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Spontaneous edge order and geometric aspects of two-dimensional Potts models

PHYSICAL REVIEW E 70, 035107R) (2004

Youjin Deng™* and Henk W. J. Blote?
1Fa(:ulty of Applied Sciences, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
2 orentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 3 June 2004; published 30 September 004

Using suitable Monte Carlo methods and finite-size scaling, we investigate critical and tricritical surface
phenomena of two-dimensional Potts models. For the critical two- and three-state models, we determine a
surface scaling dimension describing percolation properties of the so-called Potts clusters near the edges. On
this basis, we propose an exact expression describing this exponent for the whole critical branch. For tricritical
Potts models we find that varying the surface coupling constant or the surface magnetic field can induce a
continuous phase transition. At bulk tricriticality and sufficiently strong surface couplings, spontaneous one-
dimensional order occurs on the edges. We determine several critical exponents describing these edge transi-
tions. On the basis of these results and conformal field theory, we conjecture exact expressions for these

exponents.
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In two dimensions, the nature of bulk critical singularities YEOS) =2-3[3-y)=2-g/2, (1)

is now well established for thg-state Potts modedl1l-3]. ) )

Nevertheless, a number of interesting questions remain uﬁ{y?ere the Coulomb gas coupling constgns related tog as
answered. For instance, exact values have not been obtaing('j’ZJ'_2 CO$97_T/2) [2,3]. Remarkablyys in I'Eq.'(l) IS ade-
for some geometric critical exponeridy; and it was recently creas_lngfursgtlon ofg. The surface magnetic f!eld_s is then
reported[5] that, for the tricritical branch, the percolation Mmarginal (Yps=0) for q=4. Moreover, generalization of Eq.
threshold of the so-called geometric clusters does not coirll) would yield thatH; is irrelevant for the tricritical Potts
cide with the well-known Kasteleyn—FortuifKF) clusters

model (g>4). However, since the value df reflects the
[6]. Surface critical behavior of the Potts model on the halfsr:ren%th f[)f cf:lr_||t|gal f![uctuatlons,tﬁn(?[ r_nlgt_ht |:1s6tead ?;Ee(:t that
plane also remains largely unexplored. In this context, wér{hg ?:r'?galoonsélst ::)hnegre(; Orlloraet'ogc(r)lfliﬁ's ri::; do asnegr?"n
briefly review thethree-dimensionalsing model in the half ” - xp ! ISP % s
space[7,8]. Depending on the surface coupling constiggt warranted.. : .
T . Accordingly, the present paper investigates the nearest-
the transition ak =K, may occur in the absence or presenceneighbor Potts model on an open cylinder, i.e.L &L
?f a spontan(?,ously _o_rdered surfface: the o_rdmary or thesquare lattice with periodic and open boundary conditions in
extraordinary” transition, respectively. For disordered bulkihe y andy directions, respectively. In order to allow for
K<K,, there is a critical line of “surface” ransitions termi- yqriical points, we include vacancies in the Hamiltonian.
nating atK”=KC in a multicritical point, the so-called “spe- Thus, for the Ising casg=2, we take spin-1s = +1,0) vari-
cial” transition. ables
In two dimensions, the “surfaces” are just one- '
dimensionakdgesand thus no surface transition can exist in HikgT=-K>, Pss + D>, 9L - K>, G55,
systems with short-range interactions. It may then seem natu- Gi) J K (Im)
ral to expect that special and extraordinary transitions do not ©
occur either, i.e., thaspontaneous edgerder is absent. —Hsz Shy (2
Whereas this expectation has been rigorously confirmed for n
the critical Ising mode[9,10}, in this work we show that it where the first sum accounts for the bulk and the last two
does not hold in general. N ‘sums for the open edges. The abundance of vacarsies
Just as the Potts bulk critical singularities are geometri=q) js controlled by the chemical potentiBl, H, is the sur-
cally represented by the fractal dimensisp of the afore-  face magnetic field, an&k and K represent the bulk and
mentioned KF clusterf5], the surface critical properties are gyrface couplings, respectively. FBr— —x, the model(2)
governed by a surface expongi, where(o) indicates the  reduces to the=1/2 Ising model. The Wolff algorithni12]
ordinary transition. For general criticgtstate Potts models, \was used to simulate its bulk critical poikt=K=K_.=In(1
Cardy[11] employed boundary conformal field theory to ex- 1..2)/2 H.=0, for 18 system sizes in the range<8&
press this exponent in terms of the bulk thermal gnas <600. In addition to KF clusters, we also investigate Potts
clusters[13], which connect all nearest-neighbor spins in the
same state. The sampling procedure includes the probability
*Present address: Laboratory for Material Science, Delft UniverC(L/2) that two surface points at a distancé2 are in the
sity of Technology, Rotterdamseweg 137, 2628 AL Delft, The same Potts cluster. The data 6t shown in Fig. 1, were
Netherlands. fitted by
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FIG. 1. Surface correlation functio@ for the critical Ising
model vsL™%3 for system sizes in the range<d.<600. The sta-

tistical errors are much smaller than the size of the data points.

C= L‘Zx(pos)(a0 + a1+ alY2+ a5l %s). (3

The leading correction exponeyt was taken as the tricriti-
cal q=1 red-bond exponent,=-5/8 [5,13], governing the
renormalization of the bond probability. Witi,=-1 and
y3=-2, we obtainX 0)—O 166638) =~ 1/6, apparently distinct
from X; 0)— 1/2.

Next we consider the dilute three-state Potts model,

HikgT=-KX s, ,(1-8,0-D> 95, 4
(i k
‘KES)5 o 0) = HE O, 15
(Im)

where 0=0 stands for a vacancy ang=1, 2, and 3 for a
Potts spin. The simulations were performed B —c at
criticality Ks=K=K.=In(1+y3) and Hg=0 [1], with 8<L
<600. The data forC were fitted by Eq.(3) with y;
=-23/60, the red-bond exponent of the tricriticgk-2
+2 co$2m/5) Potts model [5,13. The fit yields X(o)
=0.39991)=2/5. It is obvious thav((")—o for the percola-

RAPID COMMUNICATIONS

PHYSICAL REVIEW E70, 035107R) (2004

0.52 -
05
048
0.46
044
042
04
0.38
0.36

03 L
0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71

H

]

FIG. 2. Dimensionless surface rat@ for the tricritical Ising
model vs surface magnetic fields. The data points +X, O, O,
and A, represent. =8, 12, 16, 20, and 28, respectively.

Boundary conformal field theory has already been applied
to the tricritical Ising model[15-18, which corresponds
with an integrable scattering theory of massive kinks and
preserves superconformal symmetry. By means of factoriz-
ableS matrix, fusion rules, and symmetry arguments, various
boundary operators and the corresponding renormalization
flows were conjectured16]. A physical interpretation of
these boundary phenomena was then provided by Affleck
[17], which indicates the possible existence of spontaneous
magnetization on the edges. By means of a sparse transfer-
matrix technique, wg19] located the tricritical point of the
Ising model (2) at K=1.6431758l) and D
=3.2301 7972). The surface coupling was set EHt=K,
and Eq.(2) for Hs#0 was simulated using Metropolis
sweeps, with 8L <48. We sampled the surface magnetiza-
tion densitymg and obtained the dimensionless surface ratio
Q=(md)—(my?)2/{(ms—(mg)*. For smallH,, the edges ap-
pear to be dominated by vacanciek:is indeedirrelevantas
predicted by Eq.1). For H>0, however, the edges are
mainly occupied by plus spirs=+1, and a continuous tran-
sition separates these two phases. This follows from the clear
intersections in th€ versusH, data, partly shown in Fig. 2.

tion model(q— 1), since all lattice S|tes are within a single The data were fitted by

Potts cluster. In contrast, tlig=4 case is margindly, =0), so

(0) _y(0) _
that we expecK =X, =1.

Conformal field theory captures a number of critical indi-
ces of two-dimensional Potts models by the Kac formula

[11,14,15,

_[(m+1)p-mgf*-

A - 1
P4 Am(m+ 1)

(5

where m=g/(4-g) and 4/(g-4) for critical and tricritical
branches, respectively. For instan@(%"s) in Eq. (1) can be
interpreted ag\, 3 in Eq. (5). We propose >g2=A3,5, ie.,

(0 (m-D(m-2) _(3g-8)(g-2)
ps m(m+ 1) 29 ’

(6)

in fine agreement with the aforementioned valuegjfof, 2,
3, and 4.

4 3

(f) ‘

Q(Hg L) =Qo+ kEle[(Hs— HSC)Lyhs]k + El bj LYj
= =

+ 6(Hg— Hgg LY1*¥hs, (7)

where the superscriggf) represents a nonzero fieldk. The
term with amplitudec accounts for the bilinear effect of the
relevant and the irrelevant field. We set—j and obtained a
satisfactory fit, thus confirming the continuous transition in-
duced byH,. We findQ,=0.441915), H,.=0.677210), and
yh”—o 40510 =2/5. We also simulated theg=3 Potts
model (4) at tricriticality K,=1.6499185) and D,
=3.152 17810) [19], using a combination of Metropolis and
Wolff steps, where the latter flip between states2 ando
=3 only. The edge order parameter was chosen as the
density of edge sping, in statec=1. Equation(7) was fitted
to the data forQ in the range 8&L <40, and we obtair,
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FIG. 5. The squared spontaneous edge magnetizati@rat the
extraordinary transition of the tricritical Ising model 5%/, for
system sizes 18L<185. The surface coupling is given hy
=1.805.

FIG. 3. The edge vacancy densitys of the tricritical Ising
model vs the enhancemenrt The system size ie=15.

=0.4623), H,;=0.571015), andy\"=0.2788).

In accordance with these numerical results ﬁ{i we
propose )K;=A113 in Eq. (5), which also relates to the sub-
leading thermal dimension ag\23=X,. Then, one has

the tricriticalg=1 Potts and the critical Ising modg2]. The
surface coupling in the former plays a role of the surface
magnetic fieldHg in the latter. Thus, Eq(1l) yields yff)
=1/2 for thetricritical q=1 Potts model, in agreement with
Eq. (8). Let us furtherconjecturethat the effect oK on a
which, we conjecture, holds for the whole tricritical branch. tricritical Potts model is equivalent to that Bf on acritical
Next, we simulated the tricritical Ising model in the range system, the two models being related ¢y =16. We note
8=<L=120 at H,=0. At bulk tricriticality, the vacancies that it has been argued earlier that, for such a pair of models
dominate on the edges fét;< Ky, but are squeezed out by [20], the fractal dimensioiX, of the critical model is equal to
a sufficient enhancement &, as shown in Fig. 3. Further, X, of the tricritical one [5]. Indeed, the substitutiony
the clean intersection of th® data in Fig. 4 indicates the =16/g’ in Eq. (1) reproduces Eq@8). Although the confor-
existence of a second-order phase transition. Adopting theal anomalies fog andg’ coincide, the physical picture of
language of the three-dimensional case, we refer to the eddke equivalence conjectured above is not obviousjferl.
transition in Fig. 4 as the special transition. The dataor At the special transitior = k., we have also analyzed the
were fitted by Eq(7) with ygg replaced byyff) andHg by  surface susceptibility)(lzL(mﬁ), and obtain Xffs)(q:Z)
Kk=K/Ki; we obtainQy=0.7442), k,=1.56623), andy’”  =0.091) and X{%(q=3)=0.13315). Accordingly, we pro-
=0.3984). For the ftricritical three-state Potts model, the pose *SS)ZALZ in Eq. (5), which relates to the |eading bulk
edge order parameter was defined r&=3,(pi—p))?/2,  thermal dimension vi&;,=2A; ,. Then, we conjecture for
with p; the density of edge spins in stateor system sizes the whole tricritical branch,
in the range &L <64, the fit to the data foR yields Qg Xffs) - (6-g)/2g. ©)

=0.9412), x,=1.7022), andy'¥=0.2825).

Since our results foy\) andy' coincide, andH, andKq For k> k., a spontaneous surface magnetization occurs,
play a similar role in the sense that they suppress the edgand the surface transition is first orderkat K, to which we
vacancies, wassumehat yff):l_xg; as gained in Eq8).  refer as theextraordinarytransition. The data fofm) of the

Some further insight can be gleaned from the equivalence dficritical Ising model, as shown in Fig. 5, were fitted by

(M) = a+ L 2% (by + by/L + by/L2+ byL?),  (10)

XN =8/g-1, (8)

08 - . . .
078 | - which yieldsa=0.89 8233) and X|®=0.398715)~2/5, in-
076 | i dicating that the edges are still critical, even though the edge
0.74 ¢ T transition is first order. This is further shown by the rafg

o 97271 T in Fig. 6, where the magnetization density fQf was only
07 1 1 sampled on the middle line of the system, iye=,(L+1)/2.
0.68 The clean intersection of th®, data in Fig. 6 indicates the
0.66 existence of a fixed point near=1.805; further, the decay of
0.64 the slopes, ak increases, means that this fixed point is stable
0~621"54 1"55 1"56 1.'57 1"58 in the « direction. Thus, although most conjectures in Refs.

K

[16,17 are consistent with our numerical simulations, Fig. 6
suggests that the renormalization flow in Fig. 1 in Hé&f]

might not be complete.
As an explanation of the paradox mentioned after (&y.
we note that the critical state on the edges is affected by the

FIG. 4. The ratioQ for the tricritical Ising model vsc=Kg/K.
The data points +X, 0, O, A, and ¢ represent. =8, 16, 24, 32,
40, and 48, respectively.

035107-3



RAPID COMMUNICATIONS

Y. DENG AND H. W. J. BLOTE PHYSICAL REVIEW E70, 035107R) (2004
0.9 ' ' ' ' ' Some final remarks follow. First, at the bulk tricriticality,
T the decay of surface effects into the bulk is long ranged and
e governed by bulk critical exponents. Second, the correspon-

dence between the bulk dimensi¥y of critical Potts clus-

<2 081 ters andX,, of a tricritical systen{5] suggests that alsbf)os) in
Eq. (6) relates to some tricritical exponent. Third, it is known
# p [21] that the surface thermal exponentyjs=—1 for ordinary
0.88 n ] transitions; while Eq(8) yields a marginal exponent.=1
. . . . . -x,=0 for theq=4 Potts model. There are also two different
176 178 18 182 1.84 186 1.88 predictions for the surface magnetic dimensions in this case:
x X°=1 by Eq.(1) andX2=1/4 by Eq.(9). This indicates the
FIG. 6. The ratioQ, for the tricritical Ising model vsk existence of a special transition for tqe4 Potts model.
=K¢/K¢. The data points +x, 0, O, A, ¢, and * represent. In conclusion, even in two-dimensional systems with
=7, 9, 11, 13, 17, 21, and 29, respectively. short-range interactions only, rich critical surface phenomena

occur. This is possible only because the edge spins are cor-
geometric effect of the missing bonds. The magnitude of thigelated through the critical bulk.

effect relates to the bulk exponewt For g<4,y, is still

relatively small and the edges maintain strong critical corre- We are indebted to J. L. Cardy, T. Halpin-Healy, J. R.
lations. However, on the tricritical brandly>4), the geo- Heringa, and B. Nienhuis for valuable discussions and com-
metric effect is so large that vacancies dominate and the edgeents. This research was supported by the Dutch FOM
correlations decrease to the extent thit becomes irrel- Foundation(“Stichting voor Fundamenteel Onderzoek der
evant. This effect can be compensated by surface parameteMaterie”, which was financially supported by the NWO
such asHg and K, which then induce various edge (“Nederlandse  Organisatie  voor  Wetenschappelijk

transitions. Onderzoek}.
[1] F. Y. Wu, Rev. Mod. Phys54, 235(1982. [11] J. L. Cardy, Nucl. Phys. B40[FS13, 514(1984); ibid. 324,
[2] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, Phys. 581(1989.
Rev. Lett. 43 737 (1979. [12] U. Wolff, Phys. Rev. Lett.62, 361(1989.

[3] B. Nienhuis,Phase Transitions and Critical Phenomereu- [13] A. L. Stella and C. Vanderzande, Phys. Rev. L&®, 1067
ited by C. Domb and J. L. LebowitzAcademic, London, (1989; B. Duplantier and H. Saleuibid. 63, 2536(1989; H.
1987). W. J. Bléte, Y. M. M. Knops, and B. Nienhuigid. 68, 3440

[4] H. J. Herrmann and H. E. Stanley, Phys. Rev. Lé8, 1121 (1992.

(1984); P. Grassbherger, Physica 262, 251(1999; Y. Deng, [14] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, J.
H. W. J. Bléte, and B. Nienhuis, Phys. Rev. €9, 026114 Stat. Phys.34, 763(1984); D. Friedan, Z. Qiu, and S. Shenker,
(2004). Phys. Rev. Lett52, 1575(1984).

[5] Y. Deng, H. W. J. Bléte, and B. Nienhuis, Phys. Rev.68, [15] J. L. Cardy,Phase Transitions and Critical Phenomealited
026123(2004. by C. Domb and J. L. LebowitzAcademic, London, 1987

[6] P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jg6. Vol. 11, p. 55.

(Suppl), 11 (1969; C. M. Fortuin and P. W. Kasteleyn, [16] L. Chim, Int. J. Mod. Phys. All, 4491(1996.
Physica(Amsterdam 57, 536 (1972. [17] I. Affleck, J. Phys. A33, 6473(2000.

[7] K. Binder, Phase Transitions and Critical Phenomerelited  [18] A. De Martino and M. Moriconi, Nucl. Phys. B528 577
by C. Domb and J. L. LebowitzAcademic, London, 1987 (1998); G. Feverati, P. A. Pearce, and F. Ravanini, Phys. Lett.
Vol. 8, p. 1; H. W. Diehl,Phase Transitions and Critical Phe- B 534 216 (2002; Nucl. Phys. B 675 469 (2003; R. I.
nomena\ol. 10, p. 76. Nepomechie, Int. J. Mod. Phys. A7, 3809(2002.

[8] D. P. Landau and K. Binder, Phys. Rev. 4, 4633(1990. [19] X. F. Qian, H. W. J. Bléte, and Y. Den@npublishegl

[9] B. M. McCoy and T. T. Wu, Phys. Rev62 436 (1967). [20] B. Duplantier, Phys. Rev. Leti84, 1363(2000.

[10] H. Au-Yang and M. E. Fisher, Phys. Rev. Bl, 3956(1980. [21] T. W. Burkhardt and J. L. Cardy, J. Phys. 20, L233(1987).

035107-4



