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Solitons in a-helical proteins
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We investigate some aspects of the soliton dynamics ia-belical protein macromolecule within the steric
Davydov-Scott model. Our main objective is to elucidate the important role of the helical symmetry in the
formation, stability, and dynamical properties of Davydov’s solitons iredrelix. We show, analytically and
numerically, that the corresponding system of nonlinear equations admits several types of stationary soliton
solutions and that solitons which preserve helical symmetry are dynamically unstable: once formed, they decay
rapidly when they propagate. On the other hand, the soliton which spontaneously breaks the local translational
and helical symmetries possesses the lowest energy and is a robust localized entity. We also demonstrate that
this soliton is the result of a hybridization of the quasiparticle states from the two lowest degenerate bands and
has an inner structure which can be described as a modulated multihump amplitude distribution of excitations
on individual spines. The complex and composite structure of the soliton manifests itself distinctly when the
soliton is moving and some interspine oscillations take place. Such a soliton structure and the interspine
oscillations have previously been observed numeridaéilyC. Scott, Phys. Rev. 26, 578(1982]. Here we
argue that the solitons studied by Scott are hybrid solitons and that the oscillations arise due to the helical
symmetry of the system and result from the motion of the soliton alongrthelix. The frequency of the
interspine oscillations is shown to be proportional to the soliton velocity.
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[. INTRODUCTION that are characteristic of real proteins; thus very often these
) results have been discussed in the context ofvdrelix. In
In the 1970s Davydoy1] proposed a nonlinear mecha- reality, however, reak helices contain three strands, each of
nism for the storage and transfer of vibrational enefigy ~ which contains periodically placed peptide groups connected
trapeptide vibration Amidjlin alpha-helical proteins. As a by hydrogen bonds. A three-strand model foraahelix was
result of the interaction of high-frequency Amid-I vibrations proposed in Ref[7], where the stationary states were stud-
(vibrations of double C-O bond of peptide groupgth the  ied. This model represents anhelix as a three-strand struc-
low-frequency acoustic vibrations of the protein, a self-ture with three peptide groups per cell in a plane perpendicu-
trapping of the Amid-I vibration takes place. This idea haslar to the protein axis. Afterwards the properties of such
attracted a lot of interest, which has increased even furthegoliton states were studied analytically in RE,9] and nu-
after the appearance of a papét in which Davydov and merically in Ref.[10] and they were also considered recently

Kislukha demonstrated that the corresponding system oft Ref.[11]. _ _
equations for a molecular chain admits, in the continuum This model does not take into account the helical structure

approximation, a solitonic solution. This solution describes &f Proteins, and so afterwards the model was improved in
self-trapped quasiparticia lump of vibrational Amid-I en- Refs.[12,13. In Ref.[13] the soliton solutions which do not

ergy) that propagates at constant velocity and is acompanief reak thte Chll‘3|.| tsymmetry V\I/erte dfour]ldthanalytgl:ally.hSo gar,
by a self-consistent chain deformati@sj. € most complete numerical study ot the problem has been

Since then, various properties of such one-dimensionaﬁ)resentEd by Scott in Ref12], where the formation of a

| lik Ii-t d states h b tudied in det ﬁoliton in ana-helix chain of a finite length had been inves-
polaroniike sefl-trapped slates have been studied in detgy gated using the initial excitation of a certain form localized
both analytically and numericallysee, e.g., Refs[4—6]).

D ical . f Davvd f d their f on two of the three peptide groups at the end of the chain.
Jynamical properties of Davydov solitons and their forma-g.qt showed there that, under such conditions, a soliton can
tion, given various initial conditions of the chain, have been

. . din d hai di . del be formed and that this soliton propagates along the protein
Investigated in discrete chains and In continuum modelSy i, 5 constant velocity. It has turned out that such a soliton

Most of these results have been obtained for a single chaify, o inner structure and that some interchain oscillations of

Often they have involved numerical values of the parameterg,o gy take place. These oscillations were compared by Scott
with the lines in experimentally measured Raman spectra of
living cells (see also Ref{14]). Let us add here also that in

*Email address: brizhik@bitp.kiev.ua this numerical modeling only one type of initial excitation
"Email address: eremko@bitp.kiev.ua was used, and, as a result, only one value of the velocity of
*Email address: B.M.A.G.Piette@durham.ac.uk the soliton of a given symmetry was obtained. However, the
SEmail address: W.J.Zakrzewski@durham.ac.uk full picture of the energy transport in the-helical proteins
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requires the clasification of soliton states of various symme- Thus, for the ennumeration of PG’s in arhelix, we can
tries, and the study of their dynamics at arbitrary velocitiesuse the two numbersandn wherej, a cyclic index modulo
In fact, we expect the dynamics to contain some oscillatoryd, indicates the spine of the hydrogen bond, arehnumer-
features. This is due to the discrete nature of the chain and étes PG in a spine or elementary cells of three PG’s from
can also be related to the helical symmetry of the protein andifferent spines. We can use a different numbering of the

the symmetry of the initial excitation. cyclic index: j'=j-2=-1,0,+1, orj’=j-1=0,1,2, orj
The aim of the present paper is to study the soliton states1,2, 3.
in an a helix, to investigate their properties and their stabil- Introducing a double indeXj,n}, instead of the single

ity, and to look at the dependence of the internal solitornumberl, the equilibrium positions of PG’s in am helix (1)
vibrations on the velocity of the soliton propagation. In Sec.can be rewritten as
Il a general description of the model is given. In Sec. Il the

elementary gxcitations of the helix are.presentt_ad. In Sep. ﬁj(or: _ {éx cos( 27N B 9,') _ éy sin( 2mn _ 01)}

IV we describe the results of our analytical studies of soliton ’ 6 6

states in the adiabatic approximation while the results of our an

numerical modeling are presented in Sec. V. In Sec. VI we +6, (— +Aj>, (4)

discuss the applicability of the adiabatic approximation and

in the Conclusion section we make further comments on th@vhereej:(ZW/&G)j ~ 6o and A =(aj/3.6) -z, The spines of

physical relevance of our results. hydrogen bonds in ar helix are also rolled into a helix of

Il. GENERAL MODEL length & with six PG’s per turn. .

Due to the softness of hydrogen bonds, PG’s can be dis-
Protein macromolecules are long nonbranched polymeplaced and their positions in anhelix are

chains which are formed as a result of polymerization of N _
amino acids. Amino acid residues in such polymer chains are Rin= R}?,} +0j . (5)
connected by thepeptide bondsin which four atoms
(OCNH) of the peptide groupand twoa-carbon atoms of the
residues are placed in one plane. So the backbone of suc
polypeptide chain can be described as a set of comparabLyi

rigid planes divided by methilene groupsCHR-). Because . . . : ;

pgptige groupsPG's) a%e bonded V\%’[h rggihilerze groups by mation of using only the nearest—nelghbors mteractlon. The

ordinary bonds, a free rotation of PG planes around thesgearest neighbors along the polypeptide chain are bound to-
' ether by rigid valence bonds, much more rigid than the

bonds is possible. Due to such rotations, a polypeptide Chaiﬁydrogen bond. We can thus assume that the distances be-

can take different spatial configurations. In particular, it can . . .
be rolled into a helix. Such a configuration of the polypeptidetWeen thdth and(l +1)th groups are fixed while the potential

P o : : -_renergy of displacements is determinded only by the variation
chain is stabilized by the intrachain hydrogen bonds Whlcz(?{ the hydrogen bond length and. in a harmonic approxima-

pon, it can be written as

where, are the displacements of the peptide groups from
htkéeir equilibrium positiong4).

The potential energy of displacements depends on the dis-
nce between the groups and so we can perform the approxi-

atom of the fourth group along the chain. Such a helical
structure, calleda-helix, has 3.6 peptide groups per turn. 1
Thus the equilibrium positions of the repeated uti&'s) in V=2 [V(Rjnjn-1) ~ VR)= > EWH(ARj,n;j,n—l)za (6)
an a helix are determined by the radius vectors jn jn

ol o] al wherew,, is the elasticity of the hydrogen bond. In E),
ﬁ(o) = r[é( co<%> +8 In(ﬁ)] + 623_6' 1) 0 RO _ RO / i 2 2
: : : Ro= Ry njn-1=[Rin = Rin-al = V[2r sin(#/6)]* + (5a/6)?,

whereé(i=x,y,z) are unit vectors along coordinate axas, (7)
is a period of the helixr is its radius, and is an integer
labeling each group along the polypeptide chain. The neare

L? the equilibrium length of the hydrogen bond, and

neighbors(sites| and I+£1) along the chain are bound by o (ﬁ- R YT,
rigid valence bonds and eatth group in a helix is bound AR 1.1 = |R o = Rj o] = Ry = ——Li=t—Ln Lot
with (I+£3)th groups by soft hydrogen bonds forming three Ro

spines along the helix. (8)

The three spines along the helix are formed by units

With numbers: are its changes due to the small displacements. The total

energy of the displacements is the sum of the potential en-

l,=3n-1, 1,=3n, I3=3n+1, (2) ergy (6) and the kinetic energy which is given by the relation
. 1 .
or we can write 7=3 EMGjZ,ﬂ’ )
I=3n+(j-2), 3) in
wherej=1,2,3 andn runs from 1 toN with N being the whereM is the mass of a PG anﬁ],n:dﬁjn/dt are the ve-
number of PG’s in a hydrogen bond strand. locities of the displacements.
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Due to the assumption that the valence bonds are suffi-

ciently rigid and that the distances between f{iie and

PHYSICAL REVIEW E70, 031914(2004)

(I+1)th groups are fixed, the three components of the P&Vhere
displacement are not independent. In fact, we have two con-

ra [ . m 2T
ditions which correspond to the assumption that the distances Y= C_RO<S'”§ +3 S'”ﬁ)-

between eachth PG and its two neighbork;:1 andl +1, are

fixed. For small displacements this means that the displacérhus the potential energi) is

mentuy, of thelth PG is orthogonal to the vectors connecting

thelth and the(l+1)th groups:

G-(R-R.)=0, G-(R-R.,)=0. (10

Let us represent the vectai using three orthogonal unit

N z®

vectorse,”, €,”, ande,

G=e"u” + &yl +eul, (12)

where éu/=U is the longitudinal(along the a-helix axig

component of the displacement. The transversal compone

G =6, 6L
tangential components relative to the axis. Here

L) _ = 2l . . (2=l
e, =g cCo % +eysm§ ,

éft):—éxsin<2—7ﬂ) +éycos(2—wl). (12
3.6 3.6
In this case conditioril0) takes the form

a 2

—ufl+2r sir?(l)uf” +r sin(—w)u,“) =0,

3.6 3.6 3.6

a 2

—ull - 2r sinz(l)uf” +r sin(—w)u,“) =0. (13

3.6 3.6 3.6
From these equations it is easy to find that

a
u’=0, u= ” (14

=-——————Uu.
3.6r sin(2m/3.6)

Thus there is only one independent degree of freedom oi

the PG displacement and the vector of the displacemignt
can be represented as

Uj 0 = € nlj n, (15
where
R 1 [ 2mn R 2mn R

€n= E{— a{sm(? - 0j>ex+ co<? - 0]->ey]

+3.6r sin(2—77)éz}, (16)
3.6
C= \/a2+{3.6 sir(z—w>rJ2 (17
3,6

ARj jn-1= YUjn = Ujn-1), (18
(19
1 2
V=2 DW= Ujn-0)?, (20)
Jn

wherew=1?wy, is an effective elasticity coefficient.
Therefore the Hamiltonian of the-helix vibrations can
be rewritten in the form

Pin, 1 2
Hv = E + _W(uj,n - uj,n—l) ,

(21)
Slem 2

Wiherep,-,n are the momentum operators that are canonically

is represented through the radial and conjugate to the operators of the PG's displacengnt

We now focus on the Hamiltonian for the quasipatrticle.
The states of the Amid-I vibrations of the peptide grojms
extra electro¢s)] in the tight-binding approximation are de-
scribed by the Hamiltonian

He= >, <E0A|+A| £ S L AAn + Ar.on) (22)
| m

wherel andm run over the 8l values along the polypeptide
chain. HereA and A, are, respectively, the creation and an-
nihilation operators of the quasiparticle at title site of the
chain;L,, are the matrix elements of the excitation exchange
between sited and |+m. The matrix elementt,, with m
being a multiple of 3 describe the energy exchange between
the PG’s of the same spine while the others describe the
excitation exchange between the spines. For Amid-1 excita-
tions in ana helix the numerical values df,,, decrease with
increasingm. In what follows we will take into account only
two of the most important termé&:; =L, which describes the
interspine exchange, anld;=-J, which describes the in-
aspine one. The signs of the corresponding matrix elements
re chosen in such a way that they correspond to the
polypeptidea helix [15,6].

Using the double indefj,n}: A=A, , we can rewrite Eq.
(22) as

Ho=> (E [EoA A= IA (A 1+ Aj-o)]
n I
+L[A] (Agp-1+ Agp) + A5 (A + Ag )

+ A;,n(AZ,n + Al,n+1)]) ) (23)

wheren runs from 1 toN and ennumerates the cells on each
of the three strands.

We now consider the Hamiltonian for the interaction of a
quasiparticle with the chain distortion. Due to the softness of

is the unit vector which determines the direction of smallthe hydrogen bonds and the stiffness of the valence bonds,
displacements without changing the valence-bond length anithe distance between thah and (n+3)th group changes

u; n is the amplitude of the displacements.

only under distortions of the: helix. So, taking into account

Taking this into account, we obtain the following expres-the on-site deformation potential on{he dependence of

sion for the change of the hydrogen bond len@h

on the distance between the groups is not so essential for an
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« helix [6]), we can write the interaction Hamiltonian in the K - [k
form E.(k) = Eq—2J cogk) - L co 3 + 3L sin 3/

Hint = E X(Uj,n+l - uj,n—l)AjJr,nAj,na (24) (31)
o The HamiltonianH, (21) describes independent oscillations
wherey is a constant parametrizing the strength of the exci-of the PG in the spines of H bonds in anhelix.

ton (electron-phonon interaction. Next, we perform a unitary transformation of the lattice
The total Hamiltonian variables:
1/2
H= He+ HU + Hinta (25) = _E |qn< ) (a_ + a_T_ ) (32)
NS Mo ia™ g

whereH,, H,, andH;,; are given by Eq923), (21), and(24),

respectively, describes a molecular helical chain in which the AM o,
equillibrium positions of its unit§PG’s) are given by the E e'q“< ) (aqu—a;r_q), (33
radius vectors ’

=0 R 27\ . (2w . j WhereaJ q anda 4 are the operators of creation and annihi-

RJ(,FF € CO ?J t € sin ?J +ea n+5>, lation of acoustic phonons with wave numbgrand fre-

quency
(26)
_ . q _ w

wherej is a cyclic index(of modulus 3, which ennumerates wq =20, S | Ya=\ - (34

the three spines along tlreaxes, and is the position index
of an elementary cell within the three strands. The expression As it is convenient to describe the lattice oscillations in
(26) describes a molecular chain which is rolled into a helixthe helical symmetry representation that we have introduced
with three units per turn of the helix. We can consider such dor the description of excitons, we define the operabggsas
molecular chain as a model of thehelical protein. In this =Sy (g 35
case we can neglect the rolling of the hydrogen bonds into a 8jq = 2 vj,(Q)Dyq, (39
superhelix. Y

where thev;,(q) were given in the description of the excitons

Il ELEMENTARY EXCITATIONS IN AN & HELIX (27). In this formulation, the displacement operator is given

by
The quasiparticle Hamiltoniat23) can be diagonalized 1 5o\12
by the following unitary transformation: Upp= =2 eiq”vj,,(q)(—) (b,q+bl,_) (36)
VNG 2May ' '
1 1 . .
Ajm= _NE &My (KB, K vju(K) = \Tge“’”k/g”, and the HamiltoniarH, (21) takes the form
1
(27) H,=> ﬁwq<b1,qbv,q + 5) : (37)
vq

where the wave numbdrand the band index are given by o )
Thus the elementary excitations are given by the phonons

2w _ +N_—l 277 which correspond to the deformational oscillations of the
s 3 : lattice, and the excitons which describe the internal Amid
excitations of the PG. As an elementary cell contains three
(28) PG's, the spectrum consists of three exciton bands which
Under transformatiori27), the Hamiltonian(23) transforms ~ correspond to the Davydov splitting. This band structure is
into shown in Fig. 1 forL=12.4 cmi? and J=7.8 cn1?, which
correspond to the- helix values. In these unitk,is adimen-
HE:E E,u,(k)B;,kBy,,k! (29 Eional and _lthe energy is given in units ofiy,
=53.7931 cm.

. ) . Finally, we rewrite the interaction Hamiltoniad,; (24)
where the energy dispersion in the three bands ¢

=0, +27/3) is given by

k Hlnt - /ﬁ 2 {X(q) B,u,+y k+q w, kbvq + X (q) B/J, kB,u,+v k+qbV q}
E,(k) = Eo— 2] cogk) + 2L co 3 + U (30 VSN kg
(38)
or, in explicit form, by where
k ) 2% 1/2 ]
Eq(k) = Eg— 2J codk) + 2L co 3/ x(Q) =iy Mo sin(q). (39

q
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q

04 In fact, the equation fop, ,(t) becomes the equation for

06 L L ¢ k() X sin q
3 RS S
03 3 e T
04 -] 45)
03 - (
0.2 - ﬁ,, 1 . .
0.1 — if hquvq _2 X (q)wﬂ,k'p,uw,km- (46)
] dt V3N'g
£} 0 —
01 . In the first equationQ,(q,t) is given by
0.2 = 5 o\12 .
.03 _: Qv(q!t) = (E) (ﬂv,q + ﬁ—y,—q) . (47)

0.5 Q,(q,t) and takes the form
1 1 I 1 1 1 I 1 1 1 I 1 1 2
2 0 2 d“Q,(q,t) 2ix sing
K Tge +eaQUa =TS YOV
FIG. 1. The three energy ban@®l) for J=7.8 cn* (equivalent (49

to 1.55x 10722 J) andL=12.4 cm? (equivalent to 2.4& 10722 J). _ _ _
k is adimensional; the energy is given in units dfv, In these expressions, and in what follows, the inddabel-

=53.7931 crt (equivalent to 1.0% 10721 J). ing ¢ andQ is defined modulo 3.
Next, we seek the stationary solutions of these equations
IV. EQUATIONS IN THE ADIABATIC APPROXIMATION by requiring that
. . N . = i[O +kz(t)

In the adiabatic approximation the wave function of the P, (1) = e OOy, (k). (49)

system with one quasiparticle is represented as This immediately tells us that
|9(1)) = U(®)] (1), (40 Qu(k,t) == Q,(K). (50)

whereU(t) is the unitary operator of the coherent moleculeHere the parametex(t) corresponds to the center of mass of
displacements, the excitatiton.

Substituting this ansatz into our equations, we obtain
u) = exp(E [Buq(Oblq= B, q(t)byq]) (41) g
a [0+ VK- E, 010,00 = S 2200 (), (k- ),

" V3NM
[e0) = 2 (0B, ,{0), (42 (51)
ok
; ; ; ot ; 2iy sin .
with functions ¢, ,(t) that satisfy the normalization condi- (wg—quz)QV(q,t) - X—QE ¥ (K, (k+0),

tion:
(52

where()=d®/dt andV=dz/dt is the velocity of the propa-
gation of the excitation measured in units of the lattice con-
stants.
. ) o . Taking into account Eq(52), we see that Eq51) is a

In the adiabatic appr_oxmapon th(_a equations fmk(t.) nonlinear integral equations. From E§1) we see thaty, (k)
and ,4(t) can be obtained either directly from the time- has a maximum at the carrying wave numkgmwhich /::or—
dependant Schrédinger equation or as Hamilton eq“at'onr%sponds to the minimum dfQ +4Vk-E,(k), i.e., kg, and

for the generalized variables, (1), B,q(t), and their canoni- . "o iiavion velocity are connected by the relation
cally conjugated momen(an/ﬁ)ap ) and(- |/ﬁ)ﬂ (t) by W y

X u0P=1. (43)
.k

The coefficientss, ((t) in Eq.(41) are, at this stage, arbitrary
functions which will be determined below.

considering AV = dE, (k) (53
. . 1 e,
H—<‘/’|H|¢>‘%kEu(k)%,k%ka’%ﬁ“’q 'vaq'BVqu’E Next, we assume that, in the space representation, the

solution is given by a wave packet broad enough so that it is
sufficiently narrow in thek representation. This means that
,(K) are essentially nonzero only in a small region of values
of k in the vicinity of k.. In this case we can use the fol-
as a Hamilton functional. The equations are thus given by lowing approximation:

1 N "
* > XDVt Bug+ Beyg) (44)

wkg
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h2(k 2
HO + VK- E (0= A - KTk g Ta=o, (59)
2m, Vay
where whereV,, is the average velocity of the soliton propagation
52 PE (K in the chain.
A=[hQ+AVK-E, (Kl , — = dEuk) . Having found the solutions of E¢57), we can then use
. eomy di keke,, the transformation27) and, taking into account Eq$49)

(55) and(56), write down the probability amplitudes for the dis-
tribution of the excitations in aw helix:
To solve Eq.(51), we introduce the position dependent

. 1 )
functions W, () = _NE éknvj’#(k) D)
N k
1 : o
x) = =, &k (k). 56
(P,u( ) \“Nzkl H ‘/’/L( ) (56) 2 g1 (Q+Vig, )t+|kCMn+|(M+3kC#)]
3
Note that atx=n this is a unitary transformation af,(k) to v
the site representation. Using approximati@4#), one can i .
transform Eq(51) into a differential equation fop,,(x): Xpu\ N+ 3J Vi=g). (60)
nT (X) i(kg Koy o)X _ From Eq. (52) we obtain the explicit expressions for
Aoy 2m,L e "2 Ve, 0020, g (g) at y=0 and +2r/3, namely
(57 2iy sinq

= a 61

here Qo(@) RN 3MNE Vshuieqr (61
V,(x) = JSQ)sing. (59 2iy sinqg
| k k+
3MN ; Q.(q) = -V, 3MNE AGIACERe)

Note also that Eq57) is only a zero-order approximation of
Eqg. (51) and so it corresponds to the continuum approxima- + 4y (k+ )+ LK ok + )], (62)
tion. Only in this approximation the soliton velocity and .
frequency Q) are constant and the soliton center of mass Q-(@=Q.(-9. (63)

evolyes with time agy(t) =Vt+2z, and ®.(t):Qt. ) Substituting these expressions into Esf), we obtain the
Finally note that, when transforming E¢1) into Eq. potentialsV, (x). For example

(57), one has to be careful with the double summation
(Zxq +*)- The wave numberk andq are in the first Brillouin
zone, -w<k,q=<m, and the wave numbdrq also has to be

in this zone. This is the case for small valuesko&ind g
(normal processes in exciton-phonon interactjohl®wever, (64)

whenk andq are close to the edge of the first Brillouin zone, e can see from Eq61) thatQ,(q) is essentially nonzero
itis possible thak-q|> 7 (umklapp processgsin this case only at small values ofj. So we can use the long-wave

it is nessesary to reduce the wave numbkeq to the first 555 oximation and write the phonon dispersion relatia)
Brillouin zone using the reciprocal-lattice wave numiger as wq=v,q. In this caseVo(x) is given by

=27. This does not change the discrete equations due to the

periodicity of the functions in the space of reciprocal-lattice _ 2
vectors, but is essential when introducing continuous func- Vol¥) = T 3w (1 2 . 91%
tions for the analytical investigations. The umklapp pro-

cesses lead to the appearence of additional terms ii52y. wherev=V/v, is a velocity in units of sound velocity,.

for which the double summations are performed in the reSimilarly, the potentials’,(x) are quadratic inp,(x). There-
gions near the edges of the Brillouin zone whigrek| > fore the system of equation(§7) is a system of nonlinear
The assumption that, andQ(q) are small in these regions Schrédinger equationdNLSE'’s).

allows us to consider these terms as a perturbation. Here we We observe that Eq57) admit three types of ground-
do not take this perturbation into consideration. A detailedstate solutions of a soliton type which preserve the helical
analysis can be found in Rgfl6] where it has been shown symmetry of the system. Such solutions describe solitons
that allowing umklapp processes knspace leads to the ap- which are formed by excitons from only one of the three
pearence of a periodicalith a period of a lattice constant excitonic bands, i.e., only one functias), # O for a givenu
Peierls-Nabarro potential barrier for the motion of the solitonis nonzero and the other twg,=0 with v+ w. In such states,
center of mas$17-19,16. As a result, in discrete lattices, according to Eqs(61) and(62), only the total symmetrical
the instantaneous soliton velocity depends on time and hadistortion of the @ helix takes place, i.e.Qy(q)#0 and

an oscillatory component with a period Q.(g9)=0. Taking into account Eq65), we note that these

E 2)(2 sirfq

Vo(X) ==
0 Nin3M(wf = V20?)

—|kx¢ (k) k+q)x (k+ CI)

(65)
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types of solitons are described by the NLSE:

2 42 2
g0+ el X

X[, (x) =0
2m,  d@ 3w(1—02)|‘0“( e
(66)
together with the normalization conditi@gd3). Its solution is
given by
N L 5
ou) 2 coshx,X) (67)
with the eigenvalue
hZ 2
Ay=-re (68)
2m,
where
m,x°
=—# 69
e 3hw(1 -v?) (69
Thus from Eq.(55) we find that
72k
hQ =E,(K,) — Vk, — 2—’* (70)
m,
According to Eq.(60),
i(0, Vi, ik, () +iud
W= EETEET oy

1 .
coshK,_L<n + §j -Vit- zo)

This excitation is spatially distributed between the chain

with the probability components given by

1 .
Pin(t) = §<pi<n+]§—Vt—zo). (72

Clearly, P;=%, P; ,=1/3. For thetotally symmetric soliton,
=0, the chains are excited with the same phase, while foF:(0) =E;=Eg—2J-L - 2080+ 1)’
the other two casesu=+27/3 and the excitations in the

spines have the phase shiftsm/3.
Note that due to the factdrl—v?) in Egs.(65) and(69)
the soliton velocityV cannot exceed the sound velocigy.
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velocities the total energy,="H of the soliton state is given
by

E,(V)=E,(0) + %MMVZ. (74)

The totally symmetric exciton band has a minimum at
ko=0 and, in the long-wave approximation, we have

2
2(9J-L)°

Therefore the totally symmetric soliton state is characterized
by the width parameter

Eo(0)=Eg-2J+2L, my= (75)

2

Ko= Vﬁ, (76)
the energy
X4
50(0):E0—2J+2L——3W2(9J_L), (77)
and the mass
Mo=my+ 2L (78)

¥ 32393 - L)

The other two of the three soliton states are formed by
excitons from the other two bandg,=+2#/3. Due to the
helical symmetry, the bottoms of these bands are determined
by the nonzero wave numbeks=tky. For ana helix the
parameterky is small and can be determined in the long-
wave approximation as

S

9L
kq= = - (79
V3(1831+L)
Thus for these bands we have
3L2 W "
ST R
(80)

Therefore these soliton states are characterized by the
width parameter

However, there is also a further restriction on the soliton

velocity which follows from Eq.53). Unlike for the para-
bolic law, the energy dispersion in an exciton band shows

thatdE(k)/dk has a maximum value. Therefore E§3) has

2

a solution only wherV does not exceed the maximum exci- the total energy at rest

ton group velocityVy=(1/)[dE(K)/dK]max and so the top

speed of the solitons is determined by the lowesv.pand
V. For example, in a simple chain with(k)=-2J cosk,
Vy=2J/%, and with the parameters of thehelix, v,> V.

Below we will consider solitons at low velocities. In this

case, from Eq(53), we have

m
Keu =Ky + —ﬁ’iV. (73

6x

= , 81
T s+ L)(1-0d) 8D

3L? 2x*
£1(0)=Ey-2J-L - - , (82
10=E 2(18J+L) 3wA(181+L) 82

and by the soliton mass
16y*

Mi=m+ ———>——— 83
YT 3183+ w2 &3

Note that the energies of these three solitons are split from
the bottoms of the corresponding energy bands. We should

Herek, determines the bottom of theth exciton band and add that the solutions of these soliton states were also found
m,, is an effective exciton mass near the band bottom. At lowin Ref. [13].

031914-7



BRIZHIK et al. PHYSICAL REVIEW E 70, 031914(2004

The energy levels of the last two solitons are degenerate. Representing the energies of the other two solifl@2sin
However, according to the Jan-Teller theorem, this degenthe formé&;(0)=E,—A with E,=E.(ky) being the correspond-
eracy can be broken by the distortions of the chains and g bottom of the energy band and
hybridization of these two states can take place. Below we 4
consider such a case when, i.e,,#0 and¢y=0. 2x

; , : A=, (94)
In this case we find from Eq57) that ¢, are determined 3w?(18J+1L)
by the system of equations .
we can write
h? de.(x) i
Ap(X) + ———5— = V(X p, — €0 (x)o_(x) = 0, 9 5
e L (e £20) = Ex(0) - A =640~ JA, (95)
(84) . :
Thus we see that the latter hybrid soliton has the lowest
72 d?p_(x) . energy.
Ap_(x) + o A2 = Vo(X) - — €& (x),(x) = 0. The distribution of the excitation among the chains is
2m d given by the probability amplitude:
(85)

2 _
. . h — — —(h -
The components), of the deformation of thex helix, as P = \/;e LRIV +3/3)-(6,+6.-)/2]
well as theQ, component, are nonzero:

0,—06_ 2. j
xcos(kd(n+j/3)+ 2 +—771><p2(n+1—,t).

2iy sing «
QA === Ky (k+q). (86) 3 3

(wg= V9 V3MN (96)
tSi(;lsl:'ystltutmg this into Eq(58) we find that, for small veloci- Therefore

22 . . Pin= |lﬁ®(t)|2

Vo=- el kg (e (x), Vo=V, (87) e

3w Ko 1+ co$2ky(n+j/3) + (6, — 6_) — (27/3)]]
The deformational potentiad, of the totally symetric distor- = :
tions is given by 6 cost[ ky(n+ j/3 =Vt-12)]

(97)

2x° 2 2
== 2o, + o : 88 . e .
Vo) 3W[|(P 001 +le-(F] (88) Next, we consider the probability distribution of the exci-

Thus Eqs.(84) and(85) give us a system of NLSE’s: tations summed over all the spines of the helix:

1 de.(x) | 2x° Pa(t) = Py n(t) = |a(n, D)2 —ﬁcos(zkdn +6,-0.)
A, (X) + — —— + (o, 2+ 2lo_|?) 0, (x) =0 n ~ jn P2, 2 + = 0o
@+(%) m @ 3W(|<P |°+ 2|e-[9) . (x) J 3\3
(89) (98)
and, equivalently, fok_. for smallky. _ _
The general solution of these equations, normalized by Figure 2 shows>; , andP,, given by the expression87)
the condition(43), is and(98), from which we conclude that the probability distri-
butions of the excitations on each spine are given by many-
_ieigi (90) hump functions, while the total probability distribution is
b= V2 2, much smoother and close to the conventional molecular soli-

) o ton with a small change of the envelope profile due to the
where ¢, are arbitrary phases ang} satisfies the NLSE and jnternal structure of the soliton. This property is observed

is therefore given by Eq67) with also in the numerical modelingee below.
9y The total probability of the excitation localization on a
= 91 iven spine
2 w(18J+L) (92) g P
The total energy of this soliton state A0 is P;(t) :En P;n(0]?
3L2 3t
E,(0)=Ey-2)-L- - , (92 _1 Ka 27
20)=F 208+ 2w+’ 2 =31 - 005<2det—?J+9+—9— :
. . Ky SINnh—
and the soliton mass is Ko
12x* (99
My=my+ — 2 (93) N .
W2p5(18]+L) We see from EQq(99) that the probability of the excitation
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FIG. 2. Amplitudes of the excitations along each spine ofdheelix, given by expressio(®7) (a), and total distribution given by Eq.
(998) (b), calculated fork=0.1755ky=0.422 6,—-6_-=0.08.

localization on a given spine is an oscillatory function of 4w, ,
time with the period of oscillations given by h= ~Eo¥an~ JWopn-1+Wone) +L(Wp+ W3y
T= l (100) + X(Uz,n+1 - U2,n—1)q'2,na (104
kqaV
d¥s,

Thus the helical symmetry of the system results in the 4
interspine soliton oscillations with a period of oscillations
that is determined by the soliton velocity and the quasimo- + x(Ug et = Uz ) Wa, (105)
mentum value corresponding to the bottom of the energy
band(79). These oscillations get mixed up with the oscilla- U
tions that arise from the influence of the lattice discretness on - M——1% = =w(2u; , = Uj -1 = Uj 1)

= EO\I,3,n - J(‘I"B,n—l + \1,3,n+1) + L(\Ifz,n + ‘Pl,n+1)

2
the soliton dynamics which leads to the appearance of the dt
I?eierl_s-Nabarro po@ential. The pe_riod of tht_ase latter ogcilla- +X(|‘I’j,n+1|2— |‘I’j,n—1|2)- i=1,2,3. (109
tions is also determined by the soliton velocity, Es), as is ) )
shown in Ref[16]. For n=0 andn=N-1 in the expressions above we take the

appropriate values of the functions determined by our peri-
odicity conditions.
V. NUMERICAL MODELING In our studies we have adopted the following procedure.
For the numerical calculations we consider amelical e have started off with a reasonable field configuration and
system of lengtiN=150 with periodic boundary conditions then used it as an initial excitation to determine a stationary
solution of our system of equatioii03)—«106). Having de-
finen=fin (101)  termined this solution numerically, we have kept on modify-
ing it by an adiabatical increase of the wave vedihus
or, equivalently, increasing the velocity of the solitpnand have found for
each fixed value of the wave vector the corresponding sta-
flean="), (102 tionary solution describing a soliton which propagates along
the helix with an increasing nonzero velocity, determined by
the gradually increasing values of the carrying wave vector.
Note that, for ana helix, the question about the initial
configuration is more important than for a simple chain, be-
ause there are three types of solutions, corresponding to the
ifferent symmetries. Studying a similar problem for a
simple linear chain, we had two equivalent approaches of
deriving a stationary solution at zero velocisee, e.g., Ref.
[16]). Namely, we could start with the system of stationary
equations and find the solution by minimizing the energy
using some standard procedures. Another approach would

wheref stands fory or 8 and the indeX ennumerates the
sites along the polypeptide chain afjdn} denotes the site
numbern in the jth hydrogen bound sping=1,2,3.

It is more convenient, for the numerical simulations, to
use the physically more relevant site representation for th
W, , variables and to use, , for the displacements of PG’s
from the positions of their equilibrium. Heng , are the av-
erage displacements of PG’s in the stg1®) and are related
to 3,4 by the unitary transformatio(86). In these variables
Eqgs.(45) and(46) become

dv,, use the nonstationary equations which include some dissipa-
if at - EqW1n=Id(Wyn1+Win) +L(W50 1+ W5,) tion of the energy in the lattice subsystem. Starting with an
arbitrary localized initial configuration of an excitation, we
+ x(Uppe1 = Up )Wy, (103  would find some time later a stationary solution at zero ve-
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[o;)?

FIG. 3. Amplitudes of excitation distributior1§'1-|2 (@) and the derivative of the PG’s displacements, d&},n=Uj+15=U;, (D) for the
three spinesj=1,2,3, of thea helix.

locity. Then this configuration would be modified by adding  In our numerical studies we have also followed the con-
a small carrying wave vector and would be used as a startingentions of Scotf12] and so, like him, we have used units in
initial condition for the next set of calculations of the systemwhich the energy is measured in unitsfaf,, time in units of

of equations without any dissipation. This would result in aygl, and length in units of 13! m. In this case the dimen-
solution moving with a small nonzero velocity. Repeatingsionless computer values of the parameters are

this procedure further, we would increase the soliton velocity

adiabatically until the velocity reaches the maximum value o = J 0145 L. =0.231

corresponding to the chosen parameters of the chain. This comp . eme e

last approach, of using an arbitrary initial configuration, in

the case of a helical structure probably cannot describe all 11
: ! . . . x X100 m
possible solutions, since it would always lead to the solution Xcomp= " =0.318,
of the lowest energy. fivg
The energy expression can be obtained from Eg3),
(21), and(24). In the site representation the total energy is w X 1022 m?
given by Weomp™ —ﬁva =1.825. (111
Bro=Ee+ B + Bin, (107) The results of the numerical simulations are described below.
where First, we have started off the simulations taking as the
N-1/ 3 initial conditions the function
Ee= > | 2 [EW|2, - (W, W 1+ ¥ W )] _
e ‘\ = 0l ¥ lj,n jntjn-1 j.n-1%jn vi.=1 (112
n= 1=
LW Wapq+ Wy W+ W) W+ W) W, with all other values of¥"; ,=0 and puttingy; ,=0. We have

then added an extra absorptive term into the equation;fpr
x x and performed the simulations until we reached a stationary
W3 Wont Wz,nq'&n)) ' (108 state solution. The obtained solution described a well defined
solitonic state. Its energy was around —0.550 67. In Fig. 3 we
N 2 4 present the I’F])IOtShOf thﬁ' andu Lields. A
_ Ui n 5 We see that this self-trapped state has an inner structure,
E,= gl go {E(Tﬂ_) * Ew(ui'n “Un-)” | (109 e ihe amplitude of excitation distribution on the individual
spine is a modulated multihump distribution. While the total
(summed over all three spinedistribution of the excitations
_ 2 has a single-hump pattern, shown in Fig. 4, the distributions
Ein = ng EOX(UL””_ Uj n-2) W[ 110 iy the individual spines are modulated in the manner of so-
lutions (97). Comparing Figs. @) and 4 we see that the
In our simulations we have taken the numerical values ofesults obtained by the numerical modeling are well de-
the parameters from Refl12]: i.e., L=12.4 cm’ (2.46  scribed by our analytical model of the hybrid soliton shown
X10722)J), J=7.8 cm* (1.55X10722]J), y=0.34x 10N, inFig. 2. This is particularly true for the excitations summed
w=19.5 N/m, andyM/w=1/v,=0.99x 107 ®s. These pa- over the three spines; only by a very careful analysis of data
rameter values correspond to the Amid-I excitationsain in Figs. 2b) and 4 can one spot any differences between the
helices[15,6,12,20. two figures.

3 N-1
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FIG. 4. Amplitudes of the excitation distribution summed over  FIG. 5. Speed of the hybrid soliton evaluated numerically as a
the three spineso,\n:Ef:1 |W;nl? of the & helix. function ofk.

A similar inner structure of the soliton can also be seen inthen evolved in t|me_ but with a small absorption parameter
Fig. 6 of Ref.[12]. Thus we can conclude that our numerical @dded to the equations. These extra terms absorbed some

solution, as well as the solution discussed in R&g], de- of the ripples while the boosts were effectively accelerating

scribes the lowest energy of the hybrid solitons. This view isthe solitons. All these procedures produced similar results

confirmed also by the numerical estimate of the soliton enf’md we have never managed to get 'ghe soI]tons move faster
ergy (92). Thus taking our numerical valugd1l), we get than W|th_ v~1050 m/s. '!'he absorptlo_ns did decrease the
£,(0)~E,=—0.550 67 in units ofix, which coincides with defor_matlons of t_hea helix but they d|_d also reduce t_he
the value determined in our numerical simulations. velocity of the soliton; he_nce we do bel!eve that the sohton_s
Having found stationary solutions, we then changed thé:annot.have larger velo.C|ty and that this maximum speed is
functions as follows: detgrmlned by the maximum allowed group velocity of the
excitons.
. du, du, . In Fig. 6 we present the plot of the solutions of E§3)
Wi Wy e = o = (U= U ) SIN(AK), for E,(K) [Eq. (31)] with the values of) andL given in Eq.
(111) (we recall thatv=V/v,). From Fig. 6 we see that,
(113 . : . . i
indeed, the composite soliton cannot have its velocity larger
leavingu; , unchanged. This had the effect of giving a smallthan the maximum group velocity for one of its two compo-
speed to the soliton, and the distortion of the chain. nents, and for our parameters this velocity is about 1050 m/s.
We then performed the simulation over a short period ofAt wave numberk,,, which corresponds to the maximum
time. During this time the soliton has been moving and thegroup veIocity,dZEM(k)/de:O and atk= k., the balance be-
small disturbance introduced by the nonperfect transfer ofween the nonlinearity and the dispersion breakes down for
momentum to the system has spread itself over the lattice.one of the components and this leads to the decay of the
We then repeated the whole process several times thusoliton.
slowly increasing the totak (in practice we putAk=0.1). The complex (modulated many-humpand composite
After every step we evaluated the resultant speed of the solithree-spine distributgdstructure of the soliton manifests it-
ton. Of course, the whole process suffered by the introducedelf distinctly when the soliton is moving and the interspine
disturbances; thus gradually it has become more and morescillations take plac€d9). This is seen very clearly in the
difficult to determine this speed. However, we have foundoscillations of the probability distribution amplitude for each
that each addition of momentum increased this speed by spine which is shown in Fig. 7. This phenomenon was al-
decreasing amount suggesting that there is a maximum speeeady noted by Scott in Ref12]. According to Eq(100), the
that the soliton can attain. frequency of these oscillations is determinedkpwnd by the
In Fig. 5 we present a plot of the resultant speed as a&oliton velocity. It follows from Eq(79) that the bottom of
function of the totak (i.e., the sum of alAk). We note that the band is attained &};=0.42.
the maximum speed appears to be around 1050 m/s in We have also looked at the other two solitons and tried to
Fig. 5. make them move. As has already been mentioned above, an
To check that this limit is not an artifact of our proce- arbitrary initial configuration, in the case of a helical struc-
dures, we have performed further simulations in which weture always leads to the solution of the lowest energy. But
modified the stepsik or eliminated the modification of when we take as an initial conditioH; , in the form(71) at
du;/dt. We have also performed some simulations with ab-V=0, we have obtained, as a result of the calculations, sta-
sorption: the configurations were alternatively boosted andionary solutions and these solutions were very close to those
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FIG. 6. The group velocity of the excitation in the bands of the  FIG. 7. Oscillation frequency of the hybrid soliton as a function
helix, determined by Eqs(53) and (31) for J=7.8 cnT! (1.55  of its speedV.
X 1022 J) andL=12.4 cm? (2.46x 10722 )).
lytic solution. The adiabatic approximation describes the
: . . L : olitonlike states of large polarons when the autolocalization,
derived in _the continuum approximation. The energies O(?\/ithin the region of several lattice sites, takes place. This is
these stationary SOIUt'OnS. were .+0'17.1 TWZO_ and  5ne of the three possible approximations which allow us to
~0.550 67 forp=+2m/3 which, again, coincide with the o esent the Hamiltonia(®5) as a sum of two terms: the
values £,(0)-E, estimated from(77) and (82). For thezse main part,H,, and the ternH,, which can be considered as
states the probability distribution in individual spineg|; , 3 small correction and therefore for which the perturbation
shows a one-hump pattern without any modulaiisee Fig.  theory can be developed. The other two approximations cor-
8). Thls_d|ffer_ent|ates these states from the lowest ener9¥espond to the almost free quasiparticles and to small po-
composite soliton. larons. The realization of one or another of these three re-
We have tried to make these states move. Unfortunatelyines depends on the relation between the parameters of the
the perturbations introduced by the discreteness of the 'att'c§’ystem. In general the problem can be investigated in the
and by the inexactness of our procedure led to their instabilss mework of the variational approa¢h1-23. The ground-
ity. This showed i'gself in the system evolving into the IOWEStstate diagram for a simple chain with one exciton band and
energy hybrid soliton. one phonon mode was presented in R21]. This diagram
VI. CONDITIONS FOR THE APPLICABILITY OF THE showed the range of values pf thg .dimensionless qoupling
ADIABATIC APPROXIMATION constant and of the nonadiabaticity paramefeglation
fiv,/(2J)] for which one or the other regime was realized.
Having found the three types of solutions described in the As has often been mentioned, various properties of the
previous sections a question then arises about the conditiom¥avydov solitons ina-helical proteins have been analyzed
of the applicability of the adiabatic approximation in such ausing a single chain model. Although such a model gives
three-spine model. good qualitative and sometimes also good quantitgthz
The Hamiltonian(25) that describes the states of quasi- properties of Davydov solitons, the ground-state diagram
particles which interact with phonons, does not have an ang21,23 shows that the parameters of théhelix applied to a

+.
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FIG. 8. Amplitudes of excitation distributiof¥;|?, j=1,2,3, of thehelix for solitons, corresponding t@=0 (a) and u=+27/3 (b).
i
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one-chain model, correspond to the state far from the region Q
where the soliton ground states are realized. This is one of <¢1|¢1:<¢O|Hna¥Hna| o)
the reasons why the estimates by Boltera@2 and Sch-
weitzer and Cottinghani25] of the Davydov soliton life
time, obtained within a different approach but still based on
the one-chain model, give very small values.

Here we return to this problem and we assess the condi-
tions of the aplicability of the adiabatic approximation for -9
the a helix basing our discussion, for simplicity, on the so- AZE FolYolHnal @) elHndl o). (117
lutions describing solitons at rest. Applying a unitary trans-
formation, the Hamiltonian(25) takes the formH=H,, Here we have taken into account the fact that the operator
+H,,, whereH,q is diagonal in the new representation andQ/a? is diagonal and we have defined
describes the adiabatic states of the exci(@hectron- )
phonon system. The terhd, , is an operator of nonadiabatic- f = E<a|A Q|a> (118
ity which describes phonon-induced transitions between

adiabatic states. Such a transformation was used in Refs., ) o
[26,27 and, based on it, a method of partial diagonalizationVith A being the energy gap between the solitonic energy

=3 (lHhdaal Sla)aHoddy (116

was further developed in Reff25,28,29. level and the lowest excited one. In H418)

The partial diagonalization shows clearly that the state- A2Q
vector (40) is an eigenstate dfl,4 with the eigenenergy, o= (a|—="|a) (119
=hQ+W (hereW is the energy of lattice deformatipmro- azs &

vided that the functiong,, , and 3, ; are stationary solutions : .
of Egs. (45) and (46), i.e., Had o) =EJwo). The virtual ex- SO that>,.s f,=1. In Eq. 117 the summation does not
cited adiabatic states, for a given chain deformat&®) can include a=s because the diagonal matrix elements of the

be found from the linear equatia@s). nonadiabaticity operator vanish. Next we observe that
If Hnqis small it is possible to construct the perturbation
series E fa<¢0|Hna| a><a|Hna| o) < E <¢O|Hna| a’><a|Hna| o)
) = o) + ) + -+, = (ol H2 o). (120)

where|yp)=|s) is the wave vecto(40) of the soliton state in
the zero order of the adiabatic approximation &gl is the

ith correction due td, .. According to the general theory of <¢O|Hﬁa| oy = (ol H? o) — (o|Hho)? = AE2.  (121)
perturbations the first correction is given by

Moreover, it is easy to see that

Thus we can derive some estimates without the partial
Q diagonalization of Hamiltoniar§25). In particular, we can
Y1) = _anaWO)’ (114 calculate AE? using the soliton wave functio40) in the
zero-order adiabatic approximation. This way we can esti-
where we have defined mate the soliton lifetime in one chain and we get the same
result as that obtained by Schweitzer and Cottingtiasj,
Q_ 1 who calculated the second-order energy correction perform-
=Q Q . o o
a Hag— &s ing the partial diagonalization, and by Bolteradi2d] who
calculatedAE?.
and So, the condition of the applicability can be writen as

Q=1-|¢o)Xthl = 2 |aXal. oAE?
ats (Yl < A2
Note that heréa) ennumerates all adiabatic termstbf, ) ,
Had @) =E,|@). For the convergence of the perturbation serieCalculation of AE® gives us
|¢) should be proportional ta' with A being a small param-

1
eter. AE2= —(A—E hwg|Qy(q)|2), (123
The square of the norm of vecthp) is 2 v,q

<1. (122

() = (olpo) + (lp) + - - =1L +O(N). where
Therefore the applicability of the adiabatic approximation is A=Y 4hyPsirtq  16hv,x 2 124
guaranteed provided that = > " 3MNa =W (1249
(ly) =N < 1. (115

Taking into account Eq52) we can rewrite Eq(123) in the
Taking into account Eq114), we can calculate form
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2h X% sirt q
3MNawy

AE?2=D,

vq

(1 - |2 lvb,u,kd/p,+v,k+q|2)
A

which corresponds to Bolterauelf24] expression after the

transformation to the site representation.
For symmetrical soliton®,(q)=Q_(q)=0 and

2i
Q@) = 2X2095 - (ke s (k)

gV 3MN
2iy sin qf'\”z :
=——— €M (x)|?dx, (125
0q\V3MNJ N2 leu)
where
N2 m
f &%, (x)|Pdx= —"—. (126)
N2 2k, sinhw—q
ZKM
Therefore
8hvy?(. 1.8
AEZ= (1 -= ) : 12
17 3w 2w (129
For the hybrid soliton we have
2ixsing( (V2
(@= —( f %60 2clx
Qo(q wq\'/3>|\/|_N e |l (X)]
N/2 )
+J e'qx|<p_(x)|2dx) (128
-N/2
and
N/2 )
Q@) =Q(-q)= f @’ (x)p_(x)dx,
N2
(129
8hvx? 7.2
AE3= 3:/\/)( (1 - ?Kg— %TKZ sin kg coszkd>.
(130)

In the one-dimensional case, the soliton legE2]) is a

single bound level in the lattice deformation potential. Ex-
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—_—
2CoW\Av,(9J - L
)\0:\/_0#<1 (132)
™ X
for the total symmetric soliton, and
2C, [ 2\ 32w\ hv,(18] +L
VERYE ( ) WARI8*L) ) (159
T \3 X

for the composite soliton, respectively. Here

18,

Cozl_?Ko

and

72,
K2,

dez
where we have assumed that< 7 and x,, < 1.

Note that the conditio132) coincides with the condition
which can be obtained in the partial diagonalization scheme
for the one chain modé¢R5,28. This condition indicates that
solitons can exist in soft enough chains and at a strong
enough exciton(electron-phonon coupling they are stable
against quantum fluctuations. The relati@B82) is the in-
verse of the condition for the weak-coupling regime.

The numerical values of the parameters for thénelix
are: J=1.55x102%?J, L=2.46x10%?J, x=35-62
X 102N, wy=13-19.5 N/m. We can take #/=1013s.

For these parameters we gej=2.3-11 for the total sym-
metric soliton, which corresponds to the one-band model.
Therefore, in this case, the adiabatic approximation is not
valid, and, consequently, the soliton is destroyed by quantum
fluctuations. The corresponding estimates for the composite
soliton give the valuex;~1. For instance, fory=62

X 1072 N andwy=14.6 N/m we geh,=0.87, and therefore
the perturbation series converges. It is worth adding here that
the larger values of the coupling and the condition that the
chains are softer strengthen the condition for this type of
soliton solution to exist. We should add here that, recently,
experimental studies of Amide | vibrational modes in myo-
globin were performed by Xieet al. [30]. These studies
found that thea helix in proteins can support long-lived
nonlinear states with a characteristic lifetime of 15 ps. This
led the authors to conclude that “nonlinear excitations may
play a significant and important role in the energy transfer in
biomolecules”[30].

cited adiabatic states belong to the quasicontinuum spectrum

with eigenenergyA (k) =%2k?/2m,, which is separated from

the soliton level by a gap = ﬁZK /2m,,. Therefore we can
estimateos [Eq. (119] as

e
n
N e a0

wheren=1 for the totally symmetric soliton, ang=2 for the

VII. CONCLUSIONS

As we have mentioned above, the main aims of this paper
were the study of the soliton statesdshelical proteins tak-
ing into account their helicity structure and the understand-
ing of the origin of the interspine oscillations observed nu-
merically by Scott in Ref.[12]. The soliton states in
a-helical proteins are described by a system of nonlinear

hybrid soliton since, in this case, there are two degeneratequations(103)—(106). In our study we have restricted the

bands.

Hamiltonian of amide excitations to two main terms, namely,

Finally, we have the conditions for the realization of thethose that describe the intra- and interspine interactions,

solitonlike states:

while Scott considered ten additional terms of long-range
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resonance interactions. Our results broadly reproduce the renergy spectrum between the two degenerate bands and the
sults of Scott. However, there are also some differenceshird band. As a result, the initial excitation with the energy
which we summarize below. above the forbidden gap, is self-trapped in a single-band soli-
The velocity of the soliton propagation in the numerical ton state. The totally symmetric soliton predicted analytically
calculations carried out by Scott in R¢L2], was reported as in Refs. [8,9] was observed numerically in Refgl10,11).
V=¢v, while our results give the maximum valu¢  Such a soliton in a chain without helical symmetry can be
=0.21v,. This is due to the fact that in Refl2] further terms  destroyed only if a large amount of energy is supplied to the
of the resonance interaction of Amid-I vibrations were in-gystem. Therefore these single-band localised solutions are
cluded, which increase the width of the exciton bands andnych more stable dynamically than single-band solitons in
therefore increase the exciton group velocity. The additionalhaing with helical structures. This constitutes a qualitative

terms in the Hamiltonian _also chan'ge the .Cor.r.eSpondinQiifference between the three-chain system with an helical
value ofky, but, probably, this change is less significant thanSymmetry and the one without it

the change of the maximum group velocity. Nevertheless, The important question about the existence of Davydov
our formula(100) of the period of oscillations for the values . ; : . . i
solitons ina-helical proteins remains open. Unlike the case

v,=10" 57! andky=0.42 for thea helix atV=3v, givesT , ; e i
=1.995x 10712 s, which practically coincides with the value of con_ductlng polymers, for which there is direct experimen
tal evidence for the solitorflarge polaron and bipolargn

obtained by Scott]T.,m=2X 107*?s. Comparing this value . :

) = comp . LD . existence, such data are absent for polypeptides except some
with the radiative lifetime of a nonlinear excitation, experi- indirect evidencegsee, e Refs6,30). The theoretical
mentally measured by Xiet al. [30] in their recent experi- ; » €9 e ST
mental studies of myoglobing =15 ps, we conclude, that as_pect§ of this problgm are _relqted to th? applicability of thg

rad ! ’ adiabatic approximation, which is determined by the numeri-

such a radiative lifetime of a soliton is enough to performCal values of the parameters of a given svstem. Solitons can
many oscillations. Therefore we can hope that these oscilla=_. ", me p given sy -
. . . exist in protein macromolecules provided their parameters
tions can be observed experimentally, for example, in the” L . . A

. . Satisfy the condition of the adiabatic approximation. Note,
Raman spectra of proteins. In fact, Scott, comparing experi-

mentally measured lines in Raman spectra of metabolicallgéq[értmhf:etgﬁnsgg?[%&og s?gtzfﬂ\lt/hri h‘l)fgli?ngge?nttz)mg(cj,c\:lgjnt

active cells with the frequencies of moving solitons, calcu- . : .
. ) . e TN that the hydrogen bonds in tlehelix are 22° oriented, Scott
lated by him numerically, noticed a “striking similarity3ee, [12] uses the value 19.5 N/m. Moreover, as it has been

€9 Refs[12:6]). . . . . shown above, the effective valuevs= y?wy wherey is de-
Our analytical study and the numerical simulations eluci- . ) :

. : . .termined in Eq.(19). For the parameters of the helix a

date the conditions for the existence of various types of soll-_5 A and r=17 A we get v=09 and thereforew
ton solutions: single-band and mixed two-band solitons. The ;- o get y="u.

entangled two-bandhybrid) solitons break spontaneously ;g}?d%i)r':l]{(r)r:.t;l;guesxtsrilsetgrfgemg]}rflicil)];ﬁgf‘lor helps to satisfy the
the translational and rotational symmetries, and possess the :

. . As we have seen above, the generally accepted param-
lowest energy. Single-band solutions break only the transla-

: ' eters for Amid-1 excitation do not favor the existence of
tional symmetry and preserve the rotational symmetry.

Single-band solitons turn out to be dynamically unstable:tsr']gggit;?ggczogﬁcopﬁé ggtg;%lgtdhirong:]d’Sg?eysa;eltﬁg%%ir Iﬁ;
once initially formed, they decay rapidly while propagating. nonadiabatic corrections are also important and ought to be

There are two main reasons for this, which arise from the[ . X 2
; aken into account. Thus the one-chain model can give good
helical structure of the system, namely, the absence of the

forbidden gap in the energy spectruee Fig. 1 and the (ualitative results, but conclusions concerning the existence

umklamp processes. The absence of the energy gap allovgsnd stability of soliton states, based on numerical calcula-

the transition to the lowest energy state via the interaction ons within such an oversimplified model, may not always

. . e correct. Of course, our estimates are relatively rough, and
with low-energy phonons. The helical symmetry leads to thethe method of partial diagonalization of the Hamiltonian

relation y,(k£2m)=4,11(k), i.e., the mixing of single-band would provide better results. Its generalization to systems

states takes place, and, as a result, the single-band sOluuoirl]ﬁ/olving three-chain macromolecules can face the problem

decay. This is the reason why given any initial condition theOf the applicability of the long-wave approximation. In such

excitation Iocal_izes into the state whic_h corresponds to th%ases the partial diagonalization method developed for dis-
lowest energy, i.e., to the entangled soliton. In particular, th'%rete models by Clogstot al. [29] may turn out to be
was the case observed in RéL2]. We have managed 1o useful. Moreover, the variational methods can give better

observe such solitons due to the very special choices of thFesults(see e.g., Ref§31,22,21,29 for the crossover states
initial excitations which were very close to the expression for, PR T

. ; . when th rturbation schem rameter is not very small.
the stationary single-band soliton at rest. en the perturbation scheme parameter is not very sma
Itis alsc_) worth comparing this type of solutlon ina heI|(_:aI ACKNOWLEDGMENT
system with those in a three-spine model without helical
symmetry. In the latter case there is a forbidden gap in the This work was supported by a Royal Society travel grant.
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