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Using suitable Monte Carlo methods and finite-size scaling, we investigate critical and tricritical surface
phenomena of two-dimensional Potts models. For the critical two- and three-state models, we determine a
surface scaling dimension describing percolation properties of the so-called Potts clusters near the edges. On
this basis, we propose an exact expression describing this exponent for the whole critical branch. For tricritical
Potts models we find that varying the surface coupling constant or the surface magnetic field can induce a
continuous phase transition. At bulk tricriticality and sufficiently strong surface couplings, spontaneous one-
dimensional order occurs on the edges. We determine several critical exponents describing these edge transi-
tions. On the basis of these results and conformal field theory, we conjecture exact expressions for these
exponents.
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In two dimensions, the nature of bulk critical singularities
is now well established for theq-state Potts model[1–3].
Nevertheless, a number of interesting questions remain un-
answered. For instance, exact values have not been obtained
for some geometric critical exponents[4]; and it was recently
reported[5] that, for the tricritical branch, the percolation
threshold of the so-called geometric clusters does not coin-
cide with the well-known Kasteleyn–Fortuin(KF) clusters
[6]. Surface critical behavior of the Potts model on the half
plane also remains largely unexplored. In this context, we
briefly review thethree-dimensionalIsing model in the half
space[7,8]. Depending on the surface coupling constantKs,
the transition atK=Kc may occur in the absence or presence
of a spontaneously ordered surface: the “ordinary” or the
“extraordinary” transition, respectively. For disordered bulk
K,Kc, there is a critical line of “surface” transitions termi-
nating atK=Kc in a multicritical point, the so-called “spe-
cial” transition.

In two dimensions, the “surfaces” are just one-
dimensionaledges, and thus no surface transition can exist in
systems with short-range interactions. It may then seem natu-
ral to expect that special and extraordinary transitions do not
occur either, i.e., thatspontaneous edgeorder is absent.
Whereas this expectation has been rigorously confirmed for
the critical Ising model[9,10], in this work we show that it
does not hold in general.

Just as the Potts bulk critical singularities are geometri-
cally represented by the fractal dimensionXh of the afore-
mentioned KF clusters[6], the surface critical properties are
governed by a surface exponentyhs

sod, where(o) indicates the
ordinary transition. For general criticalq-state Potts models,
Cardy[11] employed boundary conformal field theory to ex-
press this exponent in terms of the bulk thermal oneyt as

yhs
sod = 2 − 3/s3 − ytd = 2 −g/2, s1d

where the Coulomb gas coupling constantg is related toq as
q=2+2 cossgp /2d [2,3]. Remarkably,yhs in Eq. (1) is a de-
creasingfunction ofg. The surface magnetic fieldHs is then
marginalsyhs

sod=0d for q=4. Moreover, generalization of Eq.
(1) would yield thatHs is irrelevant for the tricritical Potts
model sg.4d. However, since the value ofg reflects the
strength of critical fluctuations, one might instead expect that
the effect ofHs is stronger on the tricritical branch than on
the critical one. Further exploration of this paradox seems
warranted.

Accordingly, the present paper investigates the nearest-
neighbor Potts model on an open cylinder, i.e., aL3L
square lattice with periodic and open boundary conditions in
the x and y directions, respectively. In order to allow for
tricritical points, we include vacancies in the Hamiltonian.
Thus, for the Ising caseq=2, we take spin-1(si = ±1,0) vari-
ables,

H/kBT = − Ko
ki j l

sbdsisj + Do
k

sb,sdsk
2 − Kso

klml

ssdslsm

− Hso
n

ssdsn, s2d

where the first sum accounts for the bulk and the last two
sums for the open edges. The abundance of vacanciesssi

=0d is controlled by the chemical potentialD , Hs is the sur-
face magnetic field, andK and Ks represent the bulk and
surface couplings, respectively. ForD→−`, the model(2)
reduces to thes=1/2 Ising model. The Wolff algorithm[12]
was used to simulate its bulk critical pointKs=K=Kc=lns1
+Î2d /2 , Hs=0, for 18 system sizes in the range 8øL
ø600. In addition to KF clusters, we also investigate Potts
clusters[13], which connect all nearest-neighbor spins in the
same state. The sampling procedure includes the probability
CsL /2d that two surface points at a distanceL /2 are in the
same Potts cluster. The data forC, shown in Fig. 1, were
fitted by
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C = L−2Xps
sod

sa0 + a1L
y1 + a2L

y2 + a3L
y3d. s3d

The leading correction exponenty1 was taken as the tricriti-
cal q=1 red-bond exponentyr =−5/8 [5,13], governing the
renormalization of the bond probability. Withy2=−1 and
y3=−2, we obtainXps

sod=0.16663s8d<1/6, apparently distinct
from Xhs

sod=1/2.
Next, we consider the dilute three-state Potts model,

H/kBT = − Ko
ki j l

sbddsi,s j
s1 − dsi,0

d − Do
k

sb,sddsi,0

− Kso
klml

ssddsl,sm
s1 − dsm,0d − Hso

n

ssddsn,1, s4d

wheres=0 stands for a vacancy ands=1, 2, and 3 for a
Potts spin. The simulations were performed forD→−` at
criticality Ks=K=Kc=lns1+Î3d and Hs=0 [1], with 8øL
ø600. The data forC were fitted by Eq.(3) with y1
=−23/60, the red-bond exponent of the tricriticalq=2
+2 coss2p /5d Potts model [5,13]. The fit yields Xps

sod

=0.3999s1d<2/5. It is obvious thatXps
sod=0 for the percola-

tion modelsq→1d, since all lattice sites are within a single
Potts cluster. In contrast, theq=4 case is marginalsyr =0d, so
that we expectXps

sod=Xhs
sod=1.

Conformal field theory captures a number of critical indi-
ces of two-dimensional Potts models by the Kac formula
[11,14,15],

Dp,q =
fsm+ 1dp − mqg2 − 1

4msm+ 1d
, s5d

where m=g/ s4−gd and 4/sg−4d for critical and tricritical
branches, respectively. For instance,Xhs

sod in Eq. (1) can be
interpreted asD1,3 in Eq. (5). We propose Xps

sod=D3,5, i.e.,

Xps
sod =

sm− 1dsm− 2d
msm+ 1d

=
s3g − 8dsg − 2d

2g
, s6d

in fine agreement with the aforementioned values forq=1, 2,
3, and 4.

Boundary conformal field theory has already been applied
to the tricritical Ising model[15–18], which corresponds
with an integrable scattering theory of massive kinks and
preserves superconformal symmetry. By means of factoriz-
ableSmatrix, fusion rules, and symmetry arguments, various
boundary operators and the corresponding renormalization
flows were conjectured[16]. A physical interpretation of
these boundary phenomena was then provided by Affleck
[17], which indicates the possible existence of spontaneous
magnetization on the edges. By means of a sparse transfer-
matrix technique, we[19] located the tricritical point of the
Ising model (2) at Ktc=1.6 431 758s1d and Dtc

=3.2 301 797s2d. The surface coupling was set atKs=Ktc,
and Eq. (2) for HsÞ0 was simulated using Metropolis
sweeps, with 8øLø48. We sampled the surface magnetiza-
tion densityms and obtained the dimensionless surface ratio
Q=skms

2l−kmsl2d2/ ksms−kmsld4l. For smallHs, the edges ap-
pear to be dominated by vacancies:Hs is indeedirrelevantas
predicted by Eq.(1). For Hs@0, however, the edges are
mainly occupied by plus spinss= +1, and a continuous tran-
sition separates these two phases. This follows from the clear
intersections in theQ versusHs data, partly shown in Fig. 2.
The data were fitted by

QsHs,Ld = Q0 + o
k=1

4

qkfsHs − HscdLyhs
sfd

gk + o
j=1

3

bjL
yj

+ csHs − HscdLy1+yhs
sfd

, s7d

where the superscriptsfd represents a nonzero fieldHs. The
term with amplitudec accounts for the bilinear effect of the
relevant and the irrelevant field. We setyj =−j and obtained a
satisfactory fit, thus confirming the continuous transition in-
duced byHs. We findQ0=0.4419s15d , Hsc=0.6772s10d, and
yhs

sfd=0.405s10d<2/5. We also simulated theq=3 Potts
model (4) at tricriticality Ktc=1.649 913s5d and Dtc

=3.152 173s10d [19], using a combination of Metropolis and
Wolff steps, where the latter flip between statess=2 ands
=3 only. The edge order parameterms was chosen as the
density of edge spinsr1 in states=1. Equation(7) was fitted
to the data forQ in the range 8øLø40, and we obtainQ0

FIG. 1. Surface correlation functionC for the critical Ising
model vsL−1/3 for system sizes in the range 8øLø600. The sta-
tistical errors are much smaller than the size of the data points.

FIG. 2. Dimensionless surface ratioQ for the tricritical Ising
model vs surface magnetic fieldHs. The data points +,3, h, q,
andn, representL=8, 12, 16, 20, and 28, respectively.
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=0.462s3d , Htc=0.5710s15d, andyhs
sfd=0.278s8d.

In accordance with these numerical results foryhs
sfd, we

propose Xhs
sfd=D1,3 in Eq. (5), which also relates to the sub-

leading thermal dimension as 2D1,3=Xt2. Then, one has

Xhs
sfd = 8/g − 1, s8d

which, we conjecture, holds for the whole tricritical branch.
Next, we simulated the tricritical Ising model in the range

8øLø120 at Hs=0. At bulk tricriticality, the vacancies
dominate on the edges forKs&Ktc, but are squeezed out by
a sufficient enhancement ofKs, as shown in Fig. 3. Further,
the clean intersection of theQ data in Fig. 4 indicates the
existence of a second-order phase transition. Adopting the
language of the three-dimensional case, we refer to the edge
transition in Fig. 4 as the special transition. The data forQ
were fitted by Eq.(7) with yhs

sfd replaced byyk
ssd and Hs by

k=Ks/Ktc; we obtainQ0=0.744s2d , kc=1.5662s3d, and yk
ssd

=0.398s4d. For the tricritical three-state Potts model, the
edge order parameter was defined asms

2=oiÞ jsri −r jd2/2,
with ri the density of edge spins in statei. For system sizes
in the range 8øLø64, the fit to the data forQ yields Q0

=0.941s2d , kc=1.702s2d, andyk
ssd=0.282s5d.

Since our results foryhs
sfd andyk

ssd coincide, andHs andKs
play a similar role in the sense that they suppress the edge
vacancies, weassumethat yk

ssd=1−Xhs
sfd as gained in Eq.(8).

Some further insight can be gleaned from the equivalence of

the tricriticalq=1 Potts and the critical Ising model[2]. The
surface couplingKs in the former plays a role of the surface
magnetic fieldHs in the latter. Thus, Eq.(1) yields yk

ssd

=1/2 for thetricritical q=1 Potts model, in agreement with
Eq. (8). Let us furtherconjecturethat the effect ofKs on a
tricritical Potts model is equivalent to that ofHs on acritical
system, the two models being related bygg8=16. We note
that it has been argued earlier that, for such a pair of models
[20], the fractal dimensionXp of the critical model is equal to
Xh of the tricritical one [5]. Indeed, the substitutiong
=16/g8 in Eq. (1) reproduces Eq.(8). Although the confor-
mal anomalies forg andg8 coincide, the physical picture of
the equivalence conjectured above is not obvious forqÞ1.

At the special transitionk=kc, we have also analyzed the
surface susceptibilityx1=Lkms

2l, and obtain Xhs
ssdsq=2d

=0.09s1d and Xhs
ssdsq=3d=0.133s15d. Accordingly, we pro-

pose Xhs
ssd=D1,2 in Eq. (5), which relates to the leading bulk

thermal dimension viaXt1=2D1,2. Then, we conjecture for
the whole tricritical branch,

Xhs
ssd = s6 − gd/2g. s9d

For k.kc, a spontaneous surface magnetization occurs,
and the surface transition is first order atK=Kc, to which we
refer as theextraordinarytransition. The data forkms

2l of the
tricritical Ising model, as shown in Fig. 5, were fitted by

kms
2l = a + L−2Xhs

sed
sb0 + b1/L + b2/L

2 + b3/L
3d, s10d

which yieldsa=0.89 823s3d andXhs
sed=0.3987s15d<2/5, in-

dicating that the edges are still critical, even though the edge
transition is first order. This is further shown by the ratioQb
in Fig. 6, where the magnetization density forQb was only
sampled on the middle line of the system, i.e.,y=sL+1d /2.
The clean intersection of theQb data in Fig. 6 indicates the
existence of a fixed point neark=1.805; further, the decay of
the slopes, asL increases, means that this fixed point is stable
in the k direction. Thus, although most conjectures in Refs.
[16,17] are consistent with our numerical simulations, Fig. 6
suggests that the renormalization flow in Fig. 1 in Ref.[17]
might not be complete.

As an explanation of the paradox mentioned after Eq.(1),
we note that the critical state on the edges is affected by the

FIG. 3. The edge vacancy densityrvs of the tricritical Ising
model vs the enhancementk. The system size isL=15.

FIG. 4. The ratioQ for the tricritical Ising model vsk=Ks/Ktc.
The data points +,3, h, q, n, andL representL=8, 16, 24, 32,
40, and 48, respectively.

FIG. 5. The squared spontaneous edge magnetizationkms
2l at the

extraordinary transition of the tricritical Ising model vsL−4/5, for
system sizes 13øLø185. The surface coupling is given byk
=1.805.
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geometric effect of the missing bonds. The magnitude of this
effect relates to the bulk exponentyt. For g,4, yt is still
relatively small and the edges maintain strong critical corre-
lations. However, on the tricritical branchsg.4d, the geo-
metric effect is so large that vacancies dominate and the edge
correlations decrease to the extent thatHs becomes irrel-
evant. This effect can be compensated by surface parameters,
such as Hs and Ks, which then induce various edge
transitions.

Some final remarks follow. First, at the bulk tricriticality,
the decay of surface effects into the bulk is long ranged and
governed by bulk critical exponents. Second, the correspon-
dence between the bulk dimensionXp of critical Potts clus-
ters andXh of a tricritical system[5] suggests that alsoXps

sod in
Eq. (6) relates to some tricritical exponent. Third, it is known
[21] that the surface thermal exponent isyk=−1 for ordinary
transitions; while Eq.(8) yields a marginal exponentyk=1
−xk=0 for theq=4 Potts model. There are also two different
predictions for the surface magnetic dimensions in this case:
Xhs

sod=1 by Eq.(1) andXhs
ssd=1/4 by Eq.(9). This indicates the

existence of a special transition for theq=4 Potts model.
In conclusion, even in two-dimensional systems with

short-range interactions only, rich critical surface phenomena
occur. This is possible only because the edge spins are cor-
related through the critical bulk.
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