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Local activation in a one-dimensional three-component reaction-diffusion model of blood clotting may lead
to a formation of spatially localized standing structures(peaks) via several complex scenarios. In the first
scenario, two concentration pulses first propagate from the site of activation, then stop and transform into peaks
[Zarnitsinaet al., Chaos11, 57 (2001)]. Here, we examine this scenario, and also describe a different scenario
of peak formation. In this scenario, two trigger waves propagate initially in opposite directions away from the
site of activation. Then they stop and change direction of propagation toward each other to the activation site,
where they interact and form a peak. Both of these scenarios of stable peak formation are observed in the
vicinity of saddle-node bifurcation and may be viewed as a memory of the extinct wave modes.
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INTRODUCTION

One of the well known solutions for one-dimensional
reaction-diffusion models is a stationary, spatially localized
standing structure, referred to below as a “peak”[1–3]. In
two-component models of excitable media, stable peaks exist
if the diffusion coefficient for one of the variables(usually
called the inhibitor) exceeds the diffusion coefficient for the
other variable(usually called the activator) [1]. The dynam-
ics of peak formation in previously described activator-
inhibitor models is simple: the peak is rapidly generated at
the site of activation in response to a local increase in the
activator concentration. However, in a three-component
model of excitable media, the blood clotting(BC) model,
there are two other complex scenarios of peak formation in
addition to the simple scenario(Fig. 1).

The complex transient processes of peak formation via
these two scenarios initially resemble either autowaves(sce-
nario 1) or trigger waves(scenario 2). In the first scenario
[4,5], spatially localized pulses resembling autowaves start
propagating from the site of activation[Fig. 1(b)]. Soon,
however, they stop and convert into standing peaks. In the
second scenario[Fig. 1(c)], the peak is generated directly at
the site of activation[5]. However, its formation is preceded
by an expansion in the form of two trigger waves, and then
by a shrinkage of the excitation zone back to the initial ac-
tivation site. In this study, we demonstrate that both complex
scenarios are observed in the domain of a parameter space
where stable peak solutions are found, which is adjacent to
the boundary of a saddle-node bifurcation of autowaves or
trigger waves, respectively. Stable wave solutions exist on
the other side of this boundary, while at the bifurcation line
the stable waves disappear. We also provide evidence sug-
gesting that the proximity to the saddle-node bifurcations is
essential for the formation of peaks via these two scenarios.

THE BC MODEL

This model was originally developed to describe the spa-
tial dynamics of blood clotting[4], and is shown in a one-
dimensional form below:
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The variables in this model correspond to the concentra-
tions of certain important blood clotting factors. By analogy
with activator-inhibitor models, we callu1 the activator and
u3 the inhibitor. The variableu2 may be viewed as the cata-
lyst of the activator’s production. The molecular weights of
blood clotting factors described in this model are roughly the
same, so their diffusion coefficients are set equalsD=1d.
Equations(1) contain six constantsK1–K6, which are com-
binations of the rate constants for individual reactions of the
clotting cascade[4]. We varied only the key parametersK5
and K6, which describe the inhibitor’s production and inac-
tivation, respectively, while the remaining four parameters
were kept constant(K1=6.85, K2=13.5, K3=2.36, andK4
=0.078). For all values of the parameters the BC model has
a trivial solution corresponding to a stable trivial spatially
uniform states0,0,0d with threshold properties. This means
that the nontrivial regimes are observed only when the
threshold is exceeded.

In order to find stable solutions of the BC model and to
analyze the dynamic modes, we solved Eqs.(1) over a rela-
tively long segment, using a simple explicit difference
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scheme with no-flux boundary conditions for space steph
=0.25 and time stept=0.01. The results obtained were quali-
tatively similar to those obtained for smaller step sizes. We
focused our study on the dynamic behavior induced by an
increase in the activator’s concentration above the threshold
within a small part of the segment(referred to below as a
local above-threshold activation). Such activation imitates
the initiation of blood clotting[4,6]. Steady-state solutions
corresponding to peaks and waves, which travel at a constant
speed without changes in wave form, were obtained by nu-
merically solving the nonlinear ordinary differential equa-
tions derived from Eqs.(1). This approach allows one to
obtain both stable and unstable solutions. The stability was
examined by perturbing the solutions and using them as ini-
tial conditions to solve Eqs.(1) in time. If the solution is
unstable, this procedure leads to its disappearance. Since the
initial stages of the complex scenarios of peak formation
resemble wave solutions, we examined mutual positions of

the domains corresponding to stable peaks and to stable sta-
tionary waves. The results of these calculations are presented
as one-parameter bifurcation diagrams. Using these diagrams
we also analyzed the location of the domains where peaks
are formed via complex dynamics relative to the peaks and
stationary wave domains.

COMPLEX SCENARIO 1 FOR PEAK FORMATION

This is observed near the saddle-node bifurcation bound-
ary of the autowave solutions. As in other known models of
excitable media, the BC model(1) has a solution in the form
of stable or unstable spatially localized, constant-amplitude
pulses that propagate at a constant speed(autowaves)
[2,7–9]. Figure 2(a) shows a typical bifurcation diagram,
which depicts the mutual positions of the peak and autowave
solutions in the BC model. The speed of the autowave is
plotted as a function of constantK5 (and forK6=0.05), and
the stationary peak solutions correspond to zero speed. The
right boundary of the existence range for stable autowaves is
formed by a saddle-node bifurcation, where the branch for
stable autowave solutions merges with that for the unstable
autowaves. The autowave width increases upon approaching
the left boundary of the stable branch. Stable autowaves and
peaks coexist for 16.29,K5,17.25, although the autowaves
dominate in this region. Since autowaves are generated in
response to above-threshold activation, these solutions are
readily obtained by calculating the behavior of the system(1)
as a function of time. The peaks can be obtained by choosing
the initial spatial distributions of model variables in a form
resembling the peak.

The complex dynamics of peak formation via scenario 1
are obtained in the model for the range of parameters within
the area between two arrows on Fig. 2(a). There are no au-
towave solutions within this region. Its left boundary corre-
sponds to the parameter valueK5scrdsK5,17.25d for the
saddle-node bifurcation of autowaves, while the right bound-
ary coincides with the end of the stable peak domain. When
K5 is slightly above the critical valueK5scrd, the autowaves
disappear, but the initial response of the system resembles
the extinct autowave. Figure 2(b) shows an example of peak
formation for parameters that are within this region and
slightly outside the autowave domain. Two pulses are gener-
ated at the site of activation and propagate away from it at

FIG. 1. The simple and complex dynamics of peak formation in the BC model in response to a local, above-threshold activation(K1

=6.85,K2=13.5,K3=2.36,K4=0.078, andD=1): (a) peak formation at the site of activation(simple dynamics) (K5=27, K6=0.076); (b)
scenario 1 of peak formation; the initial stage resembles an autowave(K5=17.35,K6=0.05); (c) scenario 2 of peak formation; the initial
stage resembles on waves(K5=20, K6=0.0635).

FIG. 2. First complex scenario of peak formation.(a) The one-
parameter bifurcation diagram for autowaves withK5 as the bifur-
cation parameter(K1=6.85, K2=13.5, K3=2.36, K4=0.078, K6

=0.05, andD=1). The speed value assigned to peak solutions is
zero. The branches of stable and unstable solutions are depicted
with thick and thin lines, respectively.(b)–(d) Peak formation in
response to a local above-threshold activation for supracritical val-
ues of the bifurcation parameter:(b) K5=17.3,(c) K5=17.5, and(d)
K5=17.8.
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approximately constant speed and with minor variations in
shape. After some time, they stop and convert into peaks.
Thus, the initial stage of peak formation closely resembles
the autowave regime, although the resemblance diminishes
for parameters farther away from the autowave domain. For
example, the distance that excitation pulses travel before
converting into peaks becomes progressively shorter[Figs.
2(b)–2(d)].

DYNAMIC BEHAVIOR OF THE MODEL NEAR THE
SADDLE-NODE BIFURCATION IN THE ABSENCE OF

PEAK SOLUTIONS

Since peak formation by scenario 1 is preceded by propa-
gation of autowavelike pulses, we wanted to examine the
requirements for such behavior in more detail. For example,
we wanted to determine whether such propagating pulses
could be obtained in the model for parameter regions close to
the saddle-node bifurcation boundary of autowaves, but
where peak solutions do not exist. Figure 3(a) shows the
one-parameter bifurcation diagram forK6=0.04 and in the
K5 range where stable peaks are absent. The autowave solu-
tion disappears atK5scrd,15.87 via a saddle-node bifurca-
tion, and forK5.K5scrd the trivial, spatially uniform solu-
tion is the only stable solution to Eqs.(1) [Fig. 3(a)]. We
found that in this parameter range a local, above-threshold
activation immediately generates two excitation pulses,
which propagate in opposite directions away from the site of
activation. After traveling over some distance, both pulses
disappear precipitately and the medium settles down to a
stable, spatially uniform state[Fig. 3(b)]. As in the case de-
scribed in the previous section, the traveled distance be-
comes progressively shorter with increasingK5, and the
wave forms diverge from the autowave. Therefore, propaga-
tion of autowavelike pulses can occur in the vicinity of the
saddle-node bifurcation boundary, and in the parameter range
where stable peak solutions do not exist. This strongly sug-
gests that the initial dynamics of peak formation via scenario
1 is determined by the proximity of the stable peak domain
to the boundary of saddle-node bifurcations.

COMPLEX SCENARIO 2 OF PEAK FORMATION

This is observed in the vicinity of saddle-node bifurca-
tions of trigger waves. Another type of stationary wave so-

lution to model(1) is a trigger wave. For some model pa-
rameters it can disappear via a saddle-node bifurcation. The
trigger waves are observed if there are two stable spatially
uniform states, the lower and upper. The trigger wave propa-
gates at a constant speed without changes in the wave form
and switches medium between these two states; either from
the lower spatially uniform steady state into the upper steady
state(on waves), or it returns the medium to the lower state
(off waves) [7,10].

In the BC model there is a small parameter range where
the domain of the stable peak solutions borders the area of
the saddle-node bifurcation of the trigger waves. We found
that such proximity to the bifurcation boundary leads to an
unusual transient process during peak formation. The bifur-
cation diagram in Fig. 4(a) shows mutual positions of the
peak and trigger wave solution domains. The trigger wave
diagram is S shaped and consists of three branches in which
positive and negative speeds correspond to the on waves and
off waves, respectively. At largeK6 only the on waves exist,
while for small K6 only the off waves are observed. There
are two saddle-node bifurcation pointsK6

s1d(cr) andK6
s2d(cr) at

which the branch of the unstable wave solutions merges with
the branches of the stable wave solutions. In response to a
local above-threshold activation, two on waves are generated
and they travel in opposite directions for all parameter values
within the domain of their existence and stability. A thick
horizontal line at zero speed indicates the peak solutions. As
seen in Fig. 4(a), the right boundary of the peak solutions
domain coincides withK6

s1d(cr) where two on waves(stable
and unstable) arise via a saddle-node bifurcation. In this re-
gion (the parameter range between the two arrows), the sec-
ond complex scenario of peak formation is observed. Al-
though atK6,K6

s1dscrd, there are no solutions in the form of
a stationary on wave, the initial response to the activation
closely resembles the on waves[Fig. 4(b)]. Two on-wave-

FIG. 3. Transient dynamics of pulse formation, propagation, and
disappearance near the saddle-node bifurcation in the absence of
peak solutions.(a) The one-parameter bifurcation diagram withK5

as the bifurcation parameter(K1=6.85, K2=13.5, K3=2.36, K4

=0.078,K6=0.04, andD=1). (b) Pulse formation, propagation, and
destruction in response to a local above-threshold activation for a
supracritical value ofK5=15.9.

FIG. 4. Second complex scenario of peak formation.(a) The
one-parameter bifurcation diagram for trigger waves withK6, as the
bifurcation parameter(K1=6.85, K2=13.5, K3=2.36, K4=0.078,
K5=20.0, andD=1); (b)–(d) peak formation in response to a local,
above-threshold activation for(b) K6=0.0642,(c) K6=0.064, and
(d) K6=0.63.
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like modes begin to propagate in opposite directions away
from the activation point. Soon they stop and transform into
off waves, which exist stably in this parameter range[Fig.
4(a)]. Then the off waves run backward to merge at the origi-
nal activation site and form a peak[Fig. 4(b)]. As for the
autowavelike pulses described above, the travel span of the
on-wave-like modes from the activation site depends on the
distance betweenK6

s1dscrd and the correspondingK6. For K6

closer toK6
s1dscrd, the time during which the excitation zone

expands is longer, and the travel distance of the on waves is
bigger [Figs. 4(b)–4(d)].

DISCUSSION

There are several interesting, complex regimes observed
in the BC model[11–13], some of which include the forma-
tion of peaks[4,6]. Peaks are found in a small area of the
parameter space, but their formation may occur via intricate
dynamics. Importantly, such dynamic behavior is observed
whenever the stable peak domains border the saddle-node
bifurcation boundary of the wave domain. The proximity
within the parameter space of the standing peak domain to
the saddle-node bifurcation line(surface) is one of the dis-
tinctive features of the BC model.

Both complex scenarios of peak formation described
above are characterized by two distinct stages. During the
first, in response to a local above-threshold activation, wave
modes are generated. These running waves closely resemble
the stationary wave solutions(autowaves or trigger waves)
which exist on the other side of the saddle-node bifurcation
boundary. The closer the parameters are to the bifurcation
boundary, the greater the resemblance, and the longer the
duration of the first stage. Since the events during the first
stage are largely determined by the general properties of Eqs.

(1), such as the continuous dependence of their solutions
(over a finite time interval) on the model parameters(see
[14,15]), we believe that a similar phenomenon is likely to
be found in other reaction-diffusion models. In contrast, the
events of the second stage of peak formation bear no resem-
blance to the modes seen on the other side of the bifurcation
boundary. These processes cannot be predicted or explained
from the general properties of the equations. Rather, they are
determined only by the stable solutions that exist for given
parameters and for given initial conditions.

The characteristic property of the BC model is that the
initial conditions used(a local, above-threshold activation)
are always in the basin of attraction of the wave solution.
Asymptotically, at larget, this solution represents two waves
that move without changes in the wave form in opposite
directions along an infinite straight line. After a parameter
change causes this mode to disappear, the trajectory in the
infinite dimensional space starts from the initial conditions,
continues along the same path as prior to the parameter
change, and through the area which previously contained the
attractor. After leaving this area, the trajectory tends to an-
other attractor, which might be a peak solution, a spatially
uniform state, a trigger off wave, or something else. The
complex dynamics of peak formation described in this study
deserve close attention as an example of how the proximity
of a domain of one type of solution to the bifurcation line
(surface) where the stable and unstable branches of another
type of solution merge, can lead to the appearance of unusual
dynamic modes.
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