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Fluctuating fronts as correlated extreme value problems: An example of Gaussian statistics
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In this paper, we view fluctuating fronts made of particles on a one-dimensional lattice as an extreme value
problem. The idea is to denote the configuration for a single front realization at bynthe set of co-ordinates
{ki(0}=T[ky(t), k(1) , ... Ky (D] of the constituent particles, whelt) is the total number of particles in that
realization at time. When{k;(t)} are arranged in the ascending order of magnitudes, the instantaneous front
position can be denoted by the location of the rightmost particle, i.e., by the extremal kdtue
=maxky(t),ky(t), ... kyp(t)]. Due to interparticle interactiongl(t)} at two different times for a single front
realization are naturally not independent of each other, and thus the probability distriBH('nr)r(based on an
ensemble of such front realizatiordescribes extreme value statistics for a set of correlated random variables.
In view of the fact that exact results for correlated extreme value statistics are rather rare, here we show that
for a Fermionic front model in a reaction-diffusion systeﬁh(t) is Gaussian. In a Bosonic front model,
however, we observe small deviations from the Gaussian.
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[. INTRODUCTION of front realizations approaches a constant in time at long

times. Moreover, as a result of the inherent stochasticity in

Extreme value statistics of random variables plays a dithese systems, the individual front realizations that are ini-
verse role in physics, chemistry, and biolddy-3]. The topic  tially aligned with each other do not remain so at a later

concerns the probability distributions of the extrefie., the ~ time; instead their displacement with respect to each other

maximumKk,,, Of the minimumk,;,) of a set ofN random  keeps increasing with timésee Fig. 4 of Ref[8] for an

variables{ky, k., ... Ky} in the limit N—o. When the ran- illustration). As explained below, it is the dynamics of the

dom variables are uncorrelated, the probability distribution individual front realizations in the ensemble that we pose as

of ky,i, belongs to one of the three universality claspés a c_(l_);related extreorlne vaItL)Jet\ErobI(?dr? in tth's palperl. tatisti
but the identification of similar universality classes for the € correspondence between the extremal vaue statistics

extreme value statistics of correlated random variables is sti nd the fluctuating fronts in these systems is easily made by

laraely an ooen broblem. A few results relating to extrem irst noticing that in any realization of these systems, the
gely pen p ) 9 Sront position can be denoted by the instantaneous position

value statistics for correlated random variables in physics, (t) of the foremost(or the rightmost particle [9,10. The

computer SC|ence,. and mathematics have been obtained kerest then lies in the probability distributicmf(t), which

the recent pasts, 6l; nevertheless, any exact r_esult _that Car:‘gescribes the statistics of the front position in time for an

be thamed for correlated random variables is an importa nsemble of front realizations. Secondly, in a snapshot of one

addition to the present state of knowledge. _single realization, the configuration of the system is de-
From this perspective, in this paper, we present two mainycrihed by the locations of the partickes random variablgs

results relating to fluctuating fronts made of discrete part'de?ki(t)}z[kl(t),kz(t),...,kN(t)(t)], where N(t) is the total

on a one-dimensional lattice. Before we proceed further Wmhumber of particles in that realization at timeThen the

our formulat.|on of the problem, we must note th_at_an INtgU-i stantaneous front positidk(t) in this formulation is then
ing connection between the extreme value statistics of COIE= v the extremal value mEbg (1) k(1) ko ()], Due
lated random variables and traveling fronts has alread Py 1 P2 e BN L

emerged from the recent works,7]. To be more precise ¥0 the interparticle interaction within the system defined by

these works have demonstrated, for the models they studielf!® Microscopic rules of the dynamicg(t)} are naturally
that the cumulative probability distributions of extreme val- N0t independent of each other, and tHg(t) simply de-
ues for correlated random variables admit propagating frongcribes the.statlstlcs of the extreme for a set of correlated
solutions, where in the variance of the extremal variable igandom variables. _ _ _
the front width itself. Our formulation here, however, is com- [N this paper, we consider two different systems that admit
pletely the other way around: namely that our systems confront solutions propagating into unstable stat@g:a Fermi-

sist of manyinteractingparticles, where the dynamics of the Onic reaction-diffusion systerA=A+A [10-12 in Sec. I,
systemsalready admits front solutions propagating into un- Where we show thal, (t) is Gaussian, antb) the so-called
stable states. Although in a deterministic mean-field descripcBosonig clock model[13] in Sec. lll, wherePy (t) has
tion, these fronts propagate with a fixed speed and a fixedmall deviations from the Gaussian. It is important to note
shape at long times, due to the presence of stochasticity ifere that the front solutions in these models have been ana-
volving many particles, the front in a given realization of thelyzed before, in the sense that both the front speed
system does not move with a uniform speed even at long=Ilim._.. d{k{t))/dt and the front diffusion coefficient
times—instead, the front speed averaged over an ensemhbi® =lim,_., d{[k;(t)—vt]?/dt, respectively based on the first
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O —1 Led 1 |} G L Lo | | Here Pp°(t) and Pi™PY(t) respectively denote the joint prob-
D € e f . . .
ID/I o) | f‘ ol'el | abilities that the foremost particle is at sikeand that the site
ki—1 is occupied and empty. CIearIyPkf(t)zPﬁfcc(t)
l®| | | | |jol®} | | +P§f‘p‘y(t), andZy Py ()=1. The first term on the right-hand

side of Eq.(1) describes the increase I?kf(t) due to the

Gi) 1 le|®] | advance of a foremost occupied lattice site from position
w \W ki—1, while the second term describes the increaslékj(t)
L_le| ll ' due to the retreat of a foremost occupied lattice site from

position k;+1. The third and the fourth terms respectively

describe the decrease Hmf(t) due to the advance and retreat
FIG. 1. The microscopic processes that take place inside thef a foremost occupied lattice site from positikn It is clear

system (i) A diffusive hop with rateD to a neighboring empty site; from this formulation that the dynamics (ka(t) is effec-

(i) creation of a new particle on a site neighboring an occupied siteively obtained only from the coupled interaction between

with rate e; (ii ) annihilation of a particle on a site adjacent to an the foremost particle and the site just behind it.

occupied site at a rafé/. In addition to Eq.(1), we have
and the second moments Ié;[f(t), have previously been ana- e
lyzed and numerically measur¢8,10-14. The higherthan Pkf = Pkf—l(t) Pkf(t)* (2)

secong moment okaf(t), or Pkf(t) itself, however, have not
been extensively studied before. The paper is finally endedhere pkf_l(t) is the conditional probability of having the

with a discussion in Sec. IV. (k;—1)th lattice site occupied. At large pkf_l(t) should be
independent ok; andt, and one can replagg -,(t) by p in

Il. A FERMIONIC REACTION-DIFFUSION MODEL Eq. (2), where the numerical value gf depends only on
AND GAUSSIAN BEHAVIOR OF Py (1) those of D, &, and W. Similarly, the set of(time andk;

In this model, we consider a one-dimensional lattice onindePendent conditional occupation densitiegy, (1) for
which at most ond\ particle is allowed per lattice site at any M=1 can be thought of as determining the front profile in a
instant—hence the model is named Fermionic. The particlefame moving with the foremost particle of each front real-
can undergo the following three basic moves, shown in Figization (see Fig. 5 of Ref[10] for an illustration).

1: (i) A particle can diffuse to any one of its neighbor latice ~ With the conditionPy (t) =P™(t)+ PE™(t), and the nota-
sites with a diffusion rat®, provided this neighboring site is tion q=p(W-D), at larget, Eq. (1) can be rewritten as
empty.(ii) Any particle can give birth to another one on any

one of its empty neighbor lattice site with a birth ratgiii ) dP, 1
Any one of two A particles belonging to two neighboring —=2(2D+&+Q) [Pysg+ Peq— 2P, ]
filled lattice sites can get annihilated with a death Nate e 2 f ' f
The lattice indexed bk that we consider in this problem 1
is semi-infinite. The left boundary is impenetrable—no par- - 5(8 - Q)[Pkfu— Pkf—l]’ )

ticle can diffuse across the left boundary located on the left
of the lattice sitek=0, while the system is of infinite extent L e . . .
on the right side. Following the )l/JsuaI convention, we startWh'Ch IS F'Ga”l_/ a diffusion eq.uat|on fd?kf(t) with a drn‘t:
with a step initial condition, i.e., at time=0, there exists a After having aligned the locations of the foremost particles
finite kign, such that all lattice sites@k= kg, are occupied for all reallzatloDs in the ensemble, saykatki, at timet;,
andk> kg are empty. This system then admits a fluctuating™ 1 [-€., Pi,(tin) = 8 i I, we are interested in the solution of
(and propagatinpfront solution fort>0. Pkf(t) In fact, Eq(3) can be solved by taklng a discrete
Earlier work on models of this type has appeared in RefsFourier transform ink;, but due to the redundancy of the
[10-12,15. In the general case there are essentially only twovave-vector modulo any multiple of72 the magnitude of
nontrivial parameters in our model, e.g., the ratfibs and  the wave vector has to be kept confined only within the first
D/W, since an overall multiplicative factor simply sets the Brillouin zone (-, 7r]. Then for At=t-t;,>1, it is easily
time scale. When these ratios tend to infinity, the front speedeen that the dominant contribution F?Qf('[) comes from the

approaches its mean field val{&l]. wave vector in the neighborhood of zero, yieldifig]
For an ensemble of front realizations, let us denote the
probability distribution for the foremost occupied lattice site (K¢ = ki, — vA)?
to be at lattice sitek; at timet by Py (t). The evolution of expl - T DAL
P,.(t) is then described by P.(t) = ; ! 4)
i ip 4 V4D At (

ke _ empty cc
—=(D+ + +
dt (D +&)Pig-1 + DRI+ WRCH Here,v=¢—-q is the front speed an®;=2D+¢+q is the
front diffusion coefficient, as already derived as the first and
— - empty C )
D+ S)Pkf [Dpkf +Wp§fﬂ' @) the second moment cﬁkf(t) in Ref. [10].
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Ill. CLOCK MODEL AND THE NON-GAUSSIAN finite value of N, the simple-minded replacement of
BEHAVIOR OF Py (1) [Z,, C(n)P(n . D] by at andk-independent quantitg in
Eq. ES) at larget is incorrect for the clock model—caused by
The clock model was originally invented in the context of the fact thatP(n, ,t) does not become time independent at
the largest Lyapunov exponent for a gas of hard sphf@@ls  |arget [20]—as we argue below.
In this model, one considers a systemNotlocks with inte- The observation we make, in order to argue tRé, ,t)
ger readinggk;}. The dynamics of the clocks involve binary goes not become independent at larget, is that the largest
“collisions” between any two randomly chosen clocks incjock reading in any realization does not increase smoothly
continuous time. In a collision between two clocks with pre-jn, time with a ratev even at large. Instead, after attaining a
collisional readings; andk;, the post-collisional readings of e\ integer value, the largest of the clock readings for any
both clocks are updated to migxkj]+1. o given realization does not change for some time interval
In the clock reading space, which can be imagined as ghereafter denoted byt) of typical magnitude 1/ before
one-dimensional lattice, the number of clodkgwith read-  attaining the next integer valugl8]. Generally speaking,
ingsk or higher for any realization of the clock model admits ¢ring any of these time-intervals, the number of clocks with
a fluctuating(and propagatingfront solution [13]. Clock  the |argest clock reading in any realization increases with
model allows more than one clock with the same reading angme: and the number of clocks with the largest reading at
hence the model is Bosonic. Conventionally, all clock read-ny instant in a given realization depends on how long the
ings in any realization are initiallyi.e., att=0), taken to be  |argest clock reading remains unchanged at its value. The

equal to zero—for the propagating front, this corresponds t@gnditional probabilityP(n,_,t) can thus be written as
the step initial condition13]. Once again we denote the f

largest clock reading in any realization at timby ki(t). *

In the deterministic mean-field limit, the propagating front PNt = JO d()pa (&t H)ga(n, &L1), 6)
in the clock model is a pulled frortLl7], and if the time is
rescaled in order to have the mean collision frequency of avhereg,(ét,t) is the probability that the largest clock read-
single clock equal to unity, the front propagates with a speedhg becamek; at time (t—4t) and remained so until timg
v =4.311 07-- [13]. However, due to stochasticity effects and pz(nkf,ét,t) is the probability of havingwkf clocks at
associated with discreteness effects of the clocks and theiime t for those realizations where the largest clock reading
readings, in the limit of asymptotically largh, the front  pecamek; at time(t- &t) and remained unchangedigtuntil
speedv and front diffusion coefficienDy, which could be  time t. Using Eq.(6), thet dependence oP(n,_,t) can then
measured following the procedure described in the last pargse arguedin terms of the t dependences hi(&.t) and
graph of Sec. |, have the property that —v)«1/In®> N and 92N, 8, 1).
Dy1/In’ N [14]. Thus the clock model is an example of a "~ \yiy, éq. (6) in the back of our minds, we now return to
fluctuatlr_\g “pulled” front[8,9,14|. . the statement to the second sentence of RiS): namely

To write a master equation fd?, (t) defined over an en- yha4 front propagation in any realization of the clock model is
semble in the clock model, it may be argued that the readingqged in thesequentialvalues of the time intervalst;} be-
of any clock in any realization can only increase with time; yyeen the consecutive changes of the largest clock reading.
and thus P (t) can increase when in a realization, one of they, this description, the point to note is that the values are
clocks with largest reading;—1 is involved in a collision very strongly correlated with each other; e.g., a lagyés
with another one. SimilarlyPy(t) can decrease when in a gimost always followed by several small values &fand
realization, one of the clocks with largest readiigis in-  vice versa(the large or smallness at are decided in com-
volved in a collision with another one. If we now denote the parison to 1) [8,9]. Due to such strong dependence of the
conditional probability of the number of clocks with largest st values on the evolution histories of individual realizations,
readingk; to beny (t) at timet by P(ny ,t), the master equa- it is easily conceivable that the shape of the probability dis-
tion for Pkf(t) reads tribution p,(ét,t) lackst independence at large

Thet dependence qéz(nkf,&,t) can be argued in a simi-

dF’kf -[s lar way. In realizations for which the largest clock value
dt [n Cng-1) P(nkrl’t)} Pi-1 becamek; at time(t-6t) and remained unchangedigtuntil
Kt time t, how many clocks share the largest clock reading at
-1> C(ny) P(g,.t) [Py (5)  timet depends on the time dependence of the number of
e, clocks ny _; with clock readings(k;—1) between timedt

- 6t) andt—after all, any clock that attains a readikgmust
Here, C(n) is the rate of collisions that involve a clock come out of a collision that involves a clock with reading
with readingk; for a realization withk; as the largest of the (k;—1). Between timest—- ét) andt, n,—1 changes also with
clock readings. From Eq5), one might now further argue time, and thus the probability distributi%(nkf,at,t) inher-
that at larget, the quantities within the large square bracketsently connects to théuctuations in the shapes of individual
in Eqg. (5) are independent dof andk;, and thus at largé,  front realizations[8,14]. These fluctuations have a typical
Eq. (5 should reduce to a forndP/dt=c[Px_1=Py],  correlation timexIn®N [8,14,19. ForN— , this correlation
where c=[2nka(nkf)P(nkf,t)] at larget. However, for any time also becomes large, and one therefore expects the shape
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FIG. 3. Pk, (t) for the clock model; pluses: data ftd=10" at t
=t;,+99, cwcles data foN=10" at t=t,,+297, crosses: data for
N=10° at t=t;,+198 and diamonds: data fof=10° at t=t;,+396.
Solid line: normalized Gaussian distribution with mean zero and
variance unity. Dotted line: numerically obtained curve for the col-
lapsed data.
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Fig. 2, we then identify the location of the mean front posi-
tion ky(t) and the standard deviatiany(t) [oo(t) effectively

05 0 200 30 %0 behaves as-2D;(t-t;;) as seen in the bottom plot of Fig. 2
t-1, for large (t—t;,)], for two different values oN at these dif-

ferent time instants. Finally, with the histograms

FIG. 2. Top: Simulation results falk¢(t) —ki,) as a function of N(kf't)/[NUO(t_)] plotted as a functhn O_ﬁkf_k‘)(_t)]]/%(t)’
t—-t,,. Bottom: Simulation results fof[k(t)—k,]2 as a function of where N(k;,t) is the number of realizations with largest of
t-t,,. Apart from an initial transient fot-t,,=< 10, ([k(t)-k,]2  the clock value; at timet, we expect a good data collapse,
increases linearly with, indicating that the front wandering is dif- @nd the corresponding curve then gives us the normalized
fusive. Crosses correspondi=10* (front speech=4.08 and front Py (t). Notice that the procedure that we followed to obtain
diffusion coefficientD;=0.112 and filled circles correspond ty ko(t) and oy(t) [and subsequently the numerical curve for
=10 (front speedv=4.17 and front diffusion coefficienDs Py, (t)] at the above time instants does not guararkg))
=0.056 in both figures. —ko(t) 0 and ([ki(t)—ko(1)?])=a3(t); instead, the(k;(t))

—ko(t) and the(k(t)—ko(t)2)/ 0'2('[) values are in fact very

of p,(n,, ot,1) to also depend otwvia the strong dependence ¢jose to zero and unity, respectively.
of Ny -1 on the evolution histories of individual realizations at  This data collapse is shown by means of the numerically
earlier times. obtained dotted curve in Fig. Eurther analysis of the data

With no further simplification of Eq.(5) possible, let (not presented here) clearly shows that the dotted curve does
alone an exact solution fd?k (t) as in Eq.(4), we can study not belong to any of the known universality clas§éjsfor
Pk, (t) for the clock model onIy via simulation. Oymolecu- the extreme value statistics of uncorrelated random -vari
lar dynamics simulation methods are as follows: we chooseables; instead, it appears to resemble the normalized Gauss-
an ensemble afV=50 000 realizations ofl=10" clocks and ian distribution rather closelyTo facilitate comparison, we
set all clock values zero a&0. We then let each realization therefore plotPy (t) against the normalized Gaussian distri-
evolve until timet;,=800 units. Att;,, we align the different bution (with mean zero and variance unityt is clear from
realizations in such a way that the largest of all the clockFig. 3 that the dotted curve is positively skewed; direct mea-
values coincide at=k;,. We then follow the locations of the surement of the third cumulant from the data also confirms
largest clock values for each realization until this positive skewness behavior B;tf(t). The most notewor-
t—t;,=400. We also repeat the calculations for the same valthy feature is the longer right tail of the collapsed data than
ues of \V, t;, andk;, but for N=1C°. The ensemble average the left tail, implying that the probability for large positive
(k¢(t) —kiny and ([k;(t) —k;,]? for =50 000 as a function of deviation around the mean for the clock model is larger than
(t—t;,) both forN=10* and 18 have been shown in Fig. 2. that of large negative deviation. This is indeed consistent

To obtainPy (t) numerically from the above data, we now with positively skewed Py (t)—as stated before(k(t)
proceed in the following way. First we select two different —Kkq(t))=0 for all snapshots
time instants for each value & to take snapshots of the While Fig. 3 certainly provides an example of deviation
entire ensemble ok; values: forN=10% we chooset=t;,  from Gaussian statistics when the fluctuating front propaga-
+99 andt;,+297, and folN=10°, we choosd=t,,+198 and tion is seen as a correlated extreme value problem, it also
ti,+396. Having used the best fit method from the data ofprovides an interesting perspective from the point of view of
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fluctuating front propagation literature. As already mentionedreme value problems. In these systems, the positions of the
before, clock model is an example of fluctuating “pulled” particles can be thought of as random variables, and these
fronts, and the expression forand the scaling foD; due to  random variables under consideration are obviously strongly
the discrete particle stochasticity effects in the limit of as-cqrrelated with each other. We have seen that in the case of
ymptotically large values oN are known for the last few e fermionic reaction-diffusion model, the extreme value
years. Itis also known that over a time intenlat larget,  ,opjem follows Gaussian statistics. It clearly does not be-
the second moment OPkf(t)’ e, ([kr(AD ki v AL long to any of the classes pertaining to extreme value statis-
~2D;At for all values of N. Figure 3, however, Shows o™ ot yncorrelated random variables. For t&osonio
that the information regarding the second moment is clearly, .\ " \oqe| ‘however, we see that the extreme value statis-
not enough to characterize, (). Nev_ertheless, the data tics has a small deviation from the Gaussian, and additional
collapse shows that at largk P(D=PlL(ki~kn=vAD/ 5 usis (not presented heyealso clearly shows that the
Vzpf,At]/VZDfAt (i-., the dotted line in Flg.)as a charac_- ._probability distribution does not belong to any of the known
teristic curve for the clock model, and this characteristic,njversality classes for the extreme valus statistics of uncor-
curve 1s noL G?uhss;an for th% value_slgf:ftu@eq here. Th? related random variables. However, due to the unavailability
iialijefrg?m; Call(t)Ctk ?n(;ggf mzrr]ef?)rrIQ%:S tlo %Z“ﬁte?;?;é&'%ggof any analytical tool, the characterization of this distribution
in the sense that the second momenPQf(t) increases lin- gzsug% \;]e?s (?:I:\jg/eec.j \tIJVhether the small deviation from the_
y the fact that we have not used ex

early with time at large for any value ofN. . . . )
Whether the deviation of the dotted line from the Gauss-tremely high values ol for our simulations thus remains an

ian is due to the fact that we have not used extremely |ar98pen question.
values ofN is, however, not clear. It is well known that to
observe the 1/fN scaling of(v"-v) and the 1/I& N scal-

ing of Dy for fluctuating “pulled” fronts one needs to take ACKNOWLEDGMENTS
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