsl0,33 to pro- (. : U_pu g o
duce subdiffusion. Notice that the baths used by L[Gtzand [ = (= DP(A = ) (€= By 1Pa(u) = (s~ Dl (e
Pot_tier[32] have_ properties quite different from the subqrdi- -1 - pw)(e"- E;‘L_l)] - ul'(— wu(e" - EZ), (A4)
nation perspective of Ref10], even though the relaxation . _
process stemming from subordinatifit0] is quite similar to ~ USing the relatior{2]
that produced by the non-Ohmic baths of Lutz and Pottier. fo ta a

d,(u) =

(A3)

We hope that the present work might help in understanding - anli— ut]dt= s a(Eﬂa— e?), a>-1,
the connection between the two perspectives. This is another 70 ™

subject for future research. (A5)

and settinge=w—1, we construct
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APPENDIX A ot/ +1

In this appendix we show how to obtain the order of thewhereR(t) is the inverse Laplace transform of the right side
fractional operator in the GME for €« <3, using the of Eqg.(A4). Using the well known recurrence relation of the
Laplace transform form forb(t) given by Eq.(8). We are T function, we can combine terms in E@\6) to obtain
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/ 1
t
R(t) = f i 2(1——) D (t-t)dt’
F(,u 1) 2
ez 0.1F
—— @ (t—t")dt’. (A7)
F(M Dyt +1 = o001l
Let us consider first the cage>2, where, in the limit oft =
>1 (equivalent tot>T), we can write Eq(A7) to a good 0.001 F
approximation as
t
R(t) = f A3 (t—t)dt =R(t).  (A8) 0.0001 ¢ , ,
F(u=-1)Jo 0.1 1 10 100
Going back to the Laplace transform representation, we ob- t

tain the simplier expression FIG. 4. The waiting time distributiourta(t) as a function ot time

T(-2) & (W) t. The dots denote the exact values, and the lines the prediction of
M—% =(n-1) (1 -w(e'- EZ—l) Eq. (55) for ©=2.3,T=1. Moving from bottom to top in the right-
F(u=1) u hand portion of the figureta=0.01, 1, 10, 100.

- mlp = DI wu(e'-E;), (A9) . . _ | |
. that the beginning of the first laminar region overlapping
which after a little algebra yields fob,(u) with t>0 is uniformly distributed betweetrr-t, andt=0.

—EY, The exact expression fa (t) is
Dy(u) = (= D~ 2){(# DI(L = )= T[f— .
. 0= [ axait,-xu+, (®1)
- I (- mé(eTE“—)} . (A10) :

where
Thus using the inverse Laplace transforms we obtain the cor-
responding expression in the time representation:

© t
G(t) = 8t) + lt) + >, | drypl(ry) f dry(r,

1 1 -
O ) =(u-1)(u—-2 - (A1l n=2J0
0= (= Diu >[(1 " (1”)#_1] (A11) t
In the time asymptotic limit we get —T) fT 72d7'n—1¢(t = Toe)- (B2)
D (t) t"‘l’ (A12) It is straightforward to find the Laplace transform Gft).

This is given by
corresponding to a fractional operator of indéx u—2. For
the sake of completeness, we also give the expression for the

GME kernel in the casg<2. Proceeding as was done ear- = 2‘6 = 1-(u) ®9
lier we obtain -
sinmu t42 Thus, the Laplace transform of E@1) with respect td,

D(t) ~ -

(t+ 1)2[:“ -1+(u-2t]. (A13) reads

t
Finally, we want to point out that the expressions we are t 1 T et f e SYuiv)d B4
proposing refer to values @f which are not integer. We are YoV = 1-y(s) WS - 0 vydy|. (B4

exploring the interval1,3]. Thus the the expressions we are
proposing become questionable for-2. To get the proper By numerically anti-Laplace transforming E@B4) we
expression fow=2 we have to study expressions like thoseevaluate the time dependence of the exact waiting time dis-
of Eq. (A2) and (A9) at u=2+¢, do a Taylor series expan- tribution of aget,, Eq. (B1).
sion aroundu=2, and assign tqu=2 the limiting values In Fig. 4 we compare the exact prediction, evaluated nu-
reached fore— 0. merically, to the heuristic expression of E¢3). We find
that at small and large values of these two expressions
APPENDIX B coincide. In the intermediate region they do not. Neverthe-

This appendix is devoted to establishing the accuracy ofess, we think the agreement between the two expressions is

Eg. (53), and consequently the validity of the assumptionsatisfactory enough for the purpose of this paper.
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