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A nonlinear response theory is developed and applied to electrostatic interactions between spherical macro-
ions, screened by surrounding microions, in charge-stabilized colloidal suspensions. The theory describes
leading-order nonlinear response of the microigrsunterions, salt iongo the electrostatic potential of the
macroions and predicts microion-induced effective many-body interactions between macroions. A linear re-
sponse approximatiopA. R. Denton, Phys. Rev. 62, 3855 (2000] yields an effective pair potential of
screened-Coulom@rukawa) form, as well as a one-body volume energy, which contributes to the free energy.
Nonlinear response generates effective many-body interactions and essential corrections to both the effective
pair potential and the volume energy. By adopting a random-phase approxini@®én for the response
functions, and thus neglecting microion correlations, practical expressions are derived for the effective pair and
triplet potentials and for the volume energy. Nonlinear screening is found to weaken repulsive pair interactions,
induce attractive triplet interactions, and modify the volume energy. Numerical results for monovalent micro-
ions are in good agreement with availableinitio simulation data and demonstrate that nonlinear effects grow
with increasing macroion charge and concentration and with decreasing salt concentration. In the dilute limit of
zero macroion concentration, leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear
response theory, when combined with the RPA, is formally equivalent to the mean-field Poisson-Boltzmann
theory and that the linear response approximation corresponds, within integral-equation theory, to a linearized
hypernetted-chain closure.
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I. INTRODUCTION many theoretical and computer simulation studies, which
Electrostatic interactions between charged macromolb a\'&evlgfiir:yrgé: ginrgﬁlgfivc;rfvr\ﬁgit_)(ljghave been applied to ex-
equles dispers.ed_in_ an ellectrolyte solvent have gttracted SUSTore effective interparticle interactions and phase behavior
tained crpss-d|SC|pI|nary Interest because OT their fundqme n charged colloids. Standard molecular dynamics and Monte
tal role In governing the physical p_roperues of colloidal Carlo[18-2Q algorithms have been used to investigate crys-
suspensiongl-3|, polyelectrolyte solution$4,5], and many  yyjization in effective one-component pairwise-interacting

biological systems. Colloidgnanometer-micron-sized par- g q1oms while powerfulb initio (classical Car-Parrineljo
ticles) and polyelectrolytegcharged polymepscan acquire [21,22 and multicomponent Monte Carlg23-2§ tech-

ch_?rge n sollut|or; tnrougg d|T|sc_)§|at|onl cif count_?r|ons: Fahiques have modeled effective interactions and, to a lesser
miliar examples of charged colloids are latex or silica micro-ggree " nhase behavior.

spheres, clay platelets, and ionic micelles ;uspended in Wa- Theoretical approaches can be broadly distinguished by
ter. Common polyelectrolytes are polyacrylic acid, found ingy,q eytent to which they include correlations between micro-

gels fand rheology modifiers, and _biopolymeesg., DNA," jons. Many approaches are founded on the Poisson-
proteins, starchgsin aqueous §olut|on. In all of these sys- Boltzmann (PB) equation for the electrostatic potential,
tems, bare Coulomb interactions between charged MacrQgnic js derived from mean-field approximations that ne-
.molecu!es(macromrgs are screened by counterions and Saltglect microion correlations. The classic theory of Derjaguin
ions (mlcr0|o_ns. _Thls paper formulates a_general response, Landau27] and Verwey and Overbeel@§] (DLVO),
th_eory Of. microion screening and applies the_ theorY hased on a linearization of the PB equation, predicts that
mlcr0|on—|nduc_:ed eﬁecﬂye paur and man_y-body InterE"‘Ct")n%/\/idely separated macroions interact via a purely repulsive
between colloidal macroions in suspension. effective electrostatic pair potential of screened-Coulomb
In recent years, experimental reports of apparent attraGy; awg) form. Similar effective interactions have been de-
tions between like-charged macroions have focused attentiof o4 within the frameworks of density-functionaDF)

on electrostatic interactions in strongly charged, deionizeqheory [22,29-31, response theory32-34, and extended
suspensions. Observations of anomalous thermodynamic bE)'ebye—HU;:kel tﬁeories[35 36. These more recent ap-
havior, such as bulk phase separatjér9] and metastable - hes also clarify the importance of a one-body volume

crystallites[10], and direct measurements of attractive inter'energy[29—3q which contributes a state-dependent term to
actions between confined macroididd,12 have motivated the free energy and thus can influence thermodynamic be-

havior.
Microion correlations, while often weak for monovalent
*Electronic address: alan.denton@ndsu.nodak.edu microions, generally cannot be ignored in the case of multi-
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valent microions, as emphasized in several recent studies of ©) ® ® ®

charged colloids and polyelectrolyt¢®5,37—41. Microion

correlations can induce short-range attractions, which have © ©)

been linked to condensation of DNA and other polyelectro-

lytes[37—39,42. Another wide class of theories that include

some microion correlations is the class of integral-equation ® ® ®

theories[43—49, which predict multicomponent correlation e}

functions from the Ornstein-Zernike relation combined with ® )

various closures. f
Many theoretical approaches rely, in practice, on some o o

manner of linear approximation. DLVO theory and linearized ® ‘

PB cell modeld50-52 are based on the linearized PB equa-

tion. The DF [29-3] and response theor{32-34 ap- ®

proaches involve truncating expansions of free energy func-

tionals or of microion density profiles. While linear  FIG. 1. Primitive model of a charged colloidal suspension: hard

approximations can be justified under a wide range of conmacroiongvalence Z and diametetr) and point microiongcoun-

ditions, their validity may be questioned for concentratedterions and salt ionsn a dielectric continuungnot shown.

suspensions of highly charged macroions at low salt concen-

trations (ionic strengths—precisely those conditions under multicomponent mixture is modeled here as a collection of
which anomalous phase behavior has been reported. On th¢, charged hard-sphere macroions, of valenZe(surface
other hand, many nonlinear theories, such as the full PBharge Ze) and radiusa (diametero=2a), and N, point
theory[53-59 and integral-equation theories, present severgounterions of valencein an electrolyte solvent of volume
computational challenges. In fact, the nonlinear PB equatiol at temperaturd. Global charge neutrality constrains mac-
usually yields to numerical solution only within cell models roion and counterion numbers via the relatioi,,=zN.. For
with simplified boundary conditions. _ simplicity, we assume a symmetric electrolyte consisting of
The main purpose of the present paper is to extend reN, point salt ions of valence and N of valence z (same
sponse theory to include leading-order nonlinear microionvalence as counterions a uniform solvent. The microions
screening and to apply the extended theory to systematicaliyyus numbeiN, =N.+N, positive andN_=N, negative, for a
test the linear-screening approximation. This extension negotal of N,=Nc+2Ns. The solvent is approximated, within
essarily entails three-body effective interactions betweerhe primitive model, as a dielectric continuum, characterized
macroions and corrections at the pair and one-body levelgntirely by a dielectric constart
for which computationally practical expressions are derived. The macroion charge, which may be physically inter-
The predicted effective interactions could, in future studiespreted as an effectiveenormalizegl charge, is assumed to
be input directly into statistical mechanical theories or simu-e fixed and distributed smoothly over the particle surface.
lations to study influences of nonlinear screening on phasgharge discreteness can be reasonably neglected if the dis-
equilibria and other phenomena. . _ tance between neighboring macroion surfaces much exceeds
The key qualitative conclusion of the paper is that nonlin-the typical distance between charge groups on a macroion
ear effects can significantly modify effective interactions, be-surface, roughlys/\Z. The assumption of point microions
coming increasingly important with increasing macroion jimits the model to systems with large size asymmetries. Fur-
charge and concentration and with decreasing salt concentrgrermore, we neglect polarization effects, e.g., charge-
tion. Numerical calculations for bulk suspensions are perinduced dipole interaction§59—61, which are shorter-
formed to quantify parameter ranges wherein linearization isanged than charge-charge interactions, and which vanish if

justified. Comparison is made with a similar extension of thesplvent and macroions have the same dielectric congtant
DF approach, recently applied to wall-induced effective pairare index matchad

interactions[56,57 and to effective triplet interaction$8].

®

Outlining'the remaindgr of the paper, Sec. Il defines the IIl. THEORY
model colloidal suspension; Sec. Il develops a general re- .
sponse theory for the system; Sec. IV presents analytical A. Reduction to one component

results for leading-order nonlinear corrections to the effec- Tpe response theory of effective interactions is fundamen-
tive microion-induced interactions; Sec. V presents numeritaly hased on a reduction of the multicomponent mixture to
cal results, for selected parameters, and comparisons withy, equivalent one-component system by integrating out the
predictions of Iine_ar response theory; Sec. VI summarizegegrees of freedom of the microiof@2]. In this reduction,
the paper; and finally the Appendix compares responsghe macroions are regarded as applying an “external” poten-
theory with two related approaches, namely PB theory angiy| that perturbs theotherwise uniform microion distribu-
integral-equation theory. tion. For a sufficiently weak perturbaticlilute or weakly
Il. MODEL charged macroionsthe microions respond linearly. The lin-
’ ear response approximation has been discussed in Refs.
The system of interest comprises colloidal macroions[32—34. Upon increasing the macroion charge or concentra-
counterions, and salt ions dispersed in a solyEig. 1). This  tion, however, nonlinear microion response becomes increas-
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ingly important. This motivates the current extension of re- At constant temperature and volume, the thermodynamic

sponse theory from linear to nonlinear response. behavior of the system is governed by the canonical partition
To simplify the derivation, we first consider salt-free sus-function

pensions and introduce salt ions only at the end. The model

system is then described by a Hamiltonieinthat decom- Z=((exp(= BH))c)m: ()
poses naturally into three terms where 3=1/ksT and (), and(),, denote classical traces over
H=Hn({R}) + Ho({r}) + Hn{RA{r}), (1)  counterion and macroion coordinates, respectively. The two-

_ _ component mixture of macroions and counterions can be for-
where{R} and{r} denote the coordinates of macroions andmally mapped onto an equivalent one-component system of
microions, respectively. The first term on the right side of“pseudomacroions” by performing a restricted trace over

Eq. (1) is the bare macroion Hamiltonian, given by counterion coordinates, keeping the macroions fixed. Thus,
Ny, without approximation
Hin=Hus{RD +3 2 vmn[Ri ~ Ry, 2 Z =(exp(— BHei))m» (8)
i#j=1

where Hes=H,,+F; is the effective Hamiltonian of the

whereH,s is the Hamiltonian for neutral hard spherngke .
equivalent one-component system and

macroion hard corg@sandv,,(r)=2%€*/er, r > o, is the bare
Coulomb pair interaction between macroions. In the primi- F.=—kgT In{exd— B(H. + Hmd 1)e (9)
tive model, the solvent acts only to reduce the strength of

Coulomb interactions by a factor &/The second term of the Can be interpreted as the free energy of a nonuniform gas of
Hamiltonian counterions in the presence of the fixed macroions. To sim-

" plify notation, we henceforth omit the subscripfrom the
C

1 trace over counterion coordinatgs;= ().
Hc:Kc+§ 2 Ucc(|ri_rj|)r (3
i#j=1
describes the counterions alone, having kinetic enétgy B. Response theory
and interacting via a Coulomb pair potentigh(r) =z°€?/ er. Although the one-component mapping is exact, the chal-
The third term is the macroion-counterion interaction energyjlenge now shifts to approximating the counterion free energy
N N F.. Progress can be made by regarding the macroions as an
H = R -1, “exFernaI" potential for the counterions and invoking pertur-
me gljzzlvm(' =l @ pation theory[32,63:
wherev,{r) is the macroion-counterion electrostatic pair in- _ !
teraction:v,,(r)=2z€&/ er, r >a. For impenetrable hard-core Fe=Fo+ 0 dh (Himohs (10)

macroions, the form of,{r) inside the core is arbitrary and
can be specified so as to minimize counterion penetratiowhereFo=-kgT In(exp(-BH,)) is the reference free energy
inside the coregsee Sec. IV A For later reference, we note 0f the counterions in the presence of neutrealrd-corg mac-
that the macroion and counterion HamiltonigRsjs.(2) and  roions (the counterions then being unperturbed, except for
(3)] may be expressed in terms of Fourier components usingxclusion from the macroion corngs), denotes a trace over
the identity coordinates of the counterions in the presence of macroions
N L charged to a fraction of their full charge, and thi-integral
I N P e adiabatically charges the macroions from neutral to fully
ig‘élvﬂri b= VEk o(RIpk)p(=k) =N, (5) charged. Although each term on the right side of 8d) is
infinite, the infinities cancel to yield a finite counterion free
whereo (k) is the Fourier transform of a pair potentialr),  energy. When the macroions are uncharged, the surrounding
p(k) is the Fourier transform of the appropridteacroion or  “sea” of counterions has uniform density, neglecting any
counterion number density operat@x(r):Ei“il 8(r-r;),and  confinement-induced structure, which is reasonable for typi-

the Fourier transform convention is cal counterion concentrations in colloidal suspensitsee
below). As the macroion charge is “turned on,” the counte-
ﬁ(k):fdr p(r)e k) (6a) rions respond, redistributing thgmselyes to form a double

layer (surface charge plus neighboring counterjorssir-

rounding each macroion.
1w . , In practice, it proves convenient to convéiy to the free
p(r)= \—/E pk)ekr. (6b)  energy of a classical one-component plasi@&P) by add-
K ing and subtracting the energy of a uniform compensating
The inverse transform is expressed as a summation, rath8pgative background. The background energy can be ex-
than an integral, in anticipation that charge neutrality will pressed a,=-3Nndcd(0), wheren, is the average density
necessitate singling out thke=0 component for special treat- of counterions in the volume unoccupied by the macroion
ment. cores. Note that the infinite background energy formally can-
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cels the infinities on the right side of E(L0). Because the tiparticle density correlations. Fourier transforming ELp),
counterions are exclude@vith the backgroundfrom the  we obtain(for k+ 0):

hard macroion cores, the OCP has average dengity 1

— ’ — 3 H N ~ N ~ , AL

_NC/.V , wher,e_n—(77/6)(_Nm/V)o is the macroion volume (o)) = GAK)T(K) + —,E GOk’ k - kak’)
fraction andV’'=V(1-7) is the free volume. Thus, 2V

1
Fc=Focp+f dA(Hmox ~ Es, (1) XUk =k’ + ,22 Gk K"k —k' =K")
0 3V
where Focp=Fg+E, is the free energy of the OCP in the XO(KHUKNAK =K' =K") + -+ (17)
presence of neutral, but volume-excluding, hard spheres—
what might be loosely called a “Swiss cheese” OCP. The coefficientsG™, which are Fourier transforms @&,
In terms of Fourier components, the macroion-counteriorare related to ther-particle static structure factors of the
interaction can be expressed as uniform OCP viaG™=n.S"™, where the static structure fac-
1 tors are explicitly defined by63]:
(Hmon = 1 2 omd KB (e = k- (12) .

‘ S2(K) = S = (PP~ k) (19
Evidently, (H,o, depends througRp.(k)), upon the re- Ne
sponse of the counterions to the macroion charge densityng
Note, however, that there is no response ksrO, since
pc(0)=[dr p.(r)=N., which is fixed by charge neutrality for o 1. . .
a given macroion concentration. Taking this-0 limit into (Ka, - Kne) = N—C<Pc(kl) - pe(Kn-1)pc(— kg
account, and subtracting the background energy, (E2)
becomes ~Kn-1)), n=3. (19

Substitutingli(k) ==B0md K pm(k) [from Eg. (14)] into Eq.
(Hnox —Ep= govmc(k)pm K){pc(= K (17), the induced counterion density can be expressed in the

equivalent form
cl. m m K cc K 13 -~ n P 1
+n klin|: 0 c( )+ U ( ) ( ) <Pc(k)>:X(k)Umc(k)pm(k) + VE )(,(k,,k _ k/)
k/

To proceed further, we apply a perturbative approximation
for the macroion-induced counterion density, adapting a stan- XOmdK)Omd[K =K' prm(K ) pm(k = K') + ==+,
dard approach from the theory of met§63—-664. Defining

the macroion external potentidk,(r) by k#0, (20
where
20000)= [ vl = Do), (19 . o
the ensemble-averaged induced counterion density may kgd
expanded in a functional Taylor series aroufg{(r)=0 [67] , .
in powers of the dimensionless potentiit) = —Bzepe(r): X' (k' k=k")=(8n/2)S¥(k" k —k’) (22)
* 1 are, respectively, the linear and the first nonlinear response
(pc(r)) =po+ 2 = drl---f dr, GM(r - | T function of the uniform OCP. The first term on the right side
n=1 " of Eq. (20) represents the linear response approximation—
r=ru(ry)---u(r,). (15)  linear in py(k)—while the higher-order terms generate, as

shown below, nonlinear corrections to both the counterion
Herep, is a constant, chosen below to ensure charge neutralensity and the effective interactions. Finally, since the am-
ity, and the coefficients plitude of5,,(k) is proportional to the macroion charge, then

{ 5pe(r) }(16) \2
BUlry) -+ ulr ) (el = M (RDineK)prk) + 27 2 ' (K K =Kol
k/

are the(n+1)-particle density correlation functiori63] of R R R

the unperturbeduniform) OCP. The correlation functions XOmd K =K' Dpm(k ok k') + -,

are, in turn, proportional to response functiasse below. k+0. (23)

To give a physical interpretation to E@L5), the counterion

density induced at any point is the net response to Note that the response functions describe the response of the
macroion-generated external potentials, applied at sets @flly charged OCP, and so do not depend on the coupling
points{r4,...,r,}, and propagated through the OCP via mul- constantx.

G™I(r=ry, ... r=ry=1lim
u—0

031404-4



NONLINEAR SCREENING AND EFFECTIVE. PHYSICAL REVIEW E 70, 031404(2004

C. Effective interactions Nm
. . : OR,-R,R -R 03 (k k'
We are now positioned to derive formal expressions for #gk:l veit(Ri = Rj,Ri = Ri) = V’ZEk % Derr(K.k")

the effective interactions. Substituting E3) into Eq.(13),
the latter into Eq(11), and integrating ovex, we obtain the X[pm(K) pm(K ) pm(—k = k)
counterion free energy tiird order in the macroion density 35 (K)po(= K) + 2N ],

(29
Fe=Focp* nclim | NpomdK) + Ucc(k)
k=0 the final (third-ordep term in Eq.(24) may be rewritten as

Ex(k)[vmc(k)]zpmmpm( k)

i 3! V,ZE 2 Ok, k)pm(K) (k) pim(— k = k)
kg’
2 2 X' (K=K =KD nd K)omd k')
> m mc! N “ . ~
3V k#0 - 3 \7,22 Ugf,f)(kyo)pm(k)pm(_ k)
XOmd |k +K')pm(K)pm(K )pm(=k =K').  (24)
. . . . . == E v IR -R,R —Ry)
Evidently, the linear and first nonlinear response terms in the 31 ik :
expansion of(p.(k)) generate terms iffr, that are, respec-
tively, quadratic and cubic ip,(k). These terms can be re- 3k, k) pro(K) Pl = k
lated to effective pair and triplet interactions between mac- V’sz % Oeit(K,K)pm(K)prn( = )
roions. To this end, we first identify
TS Gk

~ - 12

Biag(K) = X(K) D)2 (25) Ve
as the counterion-induced macroion-macroion pair interac- 3IV’22 fff?(k 0)pm(K)pm(= k). (30)

tion in the linear response approximati@@2—34. In pass-
ing, we note that Eq.25) is similar in structure and physical
interpretation to induced interactions recently derived from &combining Egs(24) and(30), and again invoking the iden-
Coarse_grained hypernetted_chmHNC) theory [49] and tlty in Eq. (5), the effective Hamiltonian acquires the follow-
from a cumulant expansion of the counterion partition func-ing physically intuitive structure:

tion [68]. Combining the induced interaction with the bare

Coulomb interaction yields the linear-response prediction for N
the total effective pair interaction Her = Hus + E‘Elveﬁ(“? -Rj)
1#]
(K K + 52k 26 1
( ) Umrr( ) md( ). ( ) = E (3)(R R],R Rk)+E (31)
347kt

Now the term on the right side of E@24) that is second-

order inp,(k) may be manipulated using the ident[fyom Wherev (r) andv(S)(r ') are, respectively, the counterion-

Eq. O)I: mduced effectlve pair and triplet interactions in real space
andE is a one-body volume energy. In E&1), the effective

Nim ~2 triplet interaction is the Fourier transform of E@8), while
; lv'nd(|R Rjl)= _govlnd(k)Pm(k)Pm( k) the effective pair interaction is the transform of
i#]
Nop D) =567 (k) + ADGH(K), (32)
v, I|m 0'24(K) = Npw{24(0). eff 0 eff
27) where
A 1 . Nm
Similarly, identifying Ab (k) = vz 05k k") = eV 05Kk,0 (39

K’

~(3) " — "L — L — LN\ ~ na ’
Deir(k, k") = 2x' (K, =K =K DomeK)imelk Nomel [k + k') is the first nonlinear correction to the linear response ap-
(28) proximation. Note that the second term on the right side of
Eqg. (33) can be traced back to the requirement of charge
as an effective three-body interaction, arising from nonlineaneutrality, which necessitated special treatment of kh@
counterion response, and using the identity term in Eq.(12).
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The volume energ¥—a natural by-product of reduction
to an equivalent one-component system—has no explicit de-
pendence on macroion coordinates. Collecting terms that are
independent of macroion coordinates, the volume energy
takes the form

E=Ey+AE, (34
where
Eo=Focp+ Mv@g,(m + Noelim| 5 ) = —=52,(K)
2 n K0 ZZ n
Z,
+ 2_ZUcc(k):| (395
is the linear response approximatif$8,34 and
N . . S _
AE = 3) k.k') =N (3) k,0 36 FIG. 2. Geometry for the physical interpretation of response
6\/,2[%,”%( ) mzk ver(k.0) (36) theory (see Sec. Il D. Vectorsr andr’ define center-to-center

displacements of macroions. Vectars r,, andr; define points at
is the first nonlinear correction. On the right side of E2p), which either the macroion external potential acts or a change in
the second term represents the interaction of a macroion wittmicroion density is induced.
its own counterions. The terms in square brackets on the
right side of Eq(35) and the second term on the right side of gssociated with macroion-counterion interacti¢Bsy. (35)]
Eq. (36) originate again from the requirement of charge neu+as a closely related form
trality. We emphasize that nonlinear counterion response
generates not only effective many-body interactions, but also @
corrections to both the effective pair interaction and the vol- Ving(0) = [ dry [ drox(Iry = rohumdrumdra), (38)
ume energy. In fact, as is clear from E@33) and(36), the
nonlinear corrections toézf?(r) andE are intimately related to and a similar physical interpretation, except that the induced
many-body interactions. Note that the volume energy dedensity now interacts back with the first macroion, generat-
pends nontrivially on the mean macroion density, and thu$ng a one-body energy.
can contribute significantly to the total free energy of the Proceeding from linear to nonlinear response, the effec-

system. tive triplet interaction can be expressgtbm Eqg. (28)] as
D. Physical interpretation v3(r,r’) ZZJ dr1J drzf drg x'(ry—rzro—ra)
While the mathematical manipulations of response theory )
are simpler in Fourier space, the physical interpretation of Xvmdr)omdlrz = rPomd|rs=r'). (39

the theory is perhaps more transparent in r_eal space. 'F‘ tem}?gain the interpretation is clear: the external potentials due
of real-space functions, the induced pair interaction, in thc—i

; L o two macroiongtop two macroions in Fig. 2 separated by
?zn;?ra;esponse approximation, can be expregfiet Eq. displacementr, induce a change in counterion density at

pointr;. The induced density, which depends wiaon trip-
@ let density correlations in the OCP, then interacts with a third
vind(r):fdrlf dro x(Ir1 = ral)omdrdvmd|r2 =), macroion, at displacemenmt from the first, contributing a
counterion-induced three-particle interaction energy. Consid-
(37 ering now the nonlinear correction to the pair interaction,

where x(|r,=r5|) is the real-space linear response function,and leaving aside the term arising from charge neutrality, the

which describes the change in counterion density induced apan contribution can be writtefirom Eq.(33)] as
point r, in response to an external potential applied at

Referring to Fig. 2, Eq(37) can be interpreted as follows. Avgg(r):zf drlJ drzf dra x'(r1=rarp—rs)
The external potential due to one macroi@entered at the
origin in Fig. 2 induces at point, a change in counterion XUmd1)0mdF2)vmd|r3=r]). (40)

density fdry x(|r1=r2))vmdry). This induced density, which

dependgvia y) on the pair density correlation function of The interpretation is analogous to that for the triplet interac-
the intervening mediuniOCP), then interacts with a second tion, except that the external potentials at pomtandr, are
macroion, at displacememtfrom the first, giving rise to a now associated with the same macroion. Finally, the nonlin-
counterion-induced pair interaction energy. The linear-ear correction to the volume energfq. (36)], aside from
response contribution to the volume enekggr macroion  the charge neutrality term, has the form
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Nm (44) makes clear that there are two physically distinct types
AE= 3 f drlf erJ drg x'(ry—rarp=rs of counterion response: local response, associated with coun-
terion self correlations, and nonlocal response, associated
XUmdr)Umdr2)vmdra). (41)  with counterion pair correlations.

. : L ) At this point, we can specify the constasyin Eq. (15).
The physical meaning O‘M_E IS S|m'|lar to that OfAv,eff(r)’ Combining Eq.(43) with the long-wavelength limit of the
except that now the density that is induced nonlinearly by, ion-counterion interaction,, (k) — 4mZz€&/ ek?, ask

one macroion interacts back with the same macroion, gener-

. . L we hav
ating a nonlinear contribution to the one-body energy. —0, we have
lim[ x(K)ondk)] = Z/z. (46)
E. Random phase approximation k=0

Further progress towards practical expressions for effec] US: the linear response term in Hg5) already ensures

tive interactions requires specifying the OCP response fund2rOPEr norr_nahzann Qf?c(r), which implies thatpO:O.

tions. For charged colloids, the OCP is typically weakly cor- Proceeding to nonlinear response, we first note that the
related, characterized by relatively small Coup”ngthree-partlcle structure factor obeys the identity
parametersl’ =\g/a,< 1, wherexg=B7%€?/ € is the Bjerrum Sk, k') = SOSK)S(K + kDL +n2 €3 (K, k"]

length anda,=(3/4mn.)'® is the counterion-sphere radius. ’ ¢ Y

For example, for macroions of valenZe 500, volume frac- (47)

tion »=0.01, and monovalent counterions suspend_ed in Sa'%hereé(3>(k,k’) is the Fourier transform of the three-particle
free water at room temperatut®g=0.714 nm, we findI"  giract correlation function. Within the RPA, howeverd
=0.02. For such weakly correlated plasmas, it iSgng gl higher-order DCFs vanish. Thus, from E¢a1),

reasonable—at least as regards long-range interactions—@z), and (47), the first nonlinear response function can be
neglect short-range correlations. We thus adopt the rando'@xpressed in Fourier space as

phase approximatiotRPA), which equates the two-particle

direct correlation function(DCF) to its exact asymptotic s o keT , ,

limit: ¢@(r)=—pucd(r) or ¢@ (k) =-47Bz%€*/ ek?. In neglect- X (k) ==2 5 x(kxk )x([k +k'[) (48)
. . . . C

ing short-range correlations, the RPA is formally equivalent _

to the mean-field PB theory, as shown in the Appendix. Furand in real space as

thermore, we ignore the influence of the macroion hard cores K

on the OCP response functions, which is reasonable for suf- /¢ —r,r, —r)=- L-lz_ f dr x(ra=rDx(ra=rl)
ficiently dilute suspensions. Within the RPA, the O@®o- 2ng

particle) static structure factor and linear response function _
take the analytical forms Xx(lrs=r]). (49
1 1 Higher-order nonlinear counterion response leads to higher-
Sk) = R = T (42)  order terms in the effective Hamiltonidq. (31)]. For ex-
1-ntP(k)  1+kK ample, the effective four-body interaction takes the form
and o5k, k" k") = 6Y"(K" K", =k =K' =K")5md K)omdK')
BN XOmd K)o md[k + k" +K"]), (50

x(k) = = BnS(k) = (43)

1+ k2K’
where

wherex=\4mnz2e?/ ekgT. As shown below, the parameter 3

plays the role of the Debye screening consténterse Y'(k, K’ kr/)zin SH(k,k’ k") (51)

screening lengthin the counterion density profile and in the T 3t ° Y

effective interactions. In the absence of salt, the counterions . . .

are the only screening ions. The macroions themselves, beirlg the next higher-order nonlinear response function and

singled out as sources of the external potential for the coun- SOk, k" k") = SSK)SK)S(Kk + k' + KNSk + k')

terions, do not contribute to the density of screening ions.

Fourier transforming Eq43), the real-space linear response + (k" + k")) + Sk + k")) - 2] (52

function takes the form is the four-particle structure factor in the RPA. Just as effec-

x(r)==pnJ8(r) + nhe(r)], (44)  tive three-body interactions are related to corrections at the
two- and one-body levels, so four-body interactions entail
where corrections at the three-, two-, and one-body levels, which
B e (in Fourier spaceare proportional to appropriate summa-
hedr) =-—— (45)  tions ofo(k k' k") over the wave vectors, k', andk”. In

€ f principle, these higher-order corrections could be computed

is the counterion-counterion pair correlation functif@®9], to further check for convergence of the perturbation expan-
which has Yukawa form, with screening constanEquation  sion.
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IV. RESULTS preted as arising, respectively, from local and nonlocal non-
linear response of counterions to the macroion charge.
The linear-response counterion profile in the presence of a
A practical expression for the ensemble-averaged countetistribution of macroions can be obtained by ensemble aver-
ion density is now obtained by substituting the linear andaging Eq.(54) over macroion coordinates. In Fourier space
first nonlinear RPA response functiofisgs. (43) and (48)]

A. Counterion density

into the expansion fotp(k)) [Eq. (20)]. The result may be (Pco(K))m= p1(K{(P(K))m, (60)
expressed in the form where(),, again represents a trace over macroion coordinates
A A x(K) A A and(p(k)),, is the Fourier component of the average density
(Pc(k)) = peol(k) = mz peo(k")peo(k =K"),  k#0, of macroions. In real space, the average density of counteri-
¢ oK ons around a central macroion can then be expressed as
(53
where <p00(r)>m:p1(r)+nmf dr’ grelrDpa(r =r']), (61)
Peo(k) = x(KomdK)pm(k),  k# 0, (54)  where gy(r) is the macroion-macroion pair distribution

response counteriofunction. The latter function may be obtained from integral-

is the Fourier transform of the linear- ; X i ) Nt k
equation theory or simulation, with effective interactions as

density andv,,dk) is the transform of the macroion-

counterion interactiorispecified below Inverse transform- input.
ing Eq.(53) yields
1 B. Macroion-counterion interaction
(pe(r)) = peo(r) = 5 J dr’ x(Ir =r"Dlpeo(r )72, To this point, the theory makes no assumptions about the
2PN type of macroion. Practical calculations require specifying
(55) the macroion structure, the macroion-counterion interaction,
and the corresponding single-macroion counterion density
where orbital. Henceforth, we specialize to charged hard-sphere
Nim colloidal macroions. A convenient strategy, proposed in Ref.
peo() =2, p1(Jr =Ry)) (56) [30] and adopted in Ref$33,34], specifiew,Jr) inside the
i=1 hard core(r <a) so as to minimize counterion penetration.
is the real-space linear response counterion density in thd/€ thus assume
presence of macroions fixed at positidRg expressed as a - 778
sum of single-macroion counterion density orbitals , r>a
p1(r)—the inverse transform op(k)=x(k)ohdk). Equiva- vndl) = e (62)
lently - ZZéa f—a

Npp ea

Pco(f):f dr’ x(r ‘f'|)2 vmd|r"=Ri). (57 and choose the parameter appropriately. In passing, we
=1 note thatv,,{r) plays a role here analogous to that of an
Now substitution of Eqs(44) and (45) for the real-space empty-core pseudopotential in the pseudopotential theory of
RPA linear response function into Eq§5) and(57) allows ~ simple metal§65,66. As shown in Refs[30,33, at the level
the linear-response counterion density profile to be expressef linear response, penetration of counterions inside the mac-

as roion cores is eliminated by choosing=«a/(1+«ka). This
N choice yields
pcO(r) = Bncz |:_ vmc(|r - I:2i|) " AmZz€& |: K . :|
i= k) = ————| cogka) + —sin(ka 63
=t indK) = = T | Coska) Fsinka) | (63
2 e—K|r—r’\
+ f dr ’—,Umc(|r "-Ri)) (58) and
47 Ir=r’|
- - ZK_Z eKa e—Kr = a
and the nonlinear profile as pi(r) = 7anltra 1 (64)
0, r<a,

1
(pel1)) = peolr) + 5 Lpeolr) 1
¢ which is precisely the DLVO expression for the density of
p f e Hdr=r’l counterions around an isolated macro[@i,2§. The above
dr’
|

[peo(r T2 (59 choice for the parameter ensures that the linear term and
first nonlinear term of Eq(59) vanish completely inside the

The last two terms on the right side of £§9) are nonlinear macroion core. The same parametrization also allows, how-

corrections to the linear profile and can be physically interever, the final nonlinear term in E(h9) to be nonzero inside

8, r—r’'|
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the core, although in practice the fractional penetration is at 722 g NcksT
most a few percent. Independent of parametrization, Eqs. Eo=Focp~ Nle ka2
(55), (56), and(59) maintain charge neutrality by preserving
the number of counterions, sincgdr py(r)=Z/z and  and the first nonlinear correction
Jdr x(r)=x(k=0)=0.

Another artifact of the present scheme, apparent from Eq. NikgT
(56), is that the counterion density profile around a given E=-g—n?{f df[Pl(f)]s—ncf df[pl(r)]z}- (69)
macroion overlaps the hard cores of neighboring macroions. ¢

More general parametrizations of the macroion-counteriomhe first and second terms on the right side of EBB)

interaction than Eq(62) could conceivably eliminate coun- account, respectively, for the counterion entropy and the
terion penetration within all cores. An alternative strategymacroion-counterion electrostatic interaction energy, while
would inCOfporate excluded volume constraints directly |ntOEq (69) corrects the latter term for nonlinear response. The

the response functions, which then would more properly defina| terms on the right sides of Eq&§.7)~69) originate from
scribe the Swiss cheese OCP. In such a schefiesr’[)  the charge neutrality constraint.

would strictly vanish when eithar or r’ falls inside a hard
core. This condition—not obeyed by Eq#.3) and (48—
would enforce exclusion of counterions from all macroion
cores. Nevertheless, in the current scheme, the extent of core Finally, we generalize the above results to the case of
overlap is minor for macroion separations that significantlynonzero salt concentration. The average number de(igity
exceed the screening length!, which is usually the case in the free volumg of salt ion pairs,n=N¢/V’, is supposed
practice. maintained by exchange of salt ions with a salt reservoir
through a semipermeable membrane. The total average mi-
croion density is them,=n,+n_=n.+2n;, wheren, are the
average number densities of positive/negative microions.
The effective interactions can be expressed in real spadeollowing Ref.[34], the Hamiltonian generalizes to
by evaluating the respective inverse Fourier transforms.

: (68)

D. Effect of added salt

C. Effective interactions

From Egs.(28) and(48), the effective triplet interaction is H=Hp+H,+Hpn +Hy, (70
@ kT whereH,, is the Hamiltonian of the microion&ounterions
ey =Tl =T3) =~ 2z f dr py(ra—r|) plus salt iongandH,,, are the electrostatic interaction ener-

¢ gies between macroions and positive/negative microions.
Xpi([ro—r)ps(lrs—r]). (65  The presence of positive and negative microion species re-
quires a proliferation of response functiong; and xj,

Equations(25) and (26), combined with Eqs(43) and (63), i,j,k=%, and a generalization of E¢44) to
yield the linear-response prediction for the effective pair in-
teraction[33]: X++(r) == Bn,[8(r) + nyh,,(r)], (719
2 Ka 2 oK
o2(1) = Z_ez<e_) e (69 Yo (1) == B, (1), (710
e \1l+ka/ r
identical to the familiar DLVO screened-Coulomb potential xX-(r)==pn.[ér) +nh_(n], (719

in the limit of widely separated macroiofi@7,2g, while Eq.

(33) yields the first nonlinear correction wherehy;(r), i,j==, are the bulk microion two-particle pair

correlation functions, which depend implicitly on. Gener-
alizing Eq. (20), the ensemble-averaged microion number

KgT n = .
Mg ==~ f dr’ py(r')pa(r —r'|>[p1<|r -r'h- g] densities are given by
C

Btk = £ xulBi (0mfK) + 3 A K =K
The total effective pair potential is given by2(r)=v(r) A A A “ A
+Av'2(r). Note the distinction between the effective pair po- XOme(K)Ome([K = K'[)pm(k ") pa(k = K') + -+
tential, which is the interaction between a pair of macroions (k+0), (72
in a colloidal suspension of arbitrary concentration, and the
potential of mean force, which is the interaction between awhere we have exploited Symmetrig€s;,. = —0m-, Xse=X-t
is((z))lated pair of macroions, i.e., the low-density limit of Xiso=X:_., €tc., to define composite response functions as
Vert(1)- X=Xt ™ Xomr X=ZXom™ X X = Xiwr ™ 2Xoa—t Ximmw AN ).

The volume energy can be expressed—by combining Eqss x/__-2x’,_+x_,,. Substituting Eq.(72) into the multi-
(25), (28), (35), (36), and (63—as the sum of the linear component HamiltoniafEq. (70)], the macroion-microion
response predictiof83]: interaction contribution can be expressed as
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1 . on R from the fact that, for a pure symmetric electrolyte, response
Hipe + Hip- = Vz X0 (K)]“pm(K) ol — K) functions related by symmetry are equ&l...=x’__, Xi.-
k =x4_.), and so, from Eq(75), the nonlinear response func-

1 o , tion x’ is zero. This result—a consequence of charge neu-

+ \ﬁz x' (K, =k =k') trality that is analogous to the vanishing of the first nonlinear

kk! (quadratig term in the expansion of the nonlinear PB

X 0 (K)D e (KD (| K + K']) equation—may partially explain the surprisingly broad range

~ R R of validity of DLVO theory for high-ionic-strength suspen-

X prmlK)pm(K ") prml(= kK = K"), (73)  sions. Nevertheless, even in dilute suspensions at high ionic
where the linear and first nonlinear response functions arg"€ngth, higher-order nonlinear corrections do not necessar-
now redefined as the following combinations gf andXi'jki |!y vanish. Fo_r this rez_ison,_pr_edlctlons o_f the first-order non-

linear theory in the dilute limit may deviate from numerical
X=X+ X== Xt ™ 2Xa-F X (74 solutions of the full nonlinear PB equation, which include,

by construction, nonlinear corrections to all orders. The first-
order corrections are nonetheless valuable in signaling the
X =X =X = X=X+ 3xa— X . (75  onset of nonlinearity, as shown below.
Equations(78) and (79) may be compared with related
expressions derived via the density-functional approach.

and

The net effect of adding salt is to modify the previous salt-
free results as follows. First, the average counterion dens'%quation(?B) is similar in structure to an expression for a

N in the Det_)ye screening constaktand in the linear re- wall-induced effective pair interaction derived by Goulding
sponse f_unc_tlornEq. (43)] must be rep‘_Llaced g the total av- and Hanser56,57 {Eq. (13) of Ref. [56]}, if one factor of
erage microion density,. Thus, x— 4, z°¢?/ ekgT and pa(r) in Eq. (78) is replaced by a wall counterion density

X(_k)—_>—,8n_ﬂ$(k). The first nonlinear_response fungtign '€ orbital. It should be noted that these authors neglected the
tains its original form{Eq. (48)], but with the new definition )\ honlinear correction derived hef&q. (78)], which is

of x. The second modification is in the linear-response volygiitied only in the dilute limit of an isolated pair of macro-

ume energyEq. (68)], which become$34,7Q: ions. Equation(79) is similar to an expression for the triplet
7262 kgT (N, — N_)2 interaction derived by Léwen and Allahyar§®8], differing
Bo=Fiasma=Nm— 7 =~ 5 N AN (76)  only by a factor ofin,~n_)/n, and by our excluded-volume
T correction in the definition ok.
whereF ,,smaiS the free energy of the unperturbed microion
plasma. Finally, the effective triplet interaction and nonlinear
corrections to the effective pair interaction and volume en- E. Analytical expressions for effective interactions

ergy are generalized as follows: Quantitative predictions of nonlinear response theory are

N ke T (ny—nN2) facilitated by reducing the effective interactions to computa-
—"‘—B—{ J drlpy (= n, f dr[plm]Z},

AE= 6 e tionally practical analytical forms. Substituting E&4) into
I Eq. (77), and evaluating the integrals, the nonlinear correc-
(77)  tion to the volume energy can be expressed as
2)(ry = M ' ’ ' k _ 2 3 2
Av(r) = —kgT—— dr’ py(r)py(r = 1']) Ap 2 NokaT (0 n-){z K nM( 1 )
My 6 ni 87 \l+ka
n 3 6 ka \3
X[P1(|r‘r'|)‘_&], (79) _Z_K(G_)
3 @m\1+ra E:1(3xa) |, (80)
) (n,-n.) ) o )
Vei(F1 =Tl =T3) =~ kBTn—3 dr py(fry=rl) where E is the exponential integral functiof71]:
"
Xpa(Irz=rPps(lrs—r). (79 "
Equations(77)«79) [combined with Eq.(64) for p,(r)] El(x)=fl du=-, x>0. (81)

are the main new results for nonlinear effective interactions.

These expressions imply that nonlinear effects increase in

strength with increasing macroion charge, increasing macroSimilarly, the nonlinear correction to the effective pair po-
ion concentration, and decreasing salt concentration, and thigntial can be rendered analytically. The key is expressing the
effective triplet interactions are consistently attractive. Thesdntegral I1(r)=fdr’p;(r")[py(Ir =r'|)]* in Eq. (78) in the
results also imply that in the limit of zero macroion concen-form I1=F "{p;(k)p,(k)}, wherep,(k) = F {[p1(r)]?}, with 7
tration (n.=n,—n_—0), or of high salt concentratioin,  denoting the Fourier transform operator aAd’ its inverse.

— ), such tha(n,—-n_)/n,— 0, the leading-order nonlinear Substituting Eq.(64) into Eq. (78), Avfﬁ)(r) reduces, after
corrections all vanish. This dilute limit follows naturally some algebra, to
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g K" KT -Ka 4
Ao = ()= + (1) — + f3(N)—, >0, @
r r r 3 —— Nonlinear
(82
where "’g 2
f1(1) = Clk(r = 0) + 1 =€) + CEy(k(r ~ @) + Ex(3Ka) =
- Ey(xa)], (83)
0
£2(1) = - C; Ex(3u(r + ), (84 " e "
and
f3(r) = CJE1(2x(r + @) — E1(2«(r —a))], (85) —  Nonlinear
with 10t \ Linear
1(n,—-n.) 2% e2 \2 2
c =t )—< ) (86 5
6 n, € \1+ka
and
1 (n,—-n)Z%3( e@ \3
czz_(*2 ) "( ) (87)
8 ne ze \l+ka
It is interesting to examine the asymptotic— ) behav- FIG. 3. Ensemble-averaged counterion density around a single

ior of the leading-order nonlinear response approximation tg"acroion for macroion diametes=100 nm and valencea) Z

the effective pair interaction. From Eq82)—(85), using the - 100:(P) Z=500, at volume fraction=0.01 and zero salt concen-
inequality E(x) < e™/x, we find the asymptotic limit tration. Dashed curves: linear response theory. Solid curves: nonlin-
ear response theox§irst-order correction

limv3)(r) = Cyk €, (88) _ ,
r—oo and 700(b) and with small concentrations of added salt. As a

heck on the calculations, the interactions were computed

which exhibits a more gradual decay than the screenedg : :

) . . oth by Monte Carlo integration of E¢78) and from the
Coulomb DLVO potentia[Eqg. (66)]. We emphasize that this . : :
result does not contradict measurements of DLVO-like internanalytIcal expression§Egs. (8287, the results being

tions between isolated pairs of macroions in dilut identical to within numerical error. Enhanced screening, re-
actions between Isolated pairs of macroions ute Sus.per%ulting from the sharper nonlinear counterion profiles around
sions[12], since in the dilute limiC; — 0 and the asymptotic

. . . . macroions, has the general effect of weakening the pair in-
behavior reduces to that of linear response. The physical S9ractions. For a given macroion diameter, nonlinear correc-

nificgnce of Eq(88) may be limited, hovv_eve_r, by the neglept tions increase in magnitude with increasing macroion va-
of higher-order nonlinear terms and shielding by mtervenlngIence and concentration and with decreasing salt

ma}chE)lons [72] at d|star/1ces be%;gnd the mean nearest,entration. Qualitatively, our predictions are consistent
neighbor separatio,>[3/(4mny) ]~ with the recent observations of Durand and Frafcg of
surprisingly short-ranged pair correlations in highly deion-
ized colloidal suspensions. A quantitative comparison, how-
To quantitatively illustrate the influence of nonlinear €ver, would require computing the radial distribution func-
screening, we compute counterion density profiles and effedion g(r) from our v{3(r), by means of integral-equation
tive pair and triplet interactions for selected system paramtheory or simulation, or computingff?(r) from the experi-
eters. All results presented are for the case of monovalenhental g(r) data. Note that the effective pair potential dis-
counterions(z=1) and aqueous suspensions at room temcussed here is distinct from the potential of mean force
perature(A\g=0.714 nm. Figure 3 compares the counterion v,(r), which was obtained in Ref73] from the experimen-
density profile around a single macroion of diameter tally measuredy(r) via the definitionv(r)=-kgT In g(r).
=100 nm and valencegZ=100 and 500 in a dilute(zn In Fig. 4(c), the parametergmacroion diameter,o
=0.01) salt-free suspension, as predicted by linear response652 nm, and volume fractiony=0.0353 are chosen to
(DLVO) theory [Eg. (57)] and by first-order nonlinear re- compare with the experiments of Larsen and Gf0)] in
sponse theonfEg. (59)]. The linear-response counterion which unusually long-lived metastable face-centered-cubic
densityp.(r) is approximated here by a single orbitalr) (fcc) crystallites were observed. The macroion valence here
[Eqg. (64)]. Evidently, nonlinear response sharpens the distriis set to the maximum consistent with charge renormalization
bution of counterions around a macroion. [74], Z'~0(10)(a/\g) =5000, assuming the charge of a
Figure 4 compares the linear and nonlinear response prenacroion to be reduced in bulk compared with its value in
dictions for the effective pair interaction, now fér 400 (a) isolation[75]. While the pair interaction remains repulsive, it

V. NUMERICAL INVESTIGATIONS AND DISCUSSION
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600 between like-charged macroions. The phase behavior of
highly charged colloidal crystals will be the subject of a fu-
ture study.

The insets to Fig. 4 illustrate the extent to which the ef-
fective pair interaction may be fit by a screened-Coulomb
(DLVO) potentlal For sufficiently weak nonlinearityig.
4a)], veﬁ(r) may be reasonably fit by a DLVO potential with
the same screening constant but a lowenormalizegl ef-
fective charge. The tendency of nonlinear screening to pre-
serve the DLVO form of potential is consistent with conclu-
sions from PB cell model calculationfr4], ab initio
01 > simulations[21,22, and optical tweezer experiment$0],
all of which support the bulk DLVO potential in the weakly
nonlinear regime. In the more strongly nonlinear regime
1500 [Figs. 4b) and 4c)], however, our calculations indicate that
effective pair interactions may deviate significantly from
DLVO form. In this regime, ifvfﬁ)(r) can be fit at all by a
DLVO potential, then it is only over a limited range and only
by allowing renormalization of both the charge and screening
constant. Similar departures from DLVO behavior with in-
creasing macroion-counterion coupling strength have been
predicted by integral-equation theorigk3—49.

Although in the physically relevant range of macroion
valence (Z<Z") the predicted pair interaction is always
purely repulsive, at highgunphysica) valencegZ>Z") the
leading-order nonlinear theory predicts thzéﬁ(r) can de-
velop an attractive well at sufficiently high macroion concen-
trations. Mathematical proof¥6—-78 have recently shown,
however, that PB theory cannot yield pair attraction—at least
between a pair of isolated macroions. Since the RPA used
here is formally equivalent to mean-field PB thegsge Ap-
pendi®, the emergence of an attractive pair potential is best
interpreted as a sign that higher-order nonlinear terms must
then be included.

As a quantitative test of the nonlinear response theory, we
compare predictions with available data from thie initio
simulations of Tehveet al. [21]. By assuming a counterion
density orbital and ignoring counterion density fluctuations,
the ab initio approach provides the most direct test of the
theory. Figure B) presents the comparison for the total po-
tential energy of interaction between a pair of macroions, of
diameteroc=106 nm and valencg=200, in a cubic box of

FIG. 4. Effective pair interactions for macroion diameterva- length 530 nm with periodic boundary conditioiigking
lence Z, volume fraction 7, and salt concentratioms: (8 o into account image interactions the absence of salt. The
=100 nm, Z=400, »=0.01, ¢s=1 uM; (b) 0=100 nm,Z=700, 7  theory is in essentially perfect agreement with simulation,
=0.01, ¢=1uM; (¢) 0=652nm, Z=5000, 7=0.0352, ¢s  githough nonlinear effects, for these parameters, are rela-
=0.2 uM (chosen to compare with R€fL0]). Dashed curves: linear tively weak. Figure Bo) shows results for a higher valence
response prediction. Solid curves: nonlinear response predlctlorﬂZ 700, for which case simulation data are not yet avail-
The insets show that for sufficiently weakly charged macroi@ns able, but where nonlinear effects are more prominent. Fur-
the effective pair interaction may be fit by a Yukawa potentidth h T |ati f hiahlv ch d . ) Id
a lower effective chargewhile for more highly charged macroions ther simufations of more hig y ¢ arge macroions wou
(b,0) deviations from linear behavior can be significant. more SeVere'Y test the th_eory__m particular, convergence of

the perturbation expansion—in the strongly nonlinear re-
is significantly weaker than the DLVO prediction over a gime.
range comparable to the macroion diameter. A weaker pair To quantify the range of validity of the linear response
interaction could promote the influence of three-body attracapproximation and to measure the impact of nonlinear
tions, as well as interactions ignored by mean-field theoryscreening on thermodynamics, we calculate the magnitude of
such as short-range counterion fluctuation-induced attradhe leading-order nonlinear correction to the pair interaction
tions[25,40. In this way, nonlinear response may contribute Av'2(r) at the mean nearest-neighbor separatignwhere
to explaining experimental evidence for apparent attractionpair interactions contribute most to the potential energy. Fig-
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FIG. 6. Map of nonlinear deviations from linear response theory

concentration. The potentials are shifted to zero at maximum mador macroions of diametes=100 nm and valences, from top to
roion separation. Dashed curves: linear response prediction. Soligbttom, Z=500,600, 700, for fcc crystal structure. Systems with

curves: nonlinear response prediction. Symbalsinitio simulation

data[21].

macroion volume fractions; and salt concentrations, above the

respective curves deviate from the linear response pair potential at
the fcc nearest-neighbor distance by at l€astl or (b) 0.1 kgT.

ure 6 maps out, in the space of macroion volume fractjon
and salt concentratiocy (measured inuM), the boundary of . . _ _
the region within whicHAv2(r,,)| exceeds typical thermal ©f highly charged macroions, effective many-body interac-

energies, for

the fcc

crystal

structure:r,,/ o

=2"Y2(277/37)Y3. For points above the boundary curves,

|A0@(r )| > 1 kgT [Fig. 6@)] or 0.1ksT [Fig. &b)]. Points o ‘

on the boundary curves in Fig. 6 correspond to thermody- W

namic states for which a stable fcc crystal phase is predicted Oooooo ..-"

by simulations of model Yukawa systenj47], although — 200 | Oooo o~

these simulations do not include influences of the volume e - o Z=500

energy. With increasing and decreasing,, the thresholdy = S * Z=700

decreases Thus, nonlinear screening is anticipated to in- = o

creasingly influence thermodynamics with increasing macro- & 400 ¢ ,'

ion charge and concentration and with decreasing ionic > &

strength—just the conditions under which anomalous phase .

behavior has been observgg-10. -600 ‘1" :
Moving beyond pair interactions, Fig. 7 shows the effec- t/G

tions may become significant. In particular, as noted above,

tive three-body interaction between a triplet of macroions

arranged in an equilateral triangle for=100 nm and two

FIG. 7. Effective three-body interaction between three macro-

different valencesZ=500 and 700. The interactions were jons, arranged in an equilateral triangle of side lengtith mac-
computed numerically by Monte Carlo integration of EQ. roion diametere=100 nm, valenc&=500 (open circle, Z=700
(79). The strength of the interaction is seen to grow rapidly(filled circles, volume fraction7=0.01, and salt concentratian
with increasing macroion valence and with decreasing sepa=1 uM. Computed by Monte Carlo integration of E9), with
ration between macroion cores. In a concentrated suspensionmerical errors comparable to symbol size.
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triplet attractions may well contribute to the surprising meta- 200 ;
stability of colloidal crystallites observed in deionized sus- \ Z=700 (a)
H \
pensiong10]. o N Pair (linear)
To again test the theory against simulation, we compute 2 AN Pair (nonlinear)
the force on a macroion in an equilateral-triangle configura- o 100} AN .
. ) ) ) L o Triplet
tion of three macroions as a function of the triangle edge
length. On expanding a triangle from edge lenRhAR/2 8 N
to R+AR/2, the energy changes by u"CE \\\\\\\\\\\\
AR AR AR 0
30=3/uf3(R+ 2F) -o3(R-25) | i+ )
o AR 100 200 300
— Vgt R—? . (89 r (nm)
Since, as the triangle_expands, each of the three macroions 300 , ' '
moves a distancAR/ 3 parallel to the total effective force \ Z=1000 (b)
F acting on it, ;_he change in energy also may be expressed as w00 | \\ _____ Pair (linear) |
AU=-3FAR/+3. Equgtmg the two expressions fatJ, the 2 \ Pair (nonlinear)
total force can be written as a . o Triplet
F(R = FO(R) + FO(R), (90) 8 100} ¢ Total
where o e
_ w [ e~ T
- \3 AR AR 0 § PSSO _
i = 5 o e o o= )| o
100 200 300
and r (nm)
-1 AR AR
F(s)(R) = \,EAR[Ué?z(R*' 7) - Ua(e?f’?(R‘ ?)} (92 FIG. 8. Predicted force on a macroion in an equilateral-triangle
“ arrangement of three macroions, each of diametef06 nm and
are the effective pair and triplet forces, respectively. valence(a) Z=700,(b) Z=1000, in a cubic box of length 1000 nm

To compare directly with available simulation dggd],  With periodic boundary conditions at zero salt concentration.
we consider macroions of diameter=106 nm in a cubic DPashed curves: sum of linear response effective pair forces. Solid
box of length 1000 nm with periodic boundary conditions j curves: sum of_ n_onlinear effective _pair forces. The symbols are
the absence of salt. Over a range of macroion valences, waeoretical predictions for the effective triplet forgepen circles
compute the sum of lineabLVO) effective pair forces, the and the totalpair plus triplej effective force(filled circles.

sum of nonlinear effective pair forces, the effective triplettions among particles with internal degrees of freedom are,
force, and the total effective foroagum of pair and triplet in general, nonpairwise additive, and that triplet interactions
forces, from Eqgs.(90)«92). For a valence oZ=200—the  may be attractive at the same time that pair interactions are
only case for which simulation data were reporf2d]—the  repulsive. Recently, Russt al.[81] solved the nonlinear PB
predicted total force is essentially identical to the sum of pairequation for triplets of macroions immersed in an electrolyte.
forces, consistent with Ref21], in which an absence of Their conclusion that three-body effects are always cohesive
many-body effects was concluded. For higher valences, howagrees qualitatively with our results, and those of Re8].
ever, three-body forces armt negligible. Figure 8 presents We note, however, that three-body contributions to the grand
predictions of the theory faZ=700 and 1000, demonstrating potential, calculated in Ref81], are not directly comparable
significant deviations of the total force from the sum of pairto three-body interactions in the effective Hamiltonian, cal-
forces. For the casé=1000, which somewhat exceeds the culated here and in the simulations of Tehe¢ral. [21]. In
charge-renormalization limif74], the predicted total force another study, Wuet al. [82] extracted three-body forces
actually becomes attractive beyone- 20, although this is  from Monte Carlo simulations of macroion triplets in equi-
likely an artifact of truncating the perturbation series andlateral configurations. These authors found attractive electro-
thereby neglecting higher-order nonlinear terms. Again, furstatic three-body forces, but also detected a significant repul-
ther simulations could help to resolve the issue. sive contribution attributable to hard-sphere collisions
Other workers have investigated many-body interactiondbetween macroions and microions, which were modeled in
in charged colloids. Schmifz9] has developed a theory that the simulations as charged hard spheres. Future extension of
describes sharing of counterions between macroions, analthe response theory from point microions to hard-core micro-
gous to molecular chemical bonding, and used the theory tmns would allow a more direct comparison with these Monte
study the influence of many-body effects on counterion disCarlo data.
tributions and the structure of colloidal crystals. SEg0), Influences on thermodynamic phase behavior of nonlinear
exploring a phenomenological model, showed that interaceorrections to both effective interactions and the volume en-
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ergy are now being explored. It may be anticipated that thes€hristos Likos, Hartmut Léwen, Kenneth Schmitz, and Hao
corrections will be especially significant for deionized sus-Wang are gratefully acknowledged. This work was supported
pensions of highly charged macroions. Preliminary calculaby the National Science Foundation under Grant Nos. DMR-
tions of free energies and phase diagrg8% indicate that 0204020 and EPS-01322809.

the spinodal-instability mechanism proposed to describe

phase separatidi30,3] remains qualitatively valid—at least

under the assumption of fixed macroion charge—but that APPENDIX: COMPARISON WITH RELATED

nonlinearity can significantly shift the phase boundaries and, THEORETICAL APPROACHES
in some casesenhancethe tendency toward phase separa- 1. Response theory versus Poisson-Boltzmann theory
tion.

The role of nonlinear response and of effective many- We demonstrate here that response theory, when com-
body interactions in dense electron-igmetallic systems bined with the RPA for the microion response functigsee
has long been recognized and discug$#d-89. In this con-  Sec. Il B is formally equivalent to Poisson-Boltzmann
text, it has been argued that nonlinear corrections to paitheory. The ensemble-averaged number density profile of
potentials and structure factors either are wigg8t or can be  positive microions, in the presence of the macroion potential
incorporated into the linear response schd@d, but that  ¢.,(r), is given exactly by the Euler-Lagrange equation
nonlinear corrections to the volume energy and thermody;63,89:
namic propertiege.g., bulk modulusare more significant
[86]. Whether the same argument applies also to colloidal ePue @
systems is being investigated in ongoing studies of phase p+(r):Fexp{— BZ&Pexdr) + .7 (r;[p+(r), p-(r) ]},
behavior[83]. *

VI. SUMMARY AND CONCLUSIONS

In summary, by incorporating nonlinear microion screen-\"/hid_1 fO”OWS from minimization of the grand potential
ing into a mean-field response theory of charged colloids ifunctional with respect t.(r). In Eq. (A1), u. and A,
the primitive model, we have derived nonlinear correctionsdenote the chemical potential and thermal de Broglie wave-
to the effective electrostatic interactions between hardength of the positive microionsge,(r) is the “external”
spherical macroions in bulk colloidal suspensions. The keglectrostatic  potential ~ of ~ the  macroions,  and
physical concept is that nonlinear screening entails both ele{?(r ;[p.(r),p_(r)]) is the one-particle DCF of the positive
fective many-body interactionand essential corrections to microions, which is a functional of the inhomogeneous mi-
the effective pair potential and the one-body volume energyeroion densities. Expanding®(r ;[p.(r),p-(r)]) in a func-
Effective triplet interactions are predicted to be always at+ional Taylor series about the averadpelk) microion densi-
tractive, consistent with previous wof&8,81]. The effective  ties, n, andn_, we have
pair potentialvffz(r), which in the lineaDLVO) theory has
screened-Coulomb form, is shortened in range by the influ- _ ﬂ )
ence of nonlinear screening, but remains purely repulsive pe(r) = AS €XP| ~ Az&pex(r) + €7 (n,,N-)
within the physically reasonable range of renormalized mac-
roion charge;. Predi_ctions f'o[;:,zf%(r) are in_essentially perfect +f dr’ cﬂ,zﬂ(|r —r'n,nO[ps(r) = n,]
agreement with availableb initio simulation datg21]. The

(A1)

theory also predicts that triplet forces are negligible between

weakly charged macroions, consistent with simulafi2f], +J dr’ c¢2(|r - r'|;n+,n_)[p_(r')—n_]+---},
but can be significant for higher macroion charges. Further

simulations of more highly charged and concentrated macro- (A2)

ions are now required to more severely test the theory.

Analytical and numerical results confirm that nonlinearwhere ci(jz)(r;m,n_), i,j=%, are the bulk microion two-
effects become qualitatively stronger with increasing macroparticle DCFs, which are related to the one-particle DCFs via
ion charge, increasing macroion concentration, and decreas-
ing salt concentration. In the dilute limit of zero macroion 8 (r;Lps(r),p-(N)])
concentration, but nonzero salt concentration, leading-order Spy(r") :
nonlinear corrections vanish. Perhaps the most practical ap-
plication of the response theory, illustrated here, is to map- (A3)
ping out the parameter ranges within which linear theories \We now make the mean-field random phase approxima-
can be trusted. Future work will explore implications of non-tion [63]: (1) neglecting three-particle and higher-order cor-
linear screening for thermodynamic properties, in particularrelations, i.e., truncating the series in §42), and (2) ig-
the phenomenon of phase separation at low salt concentraoring short-range pair correlations by simply equating
tions and the stability of deionized charged colloidal crystalsci(l?)(r 'n,,n_) to their asymptotic long-range limits

¢@(r =r'l;nn) = lim
pa(r)—ny

ACKNOWLEDGMENTS N
Ci(jZ)(r;n+:n—) = - Bu(r), i,j=%. (A4)

Helpful discussions and correspondence with Juan Anto-
nio Anta, Neil Ashcroft, Jayanth Banavar, Carl Franck, Equation(A2) then becomes
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p+(l’) =n, exf<_,8{ze¢ext(r) +f dr’ U++(|r - I”|) p:]_(f) =1 _BE {Um+(|r - Ri|) + f dr’[n+h++(|r —I”|)
X[ps(r") —n+]+Jdr’ ve(Ir =r"Plp-(r") —n_]}) —n_he_(Jr =r"DIome(r’ —Ri|)} (A10)
=n, exd- Bzeh(r)], (A5)  and
where we have usam:(eﬂﬂ+/Af)exdcil)(n+,n_)] and have p(r)
identified ;1— =1 +,82 vme(Jr = Ri]) + f dr'[n_h__(r =r’|)

ze
er—r’'|

¢(r)=¢ext(r)+fdr’ [p+(r") —ny—p_(r')+n_]

_n+h+—(|r _r,|)]vm+(|r, _R||)} (A11)

(A6)
. . . On the other hand, from E@A2), we have the exact rela-
as thetotal electrostatic potential, due to both the macroions;j,o

and the surrounding microions. Similarly, the density profile
of negative microions is given by

pi(r)=n, exp{—ﬁz ome(|r = Ri) + f dr’ ¢2(r =r'|)
p(r)=n_ exp(—ﬁ{— Z8hex(r) + f dr’ v, (r=r'] |
X[py(r') = n,]+ j dr’ ¢2(Ir =r'Dlp-(r') - n_]

X[p.(r')=n,] +Jdr’ v_(|r =r'Plp-(r") - n_]}>
=n_ exfd Bzep(r)]. (A7) * } (A12)
Combining Egs(A5) and (A7) with the Poisson equation  gnd
A7
Vi =- Tl -ze ) A8, = exp{ﬁE vl R+ f ar’ c2(r -r'))
we obtain

X[ _(r’)—n_]+fdr’ c2(r =r'Plps(r’) = n,]
V2(r) =~ %m{m exf - Bzep(r)] - n_ exd Bzed(r)]}, g | e

(A9) e } . (A13)

which is the PB equation for macroions in a symmetriz . ) ) .

electrolyte. We conclude that the RPA-based response theoffuncating the expansions on the right side of E@#&l2)

is formally equivalent to the mean-field PB theory. This is @nd(A13) at the level of two-particle correlations amounts to
not surprising, given that both approaches neglect microiof® HNC approximation in integral-equation theory. If we
correlations. Response theory, however, provides a powerfi#rther linearize the exponential functioriexpanding and
framework for going beyond a mean-field description by sysJeglecting all but the first two termssubstitute recursively
tematically including microion correlations via more accu-for p«(r) andp_(r), and use the Ornstein-Zermik@2) rela-
rate approximations for the response functions of the microtion for mixtures[63]

ion plasma.

hi(r) = c2(n) + 2 ni [ dr’ c@(r =r'Phy(r"),
k

Here we show that linear response theory is equivalent to (A14)
a linearized HNC approximation in integral-equation theory.
Substituting Eqs(71) into the Fourier transform of Eq72),  we recover Eqs(A10) and (A1l). Thus, the linear response
the linear response expressions for the ensemble-averagagproximation is equivalent to a linearized-HNC closure of
number density profiles of positive and negative microionghe OZ relation, while nonlinear response generates new clo-
are sures.

2. Response theory versus integral equation theory
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