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Sierpinski signal generates 1f* spectra
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We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a
time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged
fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity
of the model, it can serve as a model forf1 kpectra in a certain class of experimental and natural systems
such as catalytic reactions and mollusc patterns.
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The phenomenon of I# noise is found in a widespread pattern formation in chemical reactions. CO oxidation on
variety of systemg$1—-3]. Usually a noise signal is said to be Pt110) and its control by global delayed feedback has been
1/f« (or 1/f) if its spectrum follows over some decades astudied and compared to modéglks], including the occur-
power lawS(w) ~ o™ with an exponent near to one. Despite rence of patterns similar to Sierpinski structures in the inter-
1/f noise being known for a long time, up to now there is nomittent turbulent phase. Recently, f#/spectra have been
general explanation for universal mechanigifthey exis).  measured directly in a chemical reactid¥] by a supercon-
However, on a very general level it is believed that complexjycting quantum interference device setup that allows for
systemg4] are able to generate fLhoise. While real com-  y,ch higher resolution in time, space, and signal-to-noise

plex systems are usually not exactly solvable, extremely simz;iiq than the direct gravimetric measurement of the reaction

plified models are under investigation. One prominent €Xiate in Ref[12]. The power law extends over more than two

e et e et hoodecades, ndicang he patoemporal dynamics of e cta-
X k lytic reaction exhibits avalanches on all sizes and self-

not reproduce 1ff sufficiently. organized critical behavidil7]. Interestingly, the Sierpinski

In this work we study an even more simplified model ; .
introduced in 1984 by Wolfranié], which is known to be gasket was more recently found in a video feedback system
[18]. Apart from observation of the Sierpinski pattern itself,

able to exhibit complex behavior: the Sierpinski automaton X i

Looking not at the generated fractal Sierpinski gasket itselfits 9éometry has been used widely, e.g., for sandpile dynam-

but on therow sum corresponding to the totgin)activity of €S [19] and measurements of magnetoresistance on fractal

the whole system, we have a signal as shown in Fig. 1 witivire networks[20].

increasing mean and increasing spatial size of the corre- Definition of the modelThe dynamics of the so-called

sponding system; thus every physical realization of the sysSierpinski automaton is related to the generation law of the

tem will be finite size limited. Pascal triangle. This pattern can be generated by the follow-
Despite the fact that on first glance they seem to be theing simple one-dimensional cellular automaton: We consider

oretical toy models only, Sierpinski patterns have been foun@ linear array of sitegor sping x;(t) which can take the

in nature. Detailed models have explained mollusc patterngalues O or 1 at discrete time stefp$Ve restrict ourselves to

by reaction-diffusion models and cellular autompis]; Si-  the special initial condition, that for=0 only one spin is
erpinski patterns also occur in kink breeding dynanji@s different from all others:
and have been observed in cataly4i6]. This phenomenon x(0)=1 and O, x(0)=0. (1)

occurs generically for suitable parameter choices in four
standard types of nonlinear spatiotemporal dynamics includthe dynamics is defined by the following next-neighbor in-
ing the Bonhoeffer—van der Pol and the complex Ginzburgteraction:
Landau equatioffill].

Consequently, catalytic processes can exhibit similar time 120
signals as the Sierpinski sum signal. A comparison of the
reaction rate of a catalytic process with the Sierpinski sum
signal X(t)=2x;(t) has been given in Ref§12,13. A single 80
statex;(t) at a timet can be interpreted to indicate the activity

100

of a local catalysis process, i.e., reacti@activity) when x 00

x(t)=0 and no reactiorfinactivity) when x;(t)=1. The au- 40

thors [12] observe a qualitative similarity between the ex- 20
perimental and theoretical time series. Due to dominating

finite size effects 1 spectra(or long-time correlations 0 s

could not be identified in the spectrum of the experimental ¢
data[14]. As models of chemical reactions, cellular automata
have been studied wideljl5], explaining spiral waves and FIG. 1. The self-similar Sierpinski signl(t) for T=128.
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Xi(t+ 1) = [%;_1(t) + X;,4(t)] mod 2, (2)  number system and B(.) is the operator of the binary de-
. di . h ¢ composition. This analytic solution was already discovered
I e[,o], x(t) {0, 1} at discrete time. In the context of i, 1855 1y Kummel21] in a number-theoretic context.

catalytic processegd.0,12,13 a simplified chemical interpre- A convenient closed expression can be obtained by ex-
tation of this rule reads: A catalytic process is stopped Whe'ﬂ)ressing time by a number spins

too little (i.e., ng or too many(i.e., 2 neighbor sites are

active. A catalytic process is initiate@r continueg when N-1
only one neighbor site is active. This can originate from a t=> szi, o e {0,1 (9)
minimal catalysis temperature combined with a local self- j=0

limiting reaction rate. ' ' '
The spatiotemporal evolution is obtained from the rows ofand expressin({o;}) from the same configuration as
the Pascal triangle by applying modulo 2 elementwise,

N-1 N-1
1 1 X(t) = x(E ajzl) =22, . (10)
1 1 1 1 j=0
mod 2
121 - 101 By these expressions fof{o;}) andX({o;}), we have a para-
1 331 1111 metric expression parametrized by a setNokpins for all
1 4 6 4 1 100 0 1 X(t) with times up tot=2N-1.

Spectrum of the Sierpinski signdlhe periodogranX(w)

which is also known as the Sierpinski gasket. The Sierpinsk¢ e time signal now is calculated analytically. The binary

gasket is a well-known self-similar structufith point di- — ine gecomposition allows a Fourier transformationXsf)
mension In 3/In 2 irx for t— <o) that is obtained by twofold fairly direct from the definition

replication of the first four rows to the subsequent four rows,
and iteration of this process with the whole triangle. oN_q
Instead of considering the fractal pattern itself, we look at — ot A N jwt({o}) _

a scalar observable that can be compared to experimental X(w) g(‘) eUX® % UE € Xte)]
time series. Before considering the spectrum, we briefly
sketch a direct solutiofi21] and illustrate the analogy to a B .
formal language approach. The row siiar total (in)activ- =22 H exfoj(iw2 +In 2)]
. . . oo oN-1=0

ity] over space at timg defined by

0 N-1
N-1

N-1
X(1): = 2 %(1), ) =1 X exloi(iw2 +1n 2)]
i ]=0 U’j
is referred to as the Sierpinski signal. The Sierpinski automa- N1 _
ton rule then generates a time serid) (Fig. 1) starting =[] [1+expiw2 +In 2)], (11
from t=0 with 1=0
1,2,24,2448, 244848816, .... (4  where all sums ovew; are taken over the two possible val-

ues ;=0 andoj=1. We now calculate the periodogram’s
power spectrum, i.e[X(w)|?. The absolute value oX(w)
simplifies to a trigonometric product which the logarithm
converts into a sum

As we are interested in an analytic expression for(By.we
first note thatx(t) can be generated up te2V-1 from the
start sequencey,=(1) by N iterations of the sequence repli-

cation rule
Up — Uner = (Up, 2U,). (5) N1 .
, , In|X(w)[?= >, IN[5 + 4 cogw2))], (12)
Obviously X(t) takes only powers of 2, so we consider i-0
[In X(t)]/In 2, which starts as
showing a rugged fine structure as shown in Fig. 2. A rough
01,121,223 12232334, ... (§ estimate of the sum in E¢L2) is obtained approximating the
Strikingly, this appears to be the number of ones in sum by an integraly: = w2!),
0,01,10,11,100,101,110,111,1000,1001, N-1
1010,1011,1100,1101,1111, ..., (7) In[X(w)|? = f In[5 + 4 cogw2))]dj (13
0

i.e., the binary decomposition of the time variablstarting
with t=0. Therefore the observable is given by

1 («2tIn[5+4
(S +4cosyly (14

— 92 (B(t) =
X(t) = 2580, ® n2) y

which is no longer recursively defined. Hek¥g(.) denotes
the cross sum, i.e., the sum over all didits the respective As In(5+4x)z|n(5)+§x for |x| <1, we obtain
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FIG. 3. Power spectrum of the time sigr&lt) up to T/8 for
FIG. 2. Power spectrum of(t) for T=1024 time steps up to the T=220 time stepg(from FFT) and least-square-fib™1%
Nyquist frequency off/2 (from FFT). The lower envelope is con-

stituted byw(k)=[(2¢+1)/3],ke{2,3,..}. resonances, where the system is coupled with a tuneable os-
cillator of given frequency and finite bandwidth. Therefore it
In5 [« dy 4 (w2 cogy) is quite natural to consider an averaged spectrum. (filke
In|X(w)|? = —f —+ j —=dy. commensurable averaging procedure applied in Fig. 4
In2J, y 5in2J, y smoothes the peaks at=2. The peak amplitudes decay as

The integral over the integral cosine is nearly independent o?e a}[vefr?:ge spt(:]ctrum kltselti._cmk)rd.commensurablle ta\I/eraglng
the upper boundary for high values of the boundary. Thus\ "€t of M9 4 the peaks a 2 'Sappe;’“ competely.

we can substitute the upper boundam2N' by some Nge that the spectr&(.(w)| and[Y(w)| .from .FFT for
N-dependent constant, say;>1. Finally, substituting the T=2% (not shown also display 1f* behavior, with expo-

cosine by one yields immediately a rough approximation Opents ax=1.12 and ay=1.11, r_e_specti_vely. Moreover, we
Eq. (12):y y y gh app have used the method of a sliding window that normalizes

the fluctuationg 28] of the detrended signat(t), i.e.,Z(t)

IX(0))? = cpo 62 ~ 7118 (15) =Y(t+)/(Y2)}3, 1 For different values of the window

Due to the increase of the mean Xft), spectral estimation width 21, the power spectra exhibit power law behavior with
from the periodogranX(w) (implying a periodical extension €xponents of about~1.1. Thus 1f* spectra appear to be a
in time domain has to be discussed carefully. As rob:st ?:Ogert)c’j_og 'f)letr'pmsl\zl Slgna|5-t 1)
M1 vy = 2N - - mplitude distribution. Many systems exhibiting
zt(:)‘(’(t);((t) N3 _ tﬁtr\]/\(/aith 2\5:(1372) /||nn(;r)e%asoe585|s Ii):(rtt)r:;r noise possess a Gaussian amplitude distrib@@h In this
{0271 X ' ' paragraph we calculate the amplitude distributig(2¥) of

th.e signal exhibits an increasing Va”ar(‘x‘(t)2>{0---_2N—l}:f[7 X(t) analytically whereHy(2X) denotes the frequency occur-
with y=In(5/2)/In(2) =~ 1.32. Consequently, we investigate gnce ofX=2%k=0,1, ..., for asignal length off=2N. The
two variants ofX(t): A suitable per definitionem mean-free nymper of #'s in the signal up ta=2V-1 is the number of
sum signal defined by (t)=X(t)-(1+B)t%, and a mean-free ks plus the number of 2¥s in the signal sequence up to
signal with nonincreasing variance

Z(t) = YOKY (022 - (16)

—_
o
=3

N
e

The spectrum of(w) can be directly obtained from E¢L1)
and the evaluation of the Fourier transformtéf

Y(w) = X(w) = (1+B)F(). (17)

-
<
[}

-
<
w

The power spectrum of the periodically extended function

Averaged power spectrum S(w)

decays(for small values of the frequengys a power law 2"bins
with an exponent of approximately —2. Thus, the decay is 10*
much stronger thaX(w) and the power spectra &f(t) and
10° 10" 10? 10° 10* 10°

X(t) deviate only slightly. Hence, it follows thaty(w)[?
~|X(w)|?>~ w™e. Similarly, |[X(w)|? also estimatefZ(w)|2. We
now compare these results with numerically applied discrete . 4. Averaged power spectrum Zt) up to T/8 for T=22°
Fourier transformation. The power spectrum is fittegast  sing (incommensurablel.-bins, i.e., thekth interval is defined
squarepin Fig. 3 by a power law with exponent about  py [[1.14,[1.1¢Y]] where the bracket§] denote rounded integer
1.11, being in good agreement with the analytical reault values. The inset shows the same spectrum, averaged Usings?
~1.15 of Eq.(15). If one measures a power spectrum ex-i.e., thekth interval is defined bj2k, 2k*1—1]. Both correspond to a
perimentally, this may generically be done by observation otonstantw/ w ratio.

® (exponential binning)
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t=2N1-1, ie., Hy(29=Hn1(29+Hp_1(2¢Y). For the
boundary conditiorHy(1)=H4(2)=1 we obtain a sum of bi-
nomial coefficientsHy(29 ==, (})=(}1) k=1, which sim-

plifies for N>1 to 2 times the Gaussian distribution
2N

—e

(7N/2)Y?

_(k=N2)?
N/2

Hy(27h) = (18)

Hence, the amplitude distribution of the occurrence of pow

ers of 2 is Gaussian for fixeN. The (averagedl amplitude
distributions forY(t) andZ(t) differ from Hy(2) but possess

a similar shape asl\(2"). Note that the variance distribu-
tions for X(t), Y(t), andZ(t), are not Gaussian but well de-

fined by Eq.(18).
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1—-(1,-1,-1—(-1,1) itself maps on the string replication
rule u,— [u,, (-1)u,] for generation of the spatial sequence.
As it is not equivalent, but of striking similarity to E¢p) for
generation of the temporal Sierpinski signal series, the Sier-
pinski dynamics itself does not follow a replication rule.
While the analytic solution of the Thue-Morse sequence is
(-1)>xB®) [26], in analogy to Eq(8), the averaged expo-
nents of the resulting spectra are different.

" To conclude, the one-dimensional Sierpinski automaton
generates IfF spectra in the number of active states, and can
therefore be considered as one of the simplest models gen-
erating 1f* spectra. While the Sierpinski automaton is
rather a caricature, the approach of studying the sum signal,
or total (in)activity, and its spectrum, can be transferred to

As a final point, numerical simulations show that the av-pore realistic models and compared directly with experi-
eraged signals are robust against noise, i.e., initial condltlonments_ Although exact Sierpinski patterns with long-range

with more than a single 1.

correlations remain to be experimentally challenging, we

In analogous situations in less simply defined systemsyonjecture that 1 spectra in a suitable sum signal can be
power laws have also been observed in spatial spectra of thgantified in every experimental setup exhibiting Sierpinski

scum on fluid surfaces and in the random baker rf24j,

and in the temporal spectra in dissipative dynamics governed
by the Lorenz equation§24] being related to the Thue-

patterns.
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