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Characterizing the microscopic physics near moving contact lines
using dynamic contact angle data
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Directly probing the fluid flow and liquid-vapor interface shape in the microscopic immediate vicinity of the
moving contact line can only be accomplished in very specific and isolated cases. Yet this physics is critical to
macroscopic dynamic wetting. Here we examine the microsdopimnen physics of spreading silicone fluids
using data of macroscopic dynamic contact angle versus Capillary numbey gda= This dynamic contact
angle is precisely defined so that it can be related back to the microscopic behavior through detailed theory.
Our results indicate that the parameters describing the inner region have a detectable dependence on spreading
velocity when this velocity exceeds a critical value. This dependence is not s¢aedhe data are not
collapsed by Ca, which suggests that an additional time scale must be present in the model of the inner region.
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[. INTRODUCTION tensiono obeying the no-slip condition at the solid exhibits a
nonintegrable stress singularity. This singularity prevents one
from satisfying a contact angle condition at the moving con-
tact line[1]. To remedy this failure of the model, it has been
assumed that, within a distanteof the contact lingcalled
the “inner” region, new mechanismee.g., liquid slip at the
solid [8—1Q or a shear-thinning viscosityl1]) are present
that remove the singularity. One can then specify that the
) r};\nglea between the solid and the local tangent to the inter-
face satisfie9=0; at the contact line. Hydrodynamic analy-
tus,rgs[lz—lq relate the macroscopic dynamic contact angjle
measurable in an outer or macroscopic length,, to the
inner or actual contact angl€);, an inner length scald,;,

nd the capillary number CaUu/ o),

Wetting dynamics is intimately related to the motion of a
fluid in the highly confined region in the immediate vicinity
of the moving contact line. The laws that control the fluid
motion in that region(called the “inner region,” see belgw
are different from those that govern the motion of the bulk
material farther from the contact lingd—3]. Since experi-

scale physics use measurement of some larger-scale fea
(usually the dynamic contact anglend then relate the mea-
surements back to the inner physics using theories.

The literature on dynamic contact angles displays a gre
lack of uniformity on the definition and measurement of
this quantity, on how to translate the measurement from one -
geometry to anothef4], and on the correct method of ex- 9(00) = 9(By) + Ca InLoufL), @

tracting information on the inner scale physics using th"whereg(x)sfé{(y—cosy siny)/2 sinyldy when the second

measured quantity. The chief difficulty is that geometry-giq is assumed to be a gas whose dynamics may be ignored
independent, matenal—only—dgpendent dynamic conta' 42]. As we discuss below in Sec. Il A, need not be the
angles cannot be measured directly; hence they must be itsiarface slope at any particular location.

ferred by interpreting the measurement of some other physi- 5 hhysics of the inner region is of considerable intrinsic
interest. Further, to the extent that it has an impact on the

cal quantity. Despite this problem, much useful information
on the hydrodynamics in the region neighboring, but not i”'macroscopic contact anglas illustrated by Eq(1)] and

cluding, the contact line has been extracted using somewhgp,y fields, it controls the macroscopic dynamic wetting seen
disparate(or inconsistentphysical measuremenfs—7]. in nature and used in a wide variety of technologies. How-
Near a contact line moving relative to a solid with speedg, e there have been no direct experimental measurements
U, the flow of a Newtonian fluid of viscosity and surface  f the nature of the mechanism that removes the singularity.
While very careful measurements of spreading over precurs-
ing films provide useful information about macroscopic

*Corresponding author: spreading, they do not address how the singularity is re-
Electronic address: sg2e@andrew.cmu.edu moved at the actual contact lifg5,14. In fact, it is not even
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1539-3755/2004/13)/0316089)/$22.50 70031608-1 ©2004 The American Physical Society



RAME, GAROFF, AND WILLSON PHYSICAL REVIEW E70, 031608(2004)

Blake and collaborators consider the hopping of molecules alependence can be described by the single parameter Ca.
the contact ling3]. This latter aspect is crucial because the lack of Ca scalability
Elucidating the inner physics is challenging. Even thewould indicate that other time scales arising frémand a
much more limited goal of getting values 6f; andL; at  new velocity scal¢needed to nondimensionalize the non-Ca
each velocity poses significant problems. In fact, E).  dependence ob) are acting in the inner region. The possi-
shows that macroscopic measurementgp€an only yield  bility of other time scales is not a new idea: they may arise
g(®;)-Ca InL;), i.e., not the individual values d; andL; because molecular rearrangements are not instantaneous.
at each spreading velocity [4,17,1§. An approach taken in  Shikhmurzaev has used this concept in his model where ma-
the past to deal with this situation has been to ignorelthe terial mapped from the liquid-gas to the solid-liquid interface
dependence and assume tgtand L; are constants. This as the contact line moves does not attain its equilibrium
implies that®; would equal the static contact angte, Then  solid-liquid surface energy until @elaxatior time 7, after
L; may be deduced by fitting Eq1) to data oféy versus Ca the material has passed by the contact line reg&h?2§.
[13]. Of course this approach is arbitrary. The theory leading In Sec. I, we discuss the general requirements of hydro-
to Eg. (1) does not require®; or L; to be constants, nor is dynamic theories, showing a precise definition of the dy-
there experimental evidence that they are constants. In faotamic contact angle and that the inner parameters may de-
our results indicate that either one or both@fandL; de- pend on velocity. In Sec. Ill, we discuss our experimental
pend onU, a situation wholly compatible with all of the methods, emphasizing the detailed and accurate fitting of
assumptions that lead to E). the data and thus the validity of extracting inner parameters
The only approach based on first principles to addressising Eq.(1). In Sec. 1V, we discuss our results on a suite
inner physics is molecular-dynamicéVD) simulations. of systems, showing that inner scale parameters carefully
Since the late 1980s, these simulations have opened a wiextracted can give intriguing new insight into inner scale
dow into the inner region by suggesting that the liquid adja-dynamics.
cent to the solid may slip within a few molecular diameters
from the contact lind19,2Q. Using MD simulations with
typical Lennard-Jones potentials, Hadjiconstantifi®lj re- A. General remarks on the models
cently found a slip velocity that he fitted with an exponential
decay of about two molecular lengths from the contact line. i ) ) o
This investigation is unique in that it attempts to connect this_ A formulation which balances the rate of viscous dissipa-
microscopic analysis to a continuum hydrodynamic analysistion with the rate of work done by the driving force of the

Based on the agreement with finite-element calculations th&tontact line is often used to connect the microscopic phe-
incorporate the slip condition found in the MD simulation NOMena near the contact line with a macroscopically defined

and use the static value f@®,, it is suggested tha®; is contact angle and its velocity dependence. If one neglects the
[§] I . - A . .
almost equal to the static equilibrium angt, Similar con- change of the liquid-vapor interface area due to interfacial

clusions are derived in MD simulations by De Conink andviscous deformation outside of the inner region, then the

) riving force is proportional to co8;—cos s [29]. Using
coIIa'borators,'Who ex"?‘C‘ an apparent d}/namlc contaqt an.g%le small-slope approximation and settiig=0 lead to the
and interpret its value in terms of Blake’s molecular kinetic

: ; \ ower lawf;~ Ca’® in agreement with the small-Ca limit of
m(_)del of th_e mner_physm&Z]. However, other MD simu- Eq.(l) Wheg(@izo andLigis independent ofl. One may find
lations by Jin, Koplik, and Banav23] suggest tha®); does ¢ gissipation away from the inner regiomhere the phys-

vary with spreading velocity. On the other hand, theoreticalcs s known) from the flow calculated in a particular fluid
investigations that probe the velocity dependenc®pénd  pody. If one considers that dissipation in the inner region
L are scarce. Among these, we note the diffuse interfaceyst be accounted for, then one must include another term of
model analysis of Chest al. [24] that predicts a velocity- dissipation[30].
dependent; not scalable by Ca and Eggers and Stofig The dissipation-based approach is by nature an “integral”
new look at the lubrication equations that yields a cutoffpajance. As such, it does not inform about the detailed de-
length for the logarithmic singularity proportional to €a formation of the interface by viscous forces but it can in
when a meniscus advances over a film. principle yield the correct parametric dependence figr

In the analysis off(U) for certain experiments, the as- However, in cases where the inner dissipation is small com-
sumption®; =6, applied to Eq(1) has generated values for pared to that in the rest of the fluid body, caution must be
L; that are below molecular dimensions. These unphysicallypserved in using these methods. The dissipation away from
small values ol; have led som¢26] to suggest that a sig- the contact line must be calculated extremely accurately or
nificant extra source of dissipation must be present near thgrrors in that calculation will lead directly to errors in the
contact line in addition to the viscous flow outside the innerestimation of the inner physics. Further, it would be ex-
region. This conclusion need not be valid if the analysis oftremely difficult to verify experimentally that the dissipation
the experimental data allow; andL; to be functions olJ.  away from the contact line is calculated correctly so that one
If a suitable(not yet known dependence fo®;(U) is used in  has experimental verification that the inner physics is in-
the analysis of the experimental data,may be brought to ferred accurately from a measurementégiversus Ca.
physically reasonable ranges. ) _

The objective of this study is to establish whether there is 2. Approach based on hydrodynamic analysis
dynamic variation ir®; andL; as well as whether this varia- In this study, we take a more detailed approach to probing
tion is only of a hydrodynamic origin, i.e., whether the  the inner scale physics. Our study is based on solutions of

Il. ESSENCE OF THE MODELS

1. Approaches based on dissipation
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The two chief features of the intermediate region @yehe

flow and interface shape are independent of the system ge-
ometry, and(ii) viscous and surface tension forces balance
even though C&1. The interface shape, specified by the
slope of the interfacey, in the intermediate and beginning of
the outer regions is given by 8]

Viscous
Deformation

"y .
Son 0~ g‘l(g(ﬁd) +Ca InL—) + fo(r/Lous; 6g) — Og

out:

as r/Lyy,— 0, (2

FIG. 1. Schematic showing the intermediate redioorizontally
dashegiwhere viscous deformation is significant. Far from the con- . . - .
tact line, the interface is staticlike because<€h and viscous ar)t(:]fo(r/i_ou{, o) rlgé)relsent; Ehfe (ggze;tlon ofFa} Stitlc meniscus
forces are negligible compared to surface tension. The extrapolatio\ofI Con. act angley, 1.€., 0a=Tol0; ba), see Fig. 1.
of the staticlike region back to the solid makes an “apparent” con- 1 n€ first term on the right-hand side of E@) accounts
tact angled, with the solid. for the viscous deformation of the interface in the interme-

diate region discussed above. It depends only on the inner

the flow fields and interface shapes near the moving conta¢egion since the asymptotic matching giveg(6y)
line using the systematic asymptotic method of gag].  +Ca Inr/Ly,)=9(0;)+Ca Inr/L;). The second term of Eq.
Besides relating, to ©;, L;, and Ca, this theory also predicts (2) is the static contribution to the interface shape which
the functional form of the interface deformation by viscousdepends on the geometry of the system. The details of the
stresses near the contact line. This deformation largely deteasymptotic matching technique are beyond the scope of this
mines the dynamic contact anghg, the effective boundary work and we refer the interested reader to Ja] and
condition for the interface shape far from the contact line.Dussan Vet al.[18]. Physically,é, is the angle between the
This model of the functional form of the interface deforma- solid and the extrapolation of the outer, static interface back
tion has been shown to be accurate for a suite of relativelyo the solid, see Fig. 1. It is clear from its definition ti#atis
viscous simple polymeric fluidgl7,3]. In the present study, not the interface slope at any particular location. In &),
we extract information about the inner physics only afteré,is the only unknown. It may be determined experimentally
experimentally verifying that the asymptotic model describesuy treating it as an adjustable parameter in a fit of @y to
very accurately the viscous deformation of the interface neaexperimental data of(r) at known Ca and.,,. Unlike the
the contact line. As we will show, this precaution is critical to dissipation-based methods, by following this procedure we
getting sufficiently well defined and precisely determinedhave explicit experimental proof that the model which leads
contact angles that inner scale physics can be exposed. Sito Eq. (1) correctly describes the fluid motion near the con-
pler methods for determining, could lead to large errors in tact line before we even apply E@l) to explore the inner
revealing the inner physics. physics.

Since our experimental results will depend on the use of Cox provides the simplest interpretationlgfas the char-
Eq. (1), we examine briefly the assumptions behind theacteristic lengtiinot necessarily a slip lengtlvhere the sin-
model that produces it. The key in the development of Eqgularity is resolved12]. In this framework®; is the contact
(1) is that no assumption is made about the velocity depenangle boundary condition at the microscopic moving contact
dence of the inner parametef8,, L;. Thus, in general they line. In a slightly more complex interpretatiob, is the cut-
may depend either locally on spreading velodityor possi-  off of the logarithmic divergence of the interface slope as
bly even nonlocally on some other macroscopic characteris=/L,,;— 0. In this casel; need not be the characteristic
tic of the flow field[32]. The single physical assumption for length of the mechanism that resolves the singularity but the
the inner region is that a suitabibut unspecifiedmecha- largest length scale where the usual assumptions cease to be
nism exists with characteristic length that removes the valid [25,33. Here, it could be possible for a cascade of
singularity [12]. physical mechanisms with successively smaller characteristic

Neglecting gravity and inertia, the dimensionless groupSengthsLi1> Li,>Li... toactat the contact line. Ifil is the
Ca ande=L,/L,, describe the flow in the vicinity of the length where the usual model first breaks down, tRgris
contact line. The limit Ca-0 holding Ca Ine=—A (A>0)  the interface slope associated with [34]. Yet another in-
fixed yields Eq.(1) as the main result. This limit process terpretation oL; is given in Cox's[35] posthumous paper on
establishes a specific order relation between Caeamdhich  inertial effects on liquid spreading. The inner region is as-
implies thate— 0 in a specific way, i.e.e=exp(-A/Ca as  sumed to be resolved using a Navier slip model with slip
Ca—0. An O(1) independent variable is defined & lengtha. Unlike the conventional case of a slip condition at
=Caln(r/Lyy. Consequently, for¢ fixed and @1), the Re=0, where the inner length coincides withhere a spe-
physical distance from the contact ling, satisfiesr/L,,;  cial definition of the inner length;=a?U/v (where v is
<1 andr/L;>1. Thus, the region wheré=0(1) lies be- kinematic viscosityis required in order to make the solution
tween the inner and the outer and is called “intermediate.in the inner boundary layer independent of Re.

where g~ denotes the inverse function of g (g(x))=x,
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B. Using the model to analyze data O;=0,+Uf + . (3b)

When we fit Eq.(2) to the measured interface shape, wel, represents the limit ol; at zero spreading velocity.
check that Eq(2) correctly describes the interface shape inClearly the use of a Taylor series may not include all cases
the intermediate region, indicating that the flow has beersince there is no guarantee that the powers must be integers.
modeled correctly. Then we may apply Ed) knowing that  However, this assumption does not affect the valud gf
we have connected to the inner region by using the correaihich is one focus of our data analysis.
flow in the intermediate region. In contrast, measurifyg From Eqgs.(1)—?3) it follows that in the smallJ limit,
directly from the extrapolated quasistatic shdg@®;6,) far 1

; ; ; L
from the contact line does provide the correct dynamic con- (g + ca I=2' + U g, o' (6.) + UZ[ P a6+ 6,0 (6.
tact angle; however, this method does not establish anythingg( ) Lo 19'(0) 2 1909+ 0,969

about the physics of the flow near the contact line and, thus, L 1

poses a danger when it is used to infer inner dynamics. - E—l] + U{(—Lf -1, Lo)%
Though not readily apparent, measurement#gofersus olo 2 ol

Ca contain information that allows one to probe some dy- 1

namics of®; and L;. The value of6, is made up of two +6509'(6) + 6,6, 9"(6) +86€ g”’(es)}---

dynamic contributions: first is the viscous deformation in the
intermediate region, contained in the term Ce&Jp/L;) in
Eq. (1). We call this the “intermediate” contribution. The =9(6)-

other dynamic component of; comes from the possib]e When . # 0, even the QL) term (made up of the first two
dependence®);(U) and L;(U). These dependences, which (grms on the left-hand sigidias two unknowns. So we will

need not be scaled by Ca, constitute what we call the “innergn|y treat cases wheré,=0, which reduces the above ex-
contribution. pression to

In most cases reported in the literature, by far the largest
of the two contributions is the intermediate one, wholly de- Lout mlq ) 1
scribed by Ca. However, this need not always be the case.“2 lnL_o - U2<U_|_O> + U{(E'—i‘ '—2'—0)? + 5]
WhenA in the condition Ca Ire=—A as Ca—0 is small, the 0
intermediate region where viscous bending is significant be- = 9(6a). (4)

comes vanishingly small. Then the interface shape looks 14 interpret data o), versus Ca, Eq4) must be fitted to

static until it meets the inner region amg=©;. However, if  10se data. From the terms proportionalt@andU?, we may

in an experiment the viscous bending cannot be detected, theractl, andL,. In the next section, we explain the details
implications for the inner physics become ambiguous. Anyq¢ this data analysis.

one of the following might be happening.) The viscous
bending is negligible but the inner contact an@le# 65 due
to inner region dynamic€);(U). (i) The viscous bending is  !ll. EXPERIMENTAL METHOD AND DATA ANALYSIS

negligible and®; ~ 6. (iii) The viscous bending is not neg- In the experiments we immerse a vertical cylindrical

ligible but takes place in a region that is smaller than thqDyrex tube of radiu®;=1.25 cm at constant velocity con-
spatial resolution of the experiment. Here the departurg, of centrically into a 10-cm-diam beaker filled with poly-
from 65 may be due to viscous bending, inner dynamics, OimethylsiloxanePDMS) and we examine the shape of the
both. ) ) . ) ) meniscus that forms on the tube surface. We vary the chem-
When the intermediate con_trlbutl_on ﬂ@ls_domlnant, raw istry of the tube surface and the molecular weight and end
measurements ofy are relatively insensitive to material- termination of the PDMS. Our range of molecular weights
dependent in_ner physics across material systems. This fact Svers the entanglement limiapproximately aj.=10 P for
often embodied in the well-known Hoffman curve where ppys) 36). The Pyrex cleaning procedure, and optical and
measurements ofy versus Ca on liquids with differents 4505 acquisition systems are the same as used in previous
moving 1n a ca'p|llary tube show a rer'narkable'collaiﬁ]s studies[31]. The relative humidity is held below 6% in all
Consgquently, in order to expose the inner residual d_ynam'ﬁxperiments.
variation of ¢y, we must first subtract the dominant —\ye compare measurements of the local interface slépe,
Ca—controlled. intermediate contribution. This is discussed INersus distance to the contact limeto the theory, expressed
the next section. in Eq. (2), that describes the dynamic interface shape near
the moving contact line as/'L,,— 0 [18]. All parameters in
1. Exposing the inner region Eqg. (2) are determined independently except We extract
64 for each material by fitting Eq2) to the measured inter-
face shape at each spreading velotityith 64 as an adjust-
able fitting parameter. Since in our experiments the tube ra-
dius Ry is much larger than the -capillary length
[=(a/pg)¥?], the appropriate outer length,, for a tube
immersed into a large liquid bath & A typical image ap-
Li=Lg+ UL+ ---, (33 pears in Fig. 2. A data set and fitting of E&) are shown in

Our goal is to learn about the dynamic dependenck; of
and®; from measurements @, versusU (or Ca. Since the
dependence df; and®; with U is unknown, we assume that
they may be expanded in a Taylor series valid for srdadls
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FIG. 2. The shadow of a meniscus advancing at=Qa2.

_ _ _ o o _ FIG. 4. Fit ofg(6y) vs Ca using a fourth-degree polynimial. The
Fig. 3. Using very strict statistical criteria, we only accept fitSsystem is 10 Poise, ~OH-terminated PDMS spreading on silanated
where x° is statistically equivalent to 1 and there are noPyrex.

systematic deviations of the data from the mo@ekolving
differences to less than 0.25We note that the variation of larger variations among experiments performed under the

0 over ther range we probe does little more than translatesame conditions but on repetitive cleanings of the same sur-

the fitted curve along thé axis while the curvature is fixed t5ce These variations are reflected in the uncertainties on the
by Ca, which is independently determined. Thus, the success;ta we report.

of the fit is a stringent test of the ability of the model to
describe the viscous bending. The pixel noise in our camergnq ®, were constants

The basis for our data analysis is K4). Obviously ifL;
then®;=60,=0 and {6,=0,

produces an uncertainty #y of about 0.1°. However, we see L;=0 for j =1}, so that the quantity

o G =g(dy - Ca InalL)
: B R R
66 - 0 7o
§64— would be zero. Thus, a departure from zero in the ploGof
= versusU (or Cg indicates that at least one af and 0 is
® 62 - velocity-dependent. We adopt this departur&sdfom 0 as a
criterion to probe this velocity-dependent inner scale phys-
60 - ics. The quantityG is more sensitive to the inner physics
thang(6,) because it has most of the intermediate., “uni-
58 +—— T T T T versal’) dynamics stripped away.
0 50 100 150 200 250 300 Each series ofj(6y) versus Ca is fitted to Eq1) using
r (um) Eq. (3). The order of the polynomial in Eq3) is increased
until the fit quality no longer improves as demonstrated by
3 the F-test{37]. We find that, for the systems examined, be-
(b) tween first- and fifth- order polynomials are required to fit
24 the data. An example fit to a data set requiring fourth order is
shown in Fig. 4L is extracted from the linear coefficient in
11 - H such fits. If data were to be taken at higher speeds where Re
§’ 0 s _" ) cannot be neglected, it would be critical that the analysis be
e W based on a modification of E@l) accounting for the non-
< 1 ) _"w-. negligible effects of inertia on the fluid flows near the contact
¥ T e line [12,38.
o4 ) Conventional studies of dynamic wetting focus on some
version of a macroscopic dynamic contact angle and its
3 | | | | | variation with Ca for one or more classes of materials. Thus,
0 50 100 150 200 250 300 graphs like that of Hoffman’§5] are obtained where the

r (um)

FIG. 3. Ca~10"2 (a) Data(dots and best fit §3=~ 65°) of Eq.
(2) to the data.(b) Data minus best fit: difference is distributed
uniformly around zero.

dynamic variation of the contact angle is mostly captured by
the viscous hydrodynamic action of the “intermediate” re-
gion of the flow. This hydrodynamic action is “universal” in
the sense that all its material dependence is accounted for by
Ca. Figure 5 showgy versus Ca for two PDMS of the same
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Ca Ca

FIG. 5. 64 vs Ca for two 10-Poise PDMS of different end ter- FIG. 7. G vs U () and G vs Ca(b) for the —OH terminated
mination. +: ~CH; [ ~OH. (3) linear-log; (b) log-log. Dashed series.[]: 10 PoiseO: 40 Poise.A: 150 Poise.
line in (b) has slope 1/3.

. . . : : the residual dynamics of the inner region is exposed. Figure
viscosity (chain length but different molecular end termina- 6 shows that, for the two materials of Fig. ,departs sta-

tions, ~CH, and ~OH. Both the linear-log and the log-log tistically from zero. Thus, either one or both of the inner

D e e ot Mol parametrsL. and 0, depend onl. Whie hese effecs
tiation in these results is similar t6 that seen in Hoffman’sbecome evident \(vhen the mterm_edlate cont_rlbu_tlons90to .
data versus Ca are stnpped away, the inner contribution remains
When the universal contribution is stripped from the dy_small. Thus, imprecise me_thods of defining the dynamic con-
namic contact angle by forming the quanty[cf. Eq. (5)] tact anglg and of measuring the contact angle could lead to
T A systematic errors in derived inner scale parameters as well as

0.06 - I 0.02
II I 0.01 -
0.04 - II ] }
o % 0.00 3 5 EEEE oo BaNS
U]
0.02 - ;
gz -0.01
S
= m
000-p =8 oole T o o veoc=z -0.02
10 102 102 -0.03 +m——rr ey
-6 -5 -4 -3 -2
Ca 10 10 10 10 10
. o Ca
FIG. 6. G vs Ca for two 10-Poise PDMS fluids with different
end termination spreading on bare Pyrex.—CHs; O: —OH. Error FIG. 8. G vs Ca for the —CH terminated serieg.]: 10 cP.O:
bars as marked or else smaller than marker size. 100 cP.A: 10 Poise.¢ : 50 Poise<: 120 Poise@®@: 600 Poise.
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0.07 TABLE Il. Effect of surface.
0.06
w (cP)- Lo Uc e
0.05 4 II end group Surface (nm) (um/seg (ms)
0.04 — II
% f.'t 1000-Methyl bare Pyrex 3.7 40 0.92
O 0034 i i 1000-Methy silane 12 13 0.92
0.02 — 8§y =, = 1000-OH bare Pyrex 10 8 1.2
0.01 - B 2" ;n‘ 1000-OH silane 47 3 16
m ge%em
000 Sedenbe® ofo®
0.01 +— T scalable by Ca even for such a simple material change as
10 10° 102 viscosity/chain length at fixed end termination. This lack of

Ca scaling indicates that a new velocity scale must be
Ca present in the inner scale physics which, together with

FIG. 9. Effect of surface for 10 Poise, —OH-terminated PDMSforrns a dimen§ionless group that a_ccounts fortheepen-
on []: bare Pyrex; +: silanated Pyrex; and for 10 Poise d&nce Of_ the inner _parameter_s. Figure®) 7and 8 S_hOW
—CHg-terminated PDMS o1®: bare PyrexA: silanated Pyrex. changes in inner region dynamics as a result of chain length
variation for fixed molecule end group termination. Our

—CHs-terminated series shows effects as large as the —OH
series, but we find that the contribution of the inner physics
to the dynamic contact angle may be either positive or nega-
tive. The large effect of end termination on the inner dynam-
IV. RESULTS AND DISCUSSION ics of u=10 Poise PDMS is shown in Fig. 6, where two
different inner dynamics can be seen. Similar differences are
In our materials studies, we change the liquid by usingcaused between the other pairs of closely matched viscosity
PDMS with two chain terminations-CH; and —OH and  oils with different end terminations.
varying molecular weight/viscosity. We also alter the solid  Figure 9 compares dynamic inner effects for =£lknd
by surface modificatiorgsilanization. For all systems con- —-OH-terminated 10 Poise PDMS on two different surfaces:
sidered,0;=0. bare Pyrex and silanated Pyrex. By decreasing the polarity of
Besides the evidence that the inner parameters cannot ltikee surface(silanization, the difference between —OH and
constants, Fig. 6 shows th@) the dependence of the inner —CH,; is made smaller than in the bare Pyrex case. In addi-
parameters ot is far from universal, andii) this depen- tion, the difference between bare and silanated Pyrex is dra-
dence is not scaled by Ca. These results are shown for anatic for the polar OH-terminated fluid, but almost nonex-
entire series of fluids in Figs.(& and qb), whereG is istent for the nonpolar Citerminated fluid.
plotted for the —OH series versu$ and Ca. Using Ca in- Having established that, according to the model of Eq.
stead ofU does help contract the data cloud but is far from(1), at least one of the inner parameters must depend,on
unifying the data. Thus, the inner dynamics is not whollywe examine possible ramifications of the inner physics our

in developing a boundary condition for the macroscopic in-
terface[17].

TABLE |. Methyl and hydroxyl terminated PDMS on Pyrex.

Chain
n Ry Lo Ue Te length
(cP) (nm) (nm) (um/seg (ms) (monomer unitﬁ’

Methyl
10 1.3 3.6 >1000 <0.0036 17
100 2.8 1.5 100-400 0.0037-0.015 78
1000 9.5 3.7 40 0.92 870
5000 11 6.7 6 1.1 1200
12000 13 14 2 6.5 1600
60000 15 82 <1 >8.2 2000
Hydroxyl

1000 8.8 10 8 1.2 750
4000 11 300 2 150 1100
15000 13 270 1 270 1600

3See Ref[36].
bBased on weight-average molecular weight.
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o Above the critical speed, things are less well defined.
107 o However, we can safely say that, sinte>0 for all our
fittings, thenlL;=Ly,+UL,;>L, at U>U,, i.e., L; increases
102 + with U at small enoughJ. This scenario would be consistent
’g + with Shikhmurzaev's ideaf27] wherelL; is the length re-
L 10° 4 Q + quired to relax an interphase layer of molecular thickness
& having a fixed relaxation timer,e=L;/U. According to
« Shikhmurzaey, the layer would exif completely relaxed to
1074 enter the region where the usual hydrodynamic assumptions
hold. In this view,L; would also be an increasing function
L S — of U.
10° 10° 10*
TRouse (S€C) V. SUMMARY

FIG. 10. 7, vs Rouse relaxation time for each PDMS fluid used ~ We note that the theory behind Ed) does not requir®;
in this study. The entanglement limit occurs just before the dataandL; to be constant, thus allowing these quantities to de-
points atr,=107% sec. +: CH; O: OH. pend onU. Using a phenomenological dependence @r
and L;, we formulated a method for analyzing data &f

measurements have revealed. In Tables | and Il we list thgersus Ca that allows us to detect when this dependence
values ofL, found for all the systems. We see thatis on demands that either or bot; andL; be functions ofU.

Fhe scale of the ra_dlus of gyration of the polymer. As s.h.own Analysis of our experimental data shows that, for our
in plots such as Figs.(d) and 8, each system has a critical :
_material systems, at least one ®f andL; must depend on

speedlJ,, above which the inner parameters’ velocity depen . R
peedUc P y cep . This dependence becomes detectable above a certain criti-

dence becomes detectable. Below this critical velocity, th | di loci In additi he d h h
inner scale id, and a residence time in the inner region is €& Spreading velocityJe. In addition, the data show that a

then 7=L,/U for U<U,. Then the critical residence time, Precise definition and determination @f is essential for
7.=Lo/U, (i.e., the residence time above which the innerd€tting the correct inner dynamics. We do this by verifying
parameters exhibit their zetd-valueg, may be interpreted that the model which includes E(L) precisely describes the
as an upper bound for a relaxation time of the inner physichlSCOUS deformation on the interface near the Contact[bhe
e These values appear in Tables | and II. Eq. (2)].

Table | shows the following trends for systems on the Far from contradicting the model, allowin@; andL; to
same surface, bare Pyrefi) At fixed termination and in- depend orJ endows the model with a richer set of dynamics
creasing chain length,, increaseslJ, decreases, ang. in-  affecting 4. Since®; andL; depend orlJ through a param-
creases(ii) For fixed chain length, moving from —Otbpolar  eter other than Ca, this demands a new time s@aleeloc-
end group polymer on a polar surfade —CH; (a nonpolar ity scale in the model of the inner region, possibly related to
end group polymer on a polar surface, decreasesl).  a relaxation time of the fluid. This finding is consistent with
increases, and; decreases. The decreaserirmay reflect a  theories such as Shikhmurzaev’s, where the actual dynamic
decrease in interaction of the —Glerminated chain with  contact angle®; is a complex function of the flow via its
the polar Pyrex surface compared to an —OH-terminatediependence on the interfacial energies of all interphase re-
molecule of similar length. When we change surfaces, Weions meeting at the contact line, and the inner letgik an
see complex variations i, Uc, and 7 as we change the i creasing function of). Attempts at extracting such a time
polarity of the surface and the polymer end terminati®®e .56 from our data show systematic trends across materials

Table II). ;
When 0<U < U, the inner parameters have their z&fo- and molecular weights.

values, viz..Li=Ly and ®;=0. This implies thatr< 7. <7
so that the molecule is completely relaxed as it exigs
Comparingr, to a relaxation time in the bulk polymer, the
Rouse relaxation timegg,se[39—41, Fig. 10 shows a jump We are grateful for NASA's support through Grants No.
in 7. from below to above the entanglement limit. Further, NAG3-2449 and No. NCC3-465. We are also most grateful
correlates withrgyse@bove the entanglement limit with dif- to Gita Seevaratnam for her help with evaluating the Rouse
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