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We discuss a dynamic procedure that makes fractional derivatives emerge in the time asymptotic limit of
non-Poisson processes. We find that two-state fluctuations, with an inverse power-law distribution of waiting
times, finite first moment, and divergent second moment, namely, with the power indexm in the interval
2,m,3, yield a generalized master equation equivalent to the sum of an ordinary Markov contribution and
a fractional derivative term. We show that the order of the fractional derivative depends on the age of the
process under study. If the system is infinitely old, the order of the fractional derivative,o, is given byo=3
−m. A brand new system is characterized by the degreeo=m−2. If the system is prepared at time −ta,0 and
the observation begins at timet=0, we derive the following scenario. For times 0, t! ta the system is
satisfactorily described by the fractional derivative witho=3−m. Upon time increase the system undergoes a
rejuvenation process that in the time limitt@ ta yields o=m−2. The intermediate time regime is probably
incompatible with a picture based on fractional derivatives, or, at least, with a mono-order fractional derivative.
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I. INTRODUCTION

The fractional calculus has recently received a great deal
of attention in the physics literature, through the publication
of books [1,2] and review articles[3,4], as well as an ever
increasing number of research papers, some of which are
quoted here[5–12]. The blossoming interest in the fractional
calculus is due, in part, to the fact that it provides one of the
dynamical foundations for fractal stochastic processes[2,4].
The adoption of the fractional calculus by the physics com-
munity was inhibited historically because there was no clear
experimental evidence for its need. The disciplines of statis-
tical physics and thermodynamics were thought to be suffi-
cient for describing complex physical phenomena solely with
the use and modifications of analytic functions. This view
was supported by the successes of such physicists as On-
sager, who through the use of simple physical arguments was
able to relate apparently independent transport processes to
one another, even though these processes are associated with
quite different physical phenomena[14]. His general argu-
ments rested on three assumptions:(1) microscopic dynam-
ics have time-reversal symmetry;(2) fluctuations of the heat
bath decay at the same rate as do macroscopic deviations
from equilibrium; and(3) physical systems are aged. We
refer to assumption 2 as the Onsager principle and show that
it is tied up with assumption 3.

Onsager’s arguments focused on a system that is in con-
tact with a heat bath sufficiently long that the bath has come
to thermal equilibrium and consequently the system is aged.
In statistical physics we know that the bath is responsible for
both fluctuations and dissipation, and if the fluctuations are
white the regression of perturbations of the bath to equilib-
rium is instantaneous. This means that the energy absorbed
from the system of interest by the bath, through macroscopic
dissipation, is distributed over the bath degrees of freedom
on a very much shorter time scale than the relaxation time of

the system. This property is summarized in the well known
fluctuation-dissipation theorem, which has even been gener-
alized to the case where the fluctuations in the bath do not
regress instantaneously[15].

The dynamics of the physical variables to which the On-
sager principle apply are described by two different kinds of
equations:(1) the Langevin equation, a stochastic differential
equation for the dynamical variable and(2) the phase space
equation for the probability density. Two distinct methods
have been developed to describe the phase space evolution of
the probability density: the master equation introduced by
Pauli and the continuous time random walk(CTRW) ap-
proach of Montroll and Weiss[16]. The CTRW formalism
describes a random walk in which the walker pauses after
each jump for a sojourn specified by a waiting time distribu-
tion function. It was shown by Bedeauxet al. [17] that the
Markov master equation is equivalent to a CTRW if the wait-
ing time distribution is Poissonian. However, when the wait-
ing time distribution is not exponential, the case we consider
here, the equivalence between the two approaches is main-
tained only by generalizing to the non-Markov master equa-
tion, the so-called generalized master equation(GME) [18].
Recently, Metzler[19] argued that the GME unifies the frac-
tional calculus and the CTRW.

Allegrini et al. [13] have shown that creating a master
equation compatible with the Onsager principle requires that
the system be entangled with the bath in such a way as to
realize a condition of stable thermodynamic equilibrium.
This system-bath entanglement is the result of a rearrange-
ment process that may take an infinitely long time to com-
plete, leading to the replacement of the GME of Kenkreet al.
[18], which corresponds to the nonstationary condition, with
a new GME compatible with the stationary condition, and
consequently with the Onsager principle. Herein, we extend
that discussion to include the connection with the fractional
calculus in both infinitely and not infinitely aged condition.
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This will allow us to go beyond the discussion of Sokolov
and Metzler[12], whose fractional derivative refers to the
young state. We shall find a fractional derivative operator
with a different index, corresponding to the infinitely aged
condition, and we shall show that the condition of Sokolov
and Metzler is an attractor for all the systems that are par-
tially aged and not infinitely aged.

Beyond the Onsager principle

We approach the subject of fractional derivatives from a
perspective similar to that of Sokolov and Metzler[12].
More specifically, we address the problem of the connection
between the GME[18] and the stationary version of the
CTRW [16]. The GME considered by Allegriniet al. [13] is
the two-site version of the following equation:

d

dt
pstd = −E

0

t

Fst − t8dKp st8ddt8, s1d

wherepstd is them-dimensional population vector ofm sites,
K is a transition matrix between the sites, andFstd is the
memory kernel. The CTRW prescription for this process
yields

pstd = o
n=0

` E
0

t

dt8cnst8dCst − t8dM nps0d. s2d

Note thatcnstd is the probability thatn jumps occurred and
that the last jump took place at timet= t8, implying the re-
newal theory relation

cnstd =E
0

t

cn−1st − t8dc1st8ddt8, s3d

where c1std is the waiting time distribution functioncstd
introduced into the CTRW andc0std=dstd. While M is the
transition matrix connecting the sites after one jump has oc-
curred, the probability that no jump occurs in the time inter-
val s0,td is

Cstd =E
t

`

cst8ddt8. s4d

The waiting time distribution function and the memory ker-
nel can be related to one another by taking the Laplace trans-
form of the GME(1) and the CTRW(2). This comparison,
after some algebra[13], yields

F̂sudK =
uĉsud

1 − ĉsud
sM − I d, s5d

whereI is them3m unit matrix and the Laplace transform

of the functionfstd is f̂sud. Here, as in Allegriniet al. [13],
we limit our discussion to the two-state case where

M = S0 1

1 0
D s6d

and

K = S 1 − 1

− 1 1
D , s7d

thereby reducing Eq.(5) to

F̂sud =
uĉsud

1 − ĉsud
. s8d

This relation between the Laplace transform of the memory
kernel and the Laplace transform of the waiting time distri-
bution function was first obtained by Kenkreet al. [18] and
is reviewed by Montroll and West[20].

In the case when the lattice has only two sites, a left and
a right site, the random walker corresponds to a dichotomous
signal j, with the valuesjstd=−1, for the left site, andjstd
=1, for the right site. For the sake of simplicity, we assume
the two states to have the same statistical weight. Also in the
two-state CTRW, if we adopt a discrete time representation,
the motion of the random walker corresponds to a symbolic
sequencehjj, with the formh++ + + + ++−+−−+ + + +−−−
−−−−¯ j, which shows a significant persistence of both
states. The waiting time distributioncstd is the distribution
of the patches filled with either +’s or −’s.

We assume symmetry between the two states and a finite
first moment ofcstd making it possible for us to define the
autocorrelation function for the fluctuationsjstd,

Fjstd =
kjs0djstdl

kj2l
, s9d

because the process is stationary in time[21]. The problem
of how to relateFjstd to this persistent fluctuation is delicate
and will be discussed with some detail in Sec. I B. Here we
limit ourselves to noticing that the Onsager principle by-
passes the technical difficulties with the connection between
the Langevin and the master equation pictures, either ordi-
nary or generalized. In fact, the master equation is a prescrip-
tion to determine the probability of occupying a given state.
In the case under study here, the master equation makes it
possible to determinepistd, at timet, with i =1,2. TheLange-
vin equation, or in general any theoretical tool driving the
motion of a variable,jstd in the case under study here, af-
fords a convenient means to determinejstd, and conse-
quently the autocorrelation function of Eq.(9).

In his original work Onsager considered the case of a
macroscopic fluctuation that regresses to equilibrium through
the phenomenological equations of motion. Here we adopt
an extension of the Onsager principle made by Allegriniet
al. [13] to the case of two states, using the probability of the
random walker being in statei =1,2,pistd, at time t, which
allows us to determine the autocorrelation function of Eq.(9)
without any need to establish the Langevin-like picture
equivalent to the GME under study here. In fact, we adopt
the following equality:

Fjstd =
p1std − p2std
p1s0d − p2s0d

, s10d

which yields an immediate connection between the GME of
Eq. (1) and the autocorrelation function of Eq.(9), provided
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that the system is initially in the out of equilibrium state
corresponding top1s0d−p2s0dÞ0. Assuming a regression to
equilibrium in such a way as to retain Eq.(10) we obtain
from the GME(1) using the coupling matrix(7)

dFjstd
dt

= − 2E
0

t

Fst − t8dFjst8ddt8. s11d

Thus, the Laplace transform of the autocorrelation function
can be related to the Laplace transform of the memory kernel
by

F̂jsud =
1

u + 2F̂sud
. s12d

It is interesting to notice that in the Poisson case, namely,
when cstd is an exponential function of time, the memory
kernel of the GME, given by Eq.(8) turns out to be equiva-
lent to a Diracd function of time, thereby implying that the
bath responsible for the fluctuations of the variablej has a
time scale infinitely smaller than the system of interest. In
this specific case, with the help of Eq.(12) we see that the
autocorrelation functionFjstd decays exponentially with
time. This is a condition behind the ordinary Onsager prin-
ciple. Following the authors of Ref.[13] we want to go be-
yond the ordinary Onsager principle.

The authors of Ref.[13] studied the case where the auto-
correlation function departs from the exponential relaxation
and has the the following time asymptotic property:

Fjstdt→` ,
1

tm−2 . s13d

The waiting time distributioncstd corresponding to this au-
tocorrelation function has the following time asymptotic
property[13]:

cstdt→` ,
1

tm , s14d

with m.2 to fit the stationary condition. At first sight, one
might be surprised about our decision to make these complex
processes obey the Onsager principle. Such processes have
exotic thermodynamical properties, and in some cases they
are even shown to be nonergodic[22] and to produce aging
effects [23,26]. Another interesting effect emerging from
these processes was described in Ref.[24]. These authors
used a fractional Fokker-Planck equation, which is closely
related to the GME used in this paper, and they found that
the response of their GME to external perturbation is quite
different from the response of the corresponding CTRW, in
conflict with the fact that their GME is equivalent to a
CTRW in the absence of perturbation. All these surprising
properties, however, refer to the casem,2, where no invari-
ant measure exists. The casem.2, under study here, is in
principle compatible with the Onsager principle, and as a
consequence our request is not absurd. Nevertheless, we
shall see that the Onsager principle requires that the system
is infinitely aged, an ideal condition, and that an even appar-
ently negligible departure from this condition yields a strik-
ing effect: a rejuvenation process.

The authors of Ref.[13] determined that the problem of
how to make these processes compatible with the Onsager
principle could be solved by expressing the CTRW in sta-
tionary form, resulting in the GME memory kernel

F̂sud =
uf1 − ĉsudg

− 2f1 − ĉsudg + uf1 + ĉsudgt
, s15d

wheret is the average waiting time,

t =E
0

`

tcstddt. s16d

The form of the memory kernel given by Eq.(15) is consis-
tent with the equation of motion for the autocorrelation func-
tion (11), and consequently Eq.(15) is equivalent to

F̂sud =
1

2S 1

F̂jsud
− uD . s17d

B. Theoretical waiting time distribution

We have to remind the reader that the stationary autocor-
relation function ofj is not related directly tocstd. Zumofen
and Klafter[25] provided a prescription for deriving the cor-
responding equilibrium autocorrelation function ofj from
cstd. Their result rests on the observation thatcstd is an
experimental function, evaluated by observing the time du-
ration of the two states. The connection with renewal theory
is established by assuming that the time duration of a state is
determined by two processes; one is the extraction of a ran-
dom number from a theoretical inverse power-law distribu-
tion c*std, with the same power indexm, and the other is a
coin tossing procedure that determines the sign of this lami-
nar region. Thus, a given experimental sojourn time in one of
the two states may correspond to an arbitrarily large number
of drawings and coin tossings. Renewal theory is used to
relate the autocorrelation functionFjstd to the waiting time
distribution functionc*std. In fact, from the renewal theory
[21] we obtain the following important result:

Fjstd =
1

t*E
t

`

st8 − tdc*st8ddt8, s18d

wheret* is the mean waiting time of thec*std-distribution
density. It is interesting to notice that this equation implies
that the second derivative of the autocorrelation function is
proportional toc*std,

d2

dt2
Fjstd =

c*std
t* . s19d

In Sec. II the departure point of our calculations is given
by the autocorrelation functionFjstd of Eq. (18). In this case
is convenient to assign to this equilibrium autocorrelation
function a simple analytical form. This is done as follows.

First of all we assign toc*std the following analytical
form:
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c*std = sm − 1d
T*m−1

st + T*dm , s20d

which, as can be proved with the help of Eq.(24), is com-
patible with cstd getting the time asymptotic form of Eq.
(14). This makes it possible for us to writet* as follows:

t* =E
0

`

tc*stddt =
T*

m − 2
. s21d

With the choice of Eq.(20) for c*std, the autocorrelation
function Fjstd of Eq. (18) gets the attractive analytical form

Fjstd = S T*

t + T* Db

, s22d

where

b ; m − 2. s23d

Thus, in the casem,3, the autocorrelation function of the
fluctuations is not integrable.

Zumofen and Klafter[25], in addition to explaining with
clear physical arguments the connection betweencstd and
c*std, established that the Laplace transforms of the two
functions are related to one other by

ĉ*sud =
2ĉsud

1 + ĉsud
. s24d

This important relation allows us to establish a connection
betweent andt* , which turns out to be

t = 2t* . s25d

In conclusion, there are two different waiting time distri-
butions with the time asymptotic behavior of Eq.(14), the
experimental waiting time distributioncstd and the theoreti-
cal waiting time distributionc*std. The theoretical distribu-
tion is necessary to define the autocorrelation functionFjstd.
Thus, a theoretical treatment involving the autocorrelation
function will force us to depend onc*std. In this case it is
convenient to adopt the analytical form of Eq.(20) for c*std,
and Secs. II and III will rest on this choice. In other cases,
Sec. IV, Appendix A, and Appendix B, the theoretical treat-
ment will use the experimental waiting time distributioncstd.
In these cases it is convenient to adopt the analytical form

cstd = sm − 1d
Tm−1

st + Tdm . s26d

However, whatever choice is made, either the analytical form
of Eq. (20) for c*std or the analytical form of Eq.(26) for
cstd, in both cases, thanks to Eq.(24), the two waiting time
distributions maintain the same time asymptotic behavior,
with the samem. So do the two different expression for the
equilibrium autocorrelation function, both decaying as Eq.
(13). For the main purpose of this paper the time asymptotic
behavior is in fact the property that matters.

C. Purpose of this paper

The purpose of this paper is to prove that a dichotomous
fluctuationj, with the waiting time distribution of Eq.(14),
can be described by a GME that, in turn, is well represented
by a fractional derivative operator. The fractional index cor-
responds to the realization of the Onsager condition, as sur-
prising as this fact might be in the condition 3.m.2, which
is so far from the Poisson limitm=`. The Onsager principle
is not totally foreign to this anomalous physical condition,
thanks to the fact thatm.2 is compatible with the existence
of thermodynamical equilibrium. However, the time neces-
sary to reach this thermodynamical condition is infinite, and
the system, observed at finite times, no matter how long,
shows a surprising rejuvenation effect. Through this rejuve-
nation effect, the fractional order compatible with the On-
sager principle slowly turns into that established by Sokolov
and Metzler[12].

The ouline of the paper is as follows. In Sec. II, using the
inverse Laplace transform of Eq.(17) we determine the un-
known memory kernelFstd, making it possible to discuss
how to express the GME in terms of fractional derivatives.
The case where 2,m,3 is compared to the recent work of
Sokolov and Metzler[12]. We find that the index of the
fractional derivative is 3−m, rather thanm−2, as predicted
by Sokolov and Metzler. In Sec. III, we prove that this dif-
ference in index is due to the fact that we adopt a stationary
condition, while Sokolov and Metzler do not. In Sec. IV, we
also prove that in the case of a finite, rather than infinite, age
our GME makes a transition from thes3−mdth to the sm
−2dth order. The stationary case becomes stable only in the
limiting case of infinite age. In Appendix A, the interested
reader can find details on how to establish the order of the
fractional operator in the GME, in the whole range 1,m,3,
when only the brand new condition of Eq.(8) is considered.
The accuracy of the analytical expressions that we use in
Sec. IV to illustrate the rejuvenation process is discussed in
Appendix B.

In conclusion, on the one hand we shed light on the mean-
ing of the work of Allegriniet al. [13], which is proven to be
a subordination to a Markov master equation through the
stationary distribution of first exit times. On the other hand,
we extend the approach to systems of any age and reveal the
phenomenon of a continuous time random walk with rejuve-
nation. To accomplish this dual role we rely heavily on the
results recently obtained by Barkai[26] and, to a lesser ex-
tent the results of Allegriniet al. [13]. However, this allows
us to reveal a dependence of the fractional derivative order
on the aging and rejuvenation process, which was not previ-
ously identified.

II. THE INVERSE LAPLACE TRANSFORM OF THE
MEMORY KERNEL

To establish the form of the unknown memory kernel
Fstd, we make a few preliminary observations. First of all,
we note that through Eq.(17) we establish a direct connec-
tion with the autocorrelation functionFjstd and that this
auto-correlation function is, in turn, directly related to the
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waiting time distributionc*std, through Eq.(18). Thus, with
no loss of generality for the reasons illustrated in Sec. I it is
convenient to refer toc*std rather than tocstd and conse-
quently, according to the prescriptions illustrated at the end
of Sec. I B, to the analytical form of Eq.(20).

For simplicity, we setT* =1 throughout this section. Thus,
the Laplace transform of the autocorrelation function is[27]

F̂jsud =
Gs1 − bd

u1−b seu − Eb−1
u d, s27d

where 0,b,1, given the fact that we are considering
2,m,3, andEb−1

u is a generalized exponential function[2].
Thus,F̂jsud diverges asu→0 and Eq.(12) yields F̂s0d=0.
We explore the opposite limitu→` using Eq.(15), which

yields F̂sud=1/t=1/2t* . In the time representation, the lat-
ter limit is equivalent toFstd<dstd /2t* for t→0. Therefore,
we segment the Laplace transform of the GME memory ker-
nel into two parts as follows:

F̂sud =
1

2t* + F̂asud. s28d

The first term models the short-time limit, while the second
term is responsible for the long-time behavior. In the time
representation we have

Fstd =
dstd
2t* + Fastd. s29d

Note that this division of the memory kernel into a white-
noise contribution and a slow term corresponds to a similar
partition made by Fuliński [28].

Thus, for the time evolution equation of the autocorrela-
tion function ofjstd, we derive the following equation:

dFjstd
dt

= −
1

t* Fjstd − 2E
0

t

Fast − t8dFjst8ddt8. s30d

Using Eq.(9) and substituting into it the explicit expression
of t* as a function ofm, after some algebra, we obtain

S T

t + T
Db bt

Tst + Td
= Fjstd

bt

Tst + Td
= − 2E

0

t

Fast

− t8dFjst8ddt8. s31d

The two terms on the left-hand side Eq.(31) are positive.
Due to the negative sign on the right-hand side of this equa-
tion we conclude that it might well be thatFastd is always
negative.

Let us concentrate on the caseb,1: using the autocorre-
lation functionFjstd of Eq. (22) (with T* =1) and using the
change of time variablet8+1→ t8, we rewrite Eq.(31) in the
form

− 2E
0

t+1

Fast + 1 − t8d
1

t8bdt8 + 2E
0

1

Fast + 1 − t8d
1

t8bdt8

=
bt

st + 1db+1 . s32d

In the limiting caset→` we neglect the second term on
the left-hand side of this equation. This is a natural conse-
quence of the assumption that the memory kernel must tend
to zero with a negative tail as an inverse power law. With this
assumption it is straightforward to prove that the modulus of
the first term becomes much larger than that of the second
term on the left-hand side of this equation. The consequences
of this crucial assumption are supported by the numerical
results depicted in Fig. 1. With this assumption Eq.(32) sim-
plifies to

− 2E
0

t

Fast − t8d
1

t8bdt8 =
bt

st + 1db+1 , s33d

which can be solved by means of the fractional calculus[2].
We use the Riemann-Liouville(RL) definition of the frac-
tional integral:

Dt
−qffstdg =

1

GsqdE0

t fst8ddt8

st − t8d1−q , s34d

which is the antiderivative of the fractional derivative with
orderq, with q,1. Consequently, forb,1 we can express
Eq. (33) in terms of the RL fractional integral

Dt
b−1fFastdg = −

1

2Gs1 − bd
bt

st + 1db+1 ,

so that inverting this equation we have the formal expression
for the slow part of the memory kernel

Fastd = −
1

2Gs1 − bd
Dt

1−bF bt

st + 1db+1G
= −

1

2Gs1 − bd
Dt

1−bfbtFj,b+1stdg. s35d

We denote the autocorrelation function with the inverse
power sb+1d by the symbolFj,b+1std. Carrying out the re-
quired calculations on the right-hand side of Eq.(35), we
obtain (see, for example, Westet al. [[2], p. 90],

FIG. 1. The slow component of the memory kernelFstd ,Fastd,
as a function of time. The black dots denote the result of the nu-
merical inversion of the expression in the Laplace transform result-
ing from Eqs.(15) and (28) for b=0.5; the continuous line is the
analytical approximation given by Eq.(36).
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Fastd = −
b

2Gs1 − bdGs1 + bd
tb

st + 1d2, b , 1. s36d

A comparison with numerical inversion of the kernel is
shown in Fig. 1.

For the sake of completeness, it is worth noticing that we
can proceed in a similar way in the caseb.1 also. In this
case we find, for the contributionFastd of the GME, the
following time asymptotic behavior:

Fastd = −
bsb − 1d

2

t

st + 1db+1, b . 1. s37d

III. THE EMERGENCE OF FRACTIONAL
OPERATORS

In this section we show that in the two-site case we are
discussing the GME has the form of a transport equation,
with two terms on the right-hand side. The first has the form
afforded by the ordinary master equation and consequently
satisfies the Onsager principle, giving a relaxation dependent
on the average waiting time of the CTRW. The second term
corresponds to a fractional derivative in time, and extends
the Onsager principle to the case of a relaxation with a fat
tail. To obtain these results, we use what we have learned in
the preceding section.

First of all, since we are dealing with the two-site case,
using the form ofM and K matrices withz=x=−1 andy
=1, we rewrite Eq.(1) in the following form:

d

dt
p1std =E

0

t

Fst − tdfp2std − p1stdgdt, s38d

d

dt
p2std =E

0

t

Fst − tdsp1std − p2stdddt. s39d

The memory kernelF is related to the autocorrelation func-
tion of the dichotomous variableFj through Eq.(17). Insert-
ing Eq. (17) into the Laplace transform of the set of the
two-site dynamical equations, solving the resulting set of
equations, and taking the corresponding inverse Laplace
transforms yields the solutions

p1std =
1

2
h1 − Fjstdfp2s0d − p1s0dgj, s40d

p2std =
1

2
f1 + Fjstdsp2s0d − p1s0ddg. s41d

Note that these solutions can be combined to yield the gen-
eralized Onsager principle given by Eq.(10) in terms of the
difference in the probabilities.

We now want to find a formal equation of evolution for
the probabilities involving fractional operators. We know
from the preceding section that

Fstd =
dstd
2t* + Fastd s42d

with t* =T* / sm−2d=1/b, thanks to the fact that we setT*

=1. Substituting the decomposition of the memory kernel
into Eq. (38), we obtain

dp1std
dt

=
p2std − p1std

2t* +E
0

t

Fast − tdfp2std − p1stdgdt.

s43d

Writing Fastd as the derivative of an as yet unspecified func-
tion fstd, and using the property

d

dt
E

0

t

fst − tdgstddt = fs0dgstd +E
0

t

f8st − tdgstddt

s44d

with f8std=sd/dtdfstd, we obtain

dp1std
dt

=
p2std − p1std

2t* − fs0dfp2std − p1stdg +
d

dt
E

0

t

fst − td

3fp2std − p1stdgdt. s45d

We also found that in the case 0,b,1 the asymptotic be-
havior of the memory kernel is expressed by

Fastd < −
b

2Gs1 − bdGs1 + bd
tb

st + 1d2

< −
b

2Gs1 − bdGs1 + bd
tb−2, t → `, T* = 1.

s46d

Rewriting Eq.(47) as

Fastd < −
1

2Gs1 − bdGsbdsb − 1d
d

dt
tb−1, s47d

we identify fstd with f1/2s1−bdGs1−bdGsbdgtb−1 for t→`.
Choosingfs0d=0 and using the properties of theG function,
we assign to the time asymptotic equation of motion the
form

dp1std
dt

= −
p1std − p2std

2t* +
1

2Gs2 − bdGsbd
d

dt
E

0

t

st

− tdb−1fp2std − p1stdgdt s48d

or, in terms of the RL fractional integral(34),

dp1std
dt

= −
p1std − p2std

2t* −
1

2Gs2 − bd
Dt

1−bfp1std − p2stdg.

s49d

The same procedure applied to the equation of motion for
p2std yields

dp2std
dt

= −
p2std − p1std

2t* +
1

2Gs2 − bd
Dt

1−bfp1std − p2stdg.

s50d
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The difference between these two equations yields

d

dt
fp1std − p2stdg = −

p1std − p2std
t* −

1

Gs2 − bd
Dt

1−bfp1std

− p2stdg, s51d

clearly showing the two kinds of contribution to the gener-
alized Onsager principle. The first term gives the relaxation
of the perturbation away from equilibrium at the macro-
scopic rate required by Onsager. The second term gives the
additional slow relaxation in the form of the fractional inte-
gral.

IV. AGING ORDER

We have to remark that the condition of Eq.(12) refers to
the stationary condition explicitly considered by Klafter and
Zumofen[29]. In this section we prove that there is a con-
nection between a system’s age and the order of the frac-
tional derivative in the relaxation process. A sign of the de-
pendence of the fractional derivative order on age is given by
the discrepancy between the results of Sec. III and Ref.[12].
Let us compare Eq.(49) to Eq. (16) of Ref. [12]. We obtain
the fractional index 1−b rather thanb as in the work of
Sokolov and Metzler. In Appendix A we prove that our time
asymptotic approach to fractional derivatives, in the nonsta-
tionary case studied by Sokolov and Metzler, yields the same
index as they obtain[12]. Thus, the discrepancy between our
prediction and the prediction of Sokolov and Metzler de-
pends on the fact that we consider a condition consistent
with the Onsager principle, whereas Sokolov and Metzler do
not. Furthermore, if the system is not infinitely aged, a sort
of rejuvenation process is expected to take place that will
lead to the fractional order of Sokolov and Metzler.

To support our remarks concerning the relation between
aging and the order of the fractional operator, here we dis-
cuss how to define a waiting time distribution of any age.
The authors of Ref.[13] have shown that the waiting time
distribution cstd of Eq. (14) is obtained from the following
dynamic model. A particle moves in an the intervalI
;f0,1g driven by the equation of motion

dy/dt = ayz, s52d

with z.1. When the particle reaches the bordery=1, it is
injected back to an initial condition betweeny=0 andy=1
with uniform probability. The age of the CTRW is deter-
mined by the distribution of first exit times. The ordinary
CTRW is based on identifying this distribution withcstd.
This means that the CTRW is equivalent to assuming that the
system is prepared in a flat distribution att=0, which coin-
cides with the beginning of the observation process.

Let us discuss now the consequence of beginning the ob-
servation a significant time after the preparation. Let us
imagine that the system is prepared in a flat distribution at a
time t=−ta,0, and that the observation begins att=0. This
means that the flat distribution begins producing a sequence
of time intervals of sizet, according to the distribution of
Eq. (14); more precisely, the time intervalt1 beginning att
=−ta and ending att=−ta+t1, the time intervalt2 beginning

at t=−ta+t1 and ending att=−ta+t1+t2, and so on. The
waiting time distribution of ageta, denoted bycta

std, is de-
termined by the first of these time intervals overlapping with
t.0. The time length of that overlap is the time length
whose distribution determinescta

std. We make the assump-
tion that the beginning of the first time interval overlapping
with t.0 occurs with equal probability at any point between
t=−ta and t=0. The validity of this assumption is discussed
in Appendix B, which establishes that this assumption is very
good forta→0 andta→`. In between the asymptotic limits
the resulting prediction is not exact. However, since it yields
simple analytical formulas, we adopt this simplifying as-
sumption for any age. Thus, we have that

cta
std =

E
0

ta

cst + yddy

gstad
, s53d

wheregstad is the normalization factor defined by

gstad ; E
0

ta

Cst8ddt8, s54d

and Cstd is the probability that no event occurs throughout
the time interval of lengtht. Using forcstd, according to the
prescription adopted in this paper, the analytical form of Eq.
(26), it is easy to prove that Eq.(53) can be written in the
form

cta
std = sm − 2d

st + Tds1−md − st + T + tads1−md

Ts2−md − sta + Tds2−md . s55d

This formula proves that fort! ta the index of the distribu-
tion is m−1, whereas fort@ ta the index becomesm. This
result for the age-dependent waiting time distribution func-
tion agrees with the predictions by Barkai[26] and by the
authors of Ref.[13]. Notice that the formula Eq.(55) is
equivalent to drawing the initial condition fory from an aged
distribution of this variable.

Here, we are in a position to evaluate the waiting time
index at a generic time, where we writecta

std as

cta
std =

AsT,tad
st + Tdmeffstd

. s56d

Using Eq. (55) we arrive at the following formula for the
time dependence of the effective power-law index:

meffstd =
lnfst + Tds1−md − st + T + tads1−mdg

lnft + Tg
. s57d

Figure 2 illustrates the regression of the effective power-
law index tom with two different ages, and shows clearly
that the regression is slower for older systems. This formula
does more than explain the discrepancy between Eq.(49)
and Eq.(16) of Ref. [12]. In fact, it shows that it is possible
to build a GME that at short times follows the prescription
of our GME and at long times moves into the basin of at-
traction of Sokolov and Metzler. This is certainly the case if
ta.−`.
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This aspect is important and needs a more exhaustive il-
lustration. We note that the approach of Ref.[13] can be
easily extended to the case where the distribution of first exit
times has a finite age. It is enough to follow the procedure of
Ref. [13] and to replace the first exit time distribution with
cta

std rather than withc`std;cta=−`std, as done in Ref.[13].
The result of this procedure yields for the GME the follow-
ing form for the Laplace transform of the memory kernel:

F̂ta
sud =

uĉta
sud

1 + ĉsud − 2ĉta
sud

. s58d

It is straightforward to prove that forta=0 Eq. (58) reduces
to

F̂ta=0sud =
uĉsud

1 − ĉsud
. s59d

In fact, the general prescription of Eq.(53) immediately
yields cta

std=cstd for ta=0. To derive the memory kernel
corresponding to the infinitely aged condition of Eq.(15) we
have to notice first that Eq.(53) yields, in accordance with
Refs.[26] and [13],

c`std ; cta=`std =
1

t
E

t

`

dt8cst8d. s60d

To illustrate the change of the memory kernel with time,
notice that the Laplace transform of Eq.(55) is

ĉta
sud =

Ĉsuds1 − eutad + eutaE
0

ta

e−uyCsyddy

gstad
, s61d

that is,

ĉta
sud =

f1 − ĉsudgs1 − e−utad + ueutaE
0

ta

e−uyCsyddy

ugstad
.

s62d

Let us substitute Eq.(62) into Eq. (58), from which we
obtain the Laplace transform of the memory kernel for an
arbitrary age. In Fig. 3 we show the Laplace transform of the
memory kernel corresponding to a number of different ages.
Moving from the top to the bottom curve the age increases
from the brand new kernelsta=0d to the infinitely aged or
stationary kernelsta=`d.

V. CONCLUDING REMARKS

The adoption of a two-state model to generate anomalous
diffusion is not unusual in the random walk literature. For
instance, Shushin[30] also generated anomalous diffusion by
means of a two-state model. However, to properly locate in
the literature of anomalous diffusion the model of the present
paper, we have to point out that the diffusion generator in
Ref. [30] is a two-state Markov equation modulated by time-
dependent transition parameters that obey non-Poisson statis-
tics. The model studied in the present paper might be
adopted to generate anomalous diffusion as well, but is quite
different from that of Sushin. The extended time of sojourn
in one of the two states would produce uniform motion, with
no randomness involved, as discussed by the authors of Ref.
[12], which rests in fact on the same model as that adopted
here.

In this paper we establish that an infinitely old system,
with the power-law index in the interval 2ømø3, yields the
fractional order 1−b=3−m. The prediction of Ref.[12], on
the other hand, yields the fractional orderm−2, correspond-
ing to the brand new condition. If the system is not infinitely
aged, namely,ta,`, the short-time behavior of the system
for t! ta is expected to be that of an aged system. At large
observation times,t@ ta, rejuvenation begins. This can be
explained using the dynamical model of Eq.(52). In fact,
aging has to do with the slow regression to equilibrium, if it
exists, of the variabley, which mimics a real bath slowly
regressing to equilibrium. The aging effects discussed by
Barkai [26] correspond toz.2 and thus tom,2. In this
case the dynamic model under discussion does not have an
invariant distribution, and, consequently, any observation is

FIG. 2. The effective power indexmeffstd as a function of time,
for m=2.3. The curves refer, from top to bottom, tota=100, 1000,
10 000.

FIG. 3. The Laplace transform of theta-old memory kernel

Fta
std ,F̂ta

sud, as a function ofu, for m=2.3. The curves refer, from
top to bottom, tota=0,0.1,1,10,̀ .
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done while the bath is drifting toward a condition that will
never be reached. This aging effect affects the form of the
first exit time distribution, whose index ism−1 rather thanm.
However, after the first exit the trajectories are injected back
with a uniform probability, and thus all the ensuing jumps
are determined by the ordinary waiting time distributioncstd.

It would be desirable to have an equation of motion with
a fractional operator order that changes as a function of time
from 3−m to m−2. However, there are technical and concep-
tual difficulties that make it difficult, if not impossible, to
realize this goal. In fact, according to the perspective adopted
in this paper, the order of the fractional operator is estab-
lished using time asymptotic arguments. Thus, ifta,` we
can associate a timet! ta with the ordero=m−2 of the frac-
tional derivative. This is so because fort! ta the calculations
would be virtually equivalent to those done in Appendix A. It
is not clear how to proceed whent is of the order ofta, this
being the first reason why assigning a fractional derivative
order to any time might be difficult. There also exists a
physical reason that might make it impossible to move from
the order 3−m to m−2. Physically, this extremely extended
transition process might involve a mixture of fractional de-
rivatives of different orders. It has been shown[31] that the
Lévy walk does not have well-defined scaling, due to aging
effects. Similarly, the adoption of a fractional time deriva-
tive, with time-dependent order, might be inadequate to ex-
plore the regime of transition from the order 3−m to the
orderm−2. In conclusion, the fractional operator and its or-
der reflect a stable condition, of a brand new or infinitely old
system. The regime of transition from the dynamic to any of
these two thermodynamic regimes, and the regime of transi-
tion from the earlier to the latter thermodynamic regime, is
not yet a fully understood physical condition, an issue calling
for further investigation.

It is interesting to notice that, even if we selectm.2 and
consequently adopt a condition compatible with the station-
ary condition, the effective index of the first exit distribution
is located in the nonstationary region ifb,1. This is prob-
ably the reason why the memory kernel seems to share the
same properties as those adopted in Refs.[6,10,32] to pro-
duce subdiffusion. Notice that the baths used by Lutz[6] and
Pottier[32] have properties quite different from the subordi-
nation perspective of Ref.[10], even though the relaxation
process stemming from subordination[10] is quite similar to
that produced by the non-Ohmic baths of Lutz and Pottier.
We hope that the present work might help in understanding
the connection between the two perspectives. This is another
subject for future research.
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APPENDIX A

In this appendix we show how to obtain the order of the
fractional operator in the GME for 1,m,3, using the
Laplace transform form forFstd given by Eq.(8). We are

usingcstd rather thanc*std. Thus, according to the procedure
adopted in this paper, we use the analytical form of Eq.(26).
For the reader’s convenience, we rewrite this expression
here,

cstd = sm − 1d
Tm−1

sT + tdm−1 . sA1d

It is important to stress that in the text we made the choice
of Eq. (20) for c*std, in this way determining, through Eq.
(24), a form for cstd that departs from Eq.(A1). However,
both choices lead to the same time asymptotic behavior of
Eq. (14) for both the waiting time distributions.

We note that foru→` we get a finite valueF̂s`d=sm
−1d /T corresponding tocs0d in t space. As in Sec. II, we
separate the kernel into two contributions:Fstd=fsm
−1d /Tgdstd+Fastd, and insert the Laplace transform of sepa-
ration into Eq.(8), to write

F̂asud =
uĉsud − sm − 1d + sm − 1dĉsud

1 − ĉsud

=
ĉDsud + sm − 1dĉsud

1 − ĉsud
. sA2d

We introduceĉDsud as the Laplace transform of the distribu-
tion’s derivative c8std=−msm−1dTm−1/ sT+ tdm+1; using the
Laplace transform of an inverse power law and substituting it
into Eq. (A2) we have

F̂asud =
sm − 1d2Gs1 − mdseu − Em−1

u d
u1−m − sm − 1dGs1 − mdseu − Em−1

u d

−
msm − 1dGs− mduseu − Em

ud
u1−m − sm − 1dGs1 − mdseu − Em−1

u d
, sA3d

where, as usual, for simplicity we have setT=1. Anticipating
the convolution form of the solution we cross-multiply to
obtain

fu1−m − sm − 1dGs1 − mdseu − Em−1
u dgF̂asud = sm − 1dfsm

− 1dGs1 − mdseu − Em−1
u dg − mGs− mduseu − Em

ud. sA4d

Using the relation[2]

E
0

` ta

t + a
expf− utgdt =

paa

sinpa
sEa

ua − euad, a . − 1,

sA5d

and settinga=m−1, we construct

Rstd =
1

Gsm − 1dE0

t

t8m−2Fast − t8ddt8 −
sinpm

p
sm − 1dGs1

− mdE
0

t t8m−1

t8 + 1
Fast − t8ddt8, sA6d

whereRstd is the inverse Laplace transform of the right side
of Eq. (A4). Using the well known recurrence relation of the
G function, we can combine terms in Eq.(A6) to obtain

AGING AND REJUVENATION WITH FRACTIONAL… PHYSICAL REVIEW E 70, 036105(2004)

036105-9



Rstd =
1

Gsm − 1dE0

t

t8m−2S1 −
t8

t8 + 1
DFast − t8ddt8

=
1

Gsm − 1dE0

t t8m−2

t8 + 1
Fast − t8ddt8. sA7d

Let us consider first the casem.2, where, in the limit oft
@1 (equivalent tot@T), we can write Eq.(A7) to a good
approximation as

Rstd =
1

Gsm − 1dE0

t

t8m−3Fast − t8ddt8 = Rstd. sA8d

Going back to the Laplace transform representation, we ob-
tain the simplier expression

Gsm − 2d
Gsm − 1d

F̂asud
um−2 = sm − 1d2Gs1 − mdseu − Em−1

u d

− msm − 1dGs− mduseu − Em
ud , sA9d

which after a little algebra yields forF̂asud

F̂asud = sm − 1dsm − 2dFsm − 1dGs1 − md
1

u

eu − Em−1
u

u1−m

− mGs− md
1

u

seu − Em
ud

u−m G . sA10d

Thus using the inverse Laplace transforms we obtain the cor-
responding expression in the time representation:

Fastd = sm − 1dsm − 2dF 1

s1 + tdm −
1

s1 + tdm−1G . sA11d

In the time asymptotic limit we get

Fastd ~
1

tm−1 , sA12d

corresponding to a fractional operator of indexb=m−2. For
the sake of completeness, we also give the expression for the
GME kernel in the casem,2. Proceeding as was done ear-
lier we obtain

Fstd < −
sinpm

p

tm−2

st + 1d2fm − 1 + sm − 2dtg. sA13d

Finally, we want to point out that the expressions we are
proposing refer to values ofm which are not integer. We are
exploring the interval[1,3]. Thus the the expressions we are
proposing become questionable form=2. To get the proper
expression form=2 we have to study expressions like those
of Eq. (A2) and (A9) at m=2+e, do a Taylor series expan-
sion aroundm=2, and assign tom=2 the limiting values
reached fore→0.

APPENDIX B

This appendix is devoted to establishing the accuracy of
Eq. (53), and consequently the validity of the assumption

that the beginning of the first laminar region overlapping
with t.0 is uniformly distributed betweent=−ta and t=0.

The exact expression forcta
std is

cta
std =E

0

ta

dxGsta − xdcst + xd, sB1d

where

Gstd ; dstd + cstd + o
n=2

` E
0

t

dt1cst1d ·E
t1

t

dt2cst2

− t1d ¯ E
tn−2

t

dtn−1cst − tn−1d. sB2d

It is straightforward to find the Laplace transform ofGstd.
This is given by

Ĝsud = o
n=0

`

ĉsudn =
1

1 − ĉsud
. sB3d

Thus, the Laplace transform of Eq.(B1) with respect tota
reads

csa
std =

1

1 − cssad
esatFcssad −E

0

t

e−saycsyddyG . sB4d

By numerically anti–Laplace transforming Eq.(B4) we
evaluate the time dependence of the exact waiting time dis-
tribution of ageta, Eq. (B1).

In Fig. 4 we compare the exact prediction, evaluated nu-
merically, to the heuristic expression of Eq.(53). We find
that at small and large values ofta these two expressions
coincide. In the intermediate region they do not. Neverthe-
less, we think the agreement between the two expressions is
satisfactory enough for the purpose of this paper.

FIG. 4. The waiting time distributioncta
std as a function ot time

t. The dots denote the exact values, and the lines the prediction of
Eq. (55) for m=2.3,T=1. Moving from bottom to top in the right-
hand portion of the figure,ta=0.01, 1, 10, 100.
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