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Determination of branch fraction and minimum dimension of mass-fractal aggregates
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Particles of micrometer to nanometer size often aggregate to form branched structures. Such materials
include metals and metal oxides as well as biological and polymeric matéc@misidering the persistence
length as a primary unjitCharacterization of such structures is difficult since they typically display disordered,
irregular features in three dimensions. Branched aggregates display two limiting size scales: that of the primary
particle, R; and that of the aggregat®,. The mass-fractal model is often used to describe such structures
where the aggregate mags;M,/My, is related to the aggregate size,R,/ Ry, through a scaling relationship
z=ar%, where the lacunarity is close to 1 and may depend on the growth mechanism. Scattering of x rays,
light and neutrons yields a direct measure of the mass-fractal dimensionl Gineeq ™ for 1/R,<q<1/R;
using scaling arguments. For linear, monodisperse aggregates with convoluted chain paths, analytic functions
describing both the scaling and larger-size aggregate scattering regimes have been reported. For example, the
Debye function for linear, Gaussian coils describes scattering vdpeR2. Real, mass-fractal aggregates,
however, can display variability from the linear chain, monodisperse model. Often the branch content is of vital
importance to understanding both the growth of aggregates and their physical properties, especially dynamic
properties. An approach is presented for the analysis of aggregate branching from static small-angle scattering.
Comparison is made with analytic, simulation, and experimental results from the literature.

DOI: 10.1103/PhysRevE.70.031401 PACS nuner61.43.Hv, 05.45.Df, 47.53.n, 64.60.Ak

I. INTRODUCTION ing two-dimensiona(2D) imaging technique§l1-14 espe-
cially when d;>2 [12]. Even when microscopy has been

High-surface-area, particulate materials often aggregatgsed to quantify branchingj6,11-19 the approach has

into loosely branched structures due to a competition be- roven tedious and the results generally qualitative. A

tween the kinetic laws governing transport and bonding ar?(gimple, direct measure of the branch content for aggregates is

the reduction in free energy associated with a reduction ”Fﬂghly desirable both for modeling of growth as well as for

surface area. In pOIyme”C materials, directional bondm nderstanding the properties of mass-fractal aggregates, es-
leads to molecular chain aggregates that can be toDOIOg'Calgecially dynamic properties

linear and in some ways structurally analogous to pqrticqlat Static-scattering techniques have been used to great suc-
aggregates. For ceramic aggregates formed by partial Smteééss in characterizing disordered aggregate structures

ing [1] or partial Ostwald ripening2,3] of nanoscale pri- N L
mary particles, such directional bonding is régeverned by [10.11,13,14,20-32 Generally, Guinier's law23]

crystallographic featurep4] when it occurg and branched - 2

structures are more common. Similarly, pharmaceutical ma- () =G eXP<(—q;()L) (1)
terials can display ramified aggregate structujgs Re-

cently, branched aggregate structures have also proven imand the fractal scaling lail1]

portant to models for glass formati¢é]. The branch content R

of aggregate or polymeric structures is of vital importance to (@) =Bq (2)

physical properties, especially when considering dynamicshave been found useful to locally describe the signature of
The viscosity of polymer melts, for instance, is greatly af-mass-fractal aggregates in  scattering, wherg
fected by branch contefi7]. Similarly, the reinforcement of =(47/)\) sin(6/2) and 6 is the scattering angleR, is the
elastomers by ceramic aggregates is governed by branch cogyiys of gyration for the aggregat& is defined aanﬁ
tent [8,9). For pharmaceutical systems it has recentlyyhere N is the number density of particles amd is the
been shown that bioactivity is strongly influenced by nymber of electrongfor x-ray scatteringin a particle,d; is
aggregatior{s]. the mass-fractal dimension, aBgis the scaling prefactor in
the fractal, power-law regimg2]. The primary particle con-
tribution to scattering occurs at smaller sizes and is indicated
by a second, higle- Guinier functionG,, Ry,, as well as,
Quantification of branch content is challenging since ag-often, a scaling regime reflecting Porod’s 1§24

gregates follow three-dimensional mass scalib@ hinder-

I(q) = BPq_4l (3)

where Bp:27TGls_|_/V§, and S, and V; are the surface area
*Currently on sabbatical leave at Institut fir Verfahrenstechnik,and volume of the primary particles. The index 1 refers to the
ETH Zentrum, ML F 26 CH-8092 Zirich, Switzerland. smallest-size scale for the aggregate, the primary particle.

A. Aggregate scattering
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These local, scattering laws describe the overall structura
size, Eq.(1), and mass/surface scali(®) and(3) of a struc-
ture. The local laws cannot independently describe topologi-
cal features such as branch content. For example, a Gaussit
linear chain displaysl;=2 and follows Eq(2) in the same
way that a randomly oriented disk displays the scaling sig-
nature of a two-dimensional structure. The two structures
cannot be distinguished by the power-law scaling regime
alone. Similarly, the Guinier regime cannot independently
distinguish between disk and linear Gaussian scattering. Thit
is a manifestation of the loss of phase information inherent to
static scattering. However, the power-law and Guinier re-
gimes of scattering reflect different average attributes of a
fractal structure and in combination can yield new informa-

tion. By describing the scattering curve across multiple re- g1 1. 2p schematic sketches of aggregates with sifijaca)

gimes, information pertaining to topology can be ascertainedinear aggregate an) a branched fractal aggregate of identipal
from a static measurement as is supported by the differenaggyt differentz andd;, as described in the text.

between scattering functions for two-dimensional objects of

different topology—e.g., disks and Gaussian coils, described
later. Bf 1= Giddfl"<%) , (5
A global scattering functiorj22,25-27 for mass-fractal ' Ry, \2

aggregates has been previously reported and demonstrated.

For aggregates with primary particles that display sharpgvherel’() is the gamma function. For branched aggregates,
smooth interfaces, scattering can be represented by sevew. (5) is no longer appropriate since it is based on an
parameters, with index “1” representing the primary particlesasymptotic value from an integral for linear structures
and index “2” the aggregateS;, Ry 1, Bp andG,, Ry2, Br,  [22,34. Equation (5) will be modified to account for
d. From the three parameters associated with the primargranched structures in this article. First, scaling laws for

particles we can calculate the primary-particle sigeas the  pranched aggregates will be summarized.
ratio of the third to the second moment of size, the polydis-

persity of primary particles, and the number density of pri- _
mary particle§28,29. B. Scaling laws for branched aggregates
By combination of the primary and aggregate parameters, |, rig 1. a Jinear chain aggregate and a branched aggre-

the degree of aggregatiom, can be calculated in several gae are schematically represented in two dimensions. The
ways[22,29. z rgflects the. number of primary particles in an pranched aggregate, Fighl, can be described in terms of a
aggregate and is proportional to the aggregate mass. Usinginimum path across the aggregate, open circles in Fig, 1
the Guinier prefactors of Eql), the ratio of the second and \yhich is, in this case, identical to the linear chain path of Fig.

first moments of the number distribution afis obtained 15 |t is convenient to describe a scaling relationship be-

[22,28: tween the number of primary particles in this minimum path,
G, (& p [open circles Fig. ()], with the aggregate sizR, and
L=< =00 (4) with the degree of aggregation,[8,35]:
G, (2
since G,=N,nZ,=N,z2nZ; and G,=N;nZ,=N,zrg,, where R, \d
N, is the number density of aggregates, is the average pe~z~ (ﬁ) , (6)
1

number of electrons in an aggregahg, is the number den-
sity of primary particles, and, is the number of electrons
in a primary particle. The superscript ann Eq. (4) is asso- wherec is the connectivity dimension arfg, is the size of
ciated with the source moments. This calculation involves ndhe primary particles or the smallest size displayed by the
assumptions concerning the aggregate structure except theggregate(c is also termed the intrinsic dimensid86].)
the particles described b9, aggregate to form the structure The minimum path is a fundamental feature of a branched
described byG,. z can also be calculated using structural aggregate and describes the scaling behavior of branching
sizes and scaling from scatterifig0]. with mass in terms o€ andz. Since Eq(6) relies onz, it is
Chainlike aggregates, which do not display branching, arénherently necessary to know the structure of the primary
termed “linear” aggregates. For instance, a linear polymeparticle, R;, to determine features related to aggregate
chain in a# solvent, a random walk, displays a dimensionbranching, the second scaling relationship of &j. c is 1
d; =2 [31], while alinear chain in a good solvent, self- for a linear chain and increases dp with increased aggre-
avoiding walk, displays a dimensiotk=5/3 [31-33. For  gate branching. A “regular object™—for example, a rod, disk,
monodisperse, linear aggregates the paranitef Eq. (2)  or sphere—is defined by=d;.
is uniquely related to the other aggregate scattering param- Furthermore, it is convenient to describe a direct scaling
eters[22,25,2T: relationship forp with the aggregate siz&,/R; [8,35]:
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TABLE |. Values ofd;, c, dy,;,, andBs for several well-described structures.

Disk [23] Rod [23] Gaussiar{31,38 (random wallk  Good solven{31-33 (self-avoiding walk
dy 2 1 2 5/3
c 2 1 1 1
i 1 1 2 5/3
Object Type regular regular and fractal fractal fractal
B; Analytic Gy/RE  7G,/(V3Ry)=1.81G,/Ry 2G,/R] unknown
B Eq. (5') G,/R 177Gyl Ry 2G,/R; 5I'(5/6)G,/ (3RS
R, | dmin ion with ¢ as shown in Fig. 2. Figure 2 is intended to indicate
p= El ) (M the optimal range of sensitivity for the branch fraction—i.e.,

smallc and relatively smalk.
whered,,, is called the minimum dimension,,;, is 1 when At times it is useful to describe the average coordination
a linear path from one side to the other of an aggregate camumbercy for primary particles in a branched aggregHte
be made through the structure—i.e., for “regular objects.”
For linear chainsc=1 anddy,=d:. d.,;, drops with in- =2+ n?br =24 <¢_br) (11)

creased branching. From Ed$) and(7) a relationship be- Zy,
tweenc, dmpn, andd is available, The coordination number also depends on the mass of an
d average branclg,,.
c= _f' (8) g Ifzbr
dmin
so that only two principle scaling dimensions are needed to C. Disk versus Gaussian, linear-chain scattering
describe a branched aggregatein Fig. 1(a) is identical to For a monodisperse population of aggregates, (Bgis
dmin in Fig. 1(b) so that the branched aggregate might benot correct if the aggregates are nonlinear. For instance, for
described ag/p superimposed chains of dimensidg,. objects withd;=2, the extremes of a Gaussian, linear poly-

Table I gives values for well-described reguldy=c) and  mer and a disk can be considered, Table I. The scattering

mass-fractal structures to clarify the use of E@—8). A function for a disk of radiuR [23] (ZRngz)'
regular structure is considered, in this context, as a fully

branched object of mass-fractal dimensgnin addition to I(q) = @q‘z[l B J1(2qR)]
these scaling relationships, a regular object displays the high- R? gR
est degree of asymmetry possible for a given valud;of 1/2
The number fraction of brancheg,,, in an aggregate can - G, 1- J1(2(277°)gRy) disk (12)
be calculated from (ng)Z 21/2ng '
b= Z-p_ {1 _ (&g)dmi"_df ©) indicatest:Gle%, from the scaling prefactor in Eq12),
bre 4 Ry, ' whereas Eq(5) yields the value for a Gaussian, linear-chain

. aggregateB;=2G,/ Rg as can also be obtained from the De-
However, the number of branches in an aggregage,can

only be calculated if the mass of an average braggh,s

known, 10
o= oy (10 08

br= PorZ > :

T2y
wherez,, is the number of primary particles in an average 0.6
branch. The situation can become fairly complicated if mul- es
tiple generations of branching occur in a hierarchical struc- 0.4
ture such as an arborial or dendric polynjd7]. Nonethe- ’
less, the branch fraction, E(R), remains a viable measure of
branch content on a relative and absolute scale. Figure 2 0.2
shows the behavior o, for branched aggregates of vari-
ablez as a function oft. The branch fraction is of limited 0.0/ ! I I
sensitivity for largec or largez, Eg. (9). The connectivity 1.0 1.5 2.0 2.5 3.0

dimensionc varies from 1 for a linear chain td; for a
regular object. For a series of aggregates with variable con-
nectivity dimensionc but with a fixed number of primary FIG. 2. Dependence of branch fraction, Eg), on connectivity
particles,z, the branch content increases in a nonlinear fashdimensionc and number of primary particles in an aggregate,

c
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10° T r>R,, y(r)=0. The scattered intensity gtis given by the
E 3 Fourier transform ofy(r) for spherically symmetric objects
(on average[11]:

_Z( sin@) 7 JqRZ 42 i
H(a) = fo rr) q dr @Ry ), Y sin(y)dy,

(15

where the last scaling relationship in E45) substitutesy

=qr and wherey(r) reaches 0 at the finite size of the aggre-
gate,R,, making the last integral always finite, even when
d;=2 [11]. Additionally, it is assumed that the last integral is

Intensity (arb. units)

—— Linear, Gaussian Chain
—— Infinitly-Thin Disk

102 e summulie somadimen ¢ maifuon, s independent ofy in the fractal scaling regime.
0.0001 0.001 0.01 0.1 1 Variousad hoc“cutoff” functions h(r/¢) have been pro-
a A" posed for Eq(14) to account for the decay in correlation at

) . ) the aggregate siz®, [10,11,23:
FIG. 3. Log scattered intensity versus lggor monodisperse,

linear-Gaussian chains, and a scaling function for disk scattering in M\ a3 ,
the aggregate regime using the unified functjiag,23,25,26,3B Ar) ~h| ) (14
r%/vith the most common being an exponential decay as origi-
nally proposed by Jullief11]. An alternative to consider-
ation of scaling functions, Eq$14) and (14'), is to modify
1(@) _ 2{(qRy)*~ 1 +exp— (qR)*]} . the exact calculation of Debye for a linear, Gaussian chain
e (aRy)* linear, Gaussian. [38] that results in Eq(13), as first proposed by Bendi34].

The Debye-Benoit approach is used to obtain &9.in ex-

(13 trapolation, for instancg22].

Then, _from the extremes of linearity and branchm_g in Il. SCATTERING FUNCTION EOR BRANCHED
2D-objects, the power-law prefactoB; decreases with

. . AGGREGATES
branch content relative t@, andRy,. This means that the
scattering curve for branched structures will display a weak  A. Modification of the Benoit function for branched
knee in the mass-fractal regime for a log-log plot, as shown aggregates

in Fig. 3, q=0.003 for the disk, scaling function. Such a  gangit[34] introduced an integral function for scattering

weak knee was also noted by Thouy and Jullien for branchegl,y, jinear chain aggregates of arbitrary mass-fractal dimen-
aggregate$39). It should be noted that a monodisperse diskg;,, d;

displays oscillations in the scattering pattern, as indicated by

Eq. (12), which are not shown in the scaling function of Fig.  I(q) di  [@Ry? ydif2
3. The knee feature could be overlooked in the absence of a E = (ng)dff 1- (ng)df
comparable linear scattering function. Even the most ex-
treme case fod;=2, Fig. 3, shows only a weak deviation (16)
from 'the Imear' curve..The knee is expected to be MOrGhich is obtained from Debye and Peterlin’s integral form
prominent for highed; sinced; and branching are related as 138,40

discussed below. '

From such comparisons it is expected that information () 2 z _quS .
concerning the branch content of aggregates might be avail- G T Z . (z—n)e™ "undn, (16)
able from static-scattering measurements if a direct compari-
son between the Guinier and power-law scaling regimes ofvith the substitution of
aggregate scattering is made and if a sufficient ranggisf

bye scattering function for a monodisperse, linear chain i
extrapolation[22,34,38:

]e-yy«df/z)—l)dy,
0

— ~2
observed. y= Ry (17)
6 d/2 6y \dr2
D. Mass-fractal correlation function n= ﬁ—n = (=% , (18)
RE o*R;
A scaling form for mass-fractal scattering in the power-
law regime, Eq(2), is calculated using the pairwise correla- and
tion function[10,11,14,2], (ﬁ)df/z 19
z= ,
yr) ~r%3 for Ry <r<R,, (14) R

wherer is a correlation distance associated with the scatterwhereRy is the aggregate radius of gyration aRgl, is the
ing measurementy ~1/q. For r<R;, ¥(r)=1, and for radius of gyration of a linear aggregate of lengthThe term
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“6" in the description ofn andz assumes Gaussian scaling  |(q) Armin (aRy? ydmin'2 | ((4;/2)-1)

and can more correctly be writtdids/2+1)(d;/2+2) when G = Wf 1- (ng)dmm ey dy.
d; deviates from 222]. However, this term cancels in Eg. 0

(16), so the exact value is of limited consequence. In Eq. (24)

(16'), nis the local chain index which progresses from @,to
andz is the overall linear-chain length. The lead term in Eqg.
(16) includesd; which arises from the substitution di for
dnin Eq.(16) using

Godmin [ d
_ di(6)%" (di/2)-1 Br= —° mmr(_f>- (5"
= i e dy. (20 do\2

B; for branched or linear aggregates arises from an extrapo-
lation of Eq.(24) at highqg as described by Benoit for Eq.
(16) [34]:

dn

Equation(5’) allows for a direct determination of the branch
fraction from the static scattering pattern of a monodisperse
aggregate[Equation(24) also contains a slightly modified
“cutoff” function that includes the effect of branching
throughdi.]

Equation(5’) can be rearranged to calculatg;, from
parameters measured directly in the static scattering pattern:

Extrapolation to highy of the integral in Eq(16) leads to
Eq. (5) as shown by Benoit. Use af;=2 in Eq.(16) leads
directly to Eq.(13). If d; deviates from 2, Eq.16) can not be
analytically solved as noted by Ben¢g4].

The Benoit integral, Eq(16), is interesting in that it con-
tains a kind of “cutoff” function since the bracketed term and
exponential term go to O near the aggregate Elfe11,2].

This cutoff function is natural to the linear-chain integral and d; Bdef
is not anad hocfunction such as the exponential functions Ormin = " = . (25)
previously used in the literatuf@1]. r(di/2)G

Equations (16) and (16') are useful for linear chains gqyation (25) bears resemblance to the polydispersity pa-
where the chain index linearly follqws and it is within .thIS rameter previously reported for solid partic[@s$]. Equation
context that both the Debye function for polymer coils, Eq.(5/) agrees with analytic functions for regular and linear ob-
(13), [38] and Benoit's function, Eq.16), were obtained. For jects, correctly predicting the scaling prefactor for linear
branched chains, the integral yn Eq. (16), cannot progress Gayssian coils, randomly oriented disks, and approximating

linearly for thez primary particles of the aggregate since {he scaling prefactor for randomly oriented rods, Table |.
such a linear indexing scheme is not unique for a branched

aggregate.

Debye’s derivation of the polymer chain function, Eq.
(16", ignores correlations between chain segments that are Equations(5’) and(25) give some indication of the con-
not topologically connected38]. Following a similar as- sequences of polydispersity in aggregate size on the scatter
sumption, a branched aggregate can be considered,(Big. 1 ing curve. For linear aggregatess 1, dy,,, should be equal to
as being composed of a collection @ p) minimum paths.  ds, Eq.(25). However, the calculated,,, from Eq. (25) re-
Then Eq.(16') is written, for a branched aggregate, lies on the ratio of moments affollowing Egs.(4) and(4")

o in [30]. The numerator in Eq(25) reflects a higher-order
@ - (E) pl—cf n“Y(p- n)e‘qué,ndn (21) moment, from the ternRe" and Eq.(4”) [30], compared to
G p? 0 ' the denominator, from the terr@ and Eq.(4). Then it is

. o ~ expected that for polydisperse, linear chaitsg;, calculated
where p'™ normalizes for the number of minimum paths in using Eq.(25) will be larger thand; gope Observed as the
the aggregatez/p=p°™*. n°* accounts, within the integral, negative of the slope of the power-law decay in the scattering

for the average number of minimum paths with a path lengttpattern. An aggregate polydispersity ind@can be consid-
n. Equation(21) ignores correlations between branches jusfered to quantify this effect:

as Eq.(16) ignores correlations between chain segments that

are not linearly bonded. The integral is over the minimum A= Bf&df _1
path and follows a unique, average minimum path index, B d F(d /Z)G e’
goes from 0 tqp. Substitution is made, following Debye and A
Benoit, except that all terms are defined for the minimumwhere -€; is the observed power-law slope from the scatter-

B. Polydisperse aggregates

(26)

path using the minimum dimension, ing pattern. Table Il shows some possible valuesAor
6R2 \dnin/2 1 /gy dmin/2 The last entry in Table Il indicates that if no assumptions
n= <ﬁ) - (_y) (22) concerning aggregate size distribution or linearity are made,
Rf g(fmin Rf then analysis of static scattering data is limited. Generally, an

assumption of either low aggregate polydispersity or low
branch content will be necessary in analysis of static scatter-
ﬁ Admin/ 2 ing from aggregates since, for the case of branched, polydis-
z= R ) (23 perse aggregates it is not possible to isolate the effects of
1 dispersion and branchingA description might be possible if
parallel to Egs.(18) and (19). With these substitutions a sufficient TEM data on aggregate branching were available
modified form of Eq.(16) is obtained: or if a model for aggregate growth predicted the branch con-

and
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TABLE Il. Aggregate polydispersity indeR from Eq. (26) for 10° 5
several conditions. F

FRETTT

O Antonielli Fraction F5
A Antonielli Fraction F2

c A 10 £ == Global fit 3

E with fixed power 7

Linear, monodisperse 1 1 3;: 10 _

Linear, polydisperse 1 >1 e

Branched, monodisperse >1 <1 (Cin/ ) & 'k 4

Branched, polydisperse >1 — g 3
Eo0'r

Ll

tent for instance. For branched polymers, separate measure-
ment of the chain size distribution could be used or an as-
sumption concerning the minimum dimension could be
made) In terms of B;, branching and polydispersity have
opposite consequences for the scattering curve, polydisper- .
sity serving to increase the power-law prefadprelative to q(d)

G andR; and branching serving to decredgFig. 3. In this _ _ _
article a narrow distribution in aggregate size is assumed and FIG. 4. Small-angle neutron scattering data from dilute solutions

select systems of rather narrow aggregate size distributiofif Pranched polystyrene samples in deuterated toluenanned
are selected for comparison. data from[41]). Two fractions are shown: F5 witt;=2.05, M,,

=2x10° g/mol and F2 withd;=2.15,M,,=18% 10° g/mol.

Ll

0.001 0.01 0.1 1

[ll. EVALUATION OF Egs. (5 ') AND (25) FOR BRANCHED , ,
AGGREGATES well as the fit and calculated values are reported in Table IlI

for two fractions differing in molecular weight and branch
A number of examples of branched aggregate and polyeontent.

mer scattering measurements and simulations exist in the Using Eq.(25), the minimum dimension can be calculated
literature for example,[10,11,21,37,39,41-44 However, from the global fits shown in Fig. f22,25-29. As noted in
since Eqgs(5’) and(25) were derived for monodisperse ag- Table I, a linear polymer chain in a good solvent displays a
gregate size and because both the Guinier and mass-frack#|f-avoiding walk withd;=5/3 [31-33. For good-solvent
scaling regimes must be observed, the number of viable sygonditions it is expected that a lightly branched chain will
tems for comparison is somewhat limited. Three exampleslisplay good-solvent scaling for the minimum path since the
will be shown: a randomly branched polymer in a good sol-minimum path for the branched chain has some thermody-
vent [41], a recent study of diffusion-limited aggregation namic equivalence to the linear chain under these conditions;
where changes in branch content and mass-fractal dimensigige schematic in Fig. 1. The value obtained for minimum
with aggregate size can be consideféd], and a simulation dimension from the Antonietti data, Table Ill, matches the
by Hamsey and Jullien where diffusion-limited, ballistic and expected value of 5/8,,,~ 1.67) for good-solvent scaling
reaction-limited branched aggregates were considpt8  of a linear chain. The analysis indicates that the higher mo-
In all three cases, scattering functions over a wide rangg of |ecular weight fractions display a higher mass-fractal dimen-
have been reported. The literature scattering curves havgion due to higher branch content as indicated by the reduc-

been digitized and refit using the unified functi@2,25-29  tion in linearity, higherc, in Table I. The agreement between
following the approach described in this article.

TABLE Ill. Analysis of Antonietti and Rosenauer’s branched
A. Antonitti DVB microgels polystyrene[41]. Two fractions were analyzed fak,;, and branch

Antonietti and Rosenauer performed a careful neutron1‘racti0n from small-angle neutron-scgttering data. The valges with
scattering study of branched polystyrene in a good solverﬁemrted error were free parameters in the unified fits of Fig. 4.
(deuterated tolueng41]. Figure 4 shows scanned data from
Antonietti and the unified fits to the scanned data. The kS F2
branched polystyrene was composed of 10% divinyl benzeng  (g/mol) 2% 10° 18% 10P
(DVB) which acts as a random tetrafunctional branchingG (arb. units

. . . 1376+8 38%1

agent with similar molecular weight to the monomer. The
; (R) 197+1 268+10

neutron scattering measurements were performed on lﬁ%’
d-toluene solutions. Although radical polymerization wasBf 0.0448+0.0004 0.00035
used, fairly narrow aggregatehain) mass distribution were 2.05 2.15
obtained by fractionation. The polydispersity indel,/M,  dmin 1.67 1.64
is reported between 1.8 and 3 which is a narrow aggregate 1.23 1.36
size distribution for branched polyme(M,, is the weight 2 19 200 173 000
average molecular weight arld, is the number average 0.84 0.94

The molecular weight, by light scattering, and thealues as
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10 g parison as well as fits using the unified functi@2,25-29.

i 3 The fit results and calculations based on Eg5) and(9) are
shown in Table IV(first three data columnsThe branch
content, bottom row, is shown to increase monotonically
with aggregate size, following Eqg. (9). The minimum path
dimension remains constant within the resolution of the fit
and an increase in the fractal dimension is related to a higher
connectivity dimension—that is, more branches—for the
larger aggregates. This is similar to the experimental study of
Antonietti mentioned above except that the minimum dimen-
sion is not determined by thermodynamics in this case and
I ] has a lower value, 1.16 rather than 5/3. The minimum di-

0 o0 L Ry = PO EE N e mension in this case is apparently governed by the trajectory
0.01 0.1 1 10 and sticking probability of the primary particles. These con-
a@A)" ditions remain constant for variableleading to a constant
dmin-

FIG. 5. Simulation results from Lattuads al. [42] and global Lattuadaet al. [42] also simulated growth by considering
fits [22,25-29. Simulations are for monodisperse aggregatesa time sequence growth for diffusion limited aggregation,
formed by diffusion-limited aggregation. Table 1V lists fit results Fig. 6(a), for polydisperse aggregates of lamgén analyzing
and caIF:uIations. Line of Slope -2 indicates Gaussian scaling fthe time_sequence data, |0W_p0|ydispersity aggregates are as-
comparison. sumed here, out of necessity. The fits to the simulations of

Lattuadaet al. show a decay in the minimum dimension
the observed and expecteg,;, supports the validity of Eq. towards 1 as growth proceeds, Figbpand Table 1V the last
(25). The branch fraction is also reported in Table Il usingfour columns, indicating a rapid increase in the connectivity
Eqg. (9). Since the mean branch length is not known, theof the aggregates asapproachesd;. By 965 s the aggregates
number of branches can not be calculated, Q). are close to “regular” objectsl; is fairly constant but de-
creases slightly across the time series. This indicates that as
the aggregates grow they become more branched but also
display minimum paths with a lower degree of convolution;
i.e., dyn drops. The reduction in convolution has a larger

Lattuada, Wu, and Morbidellj42] report on simulation  effect ond; than the increased branching leading to a drop in
and experimental results for diffusion limited cluster-clusterd, sinced;=c d,,,. For these higte aggregates the branch
aggregation. The simulation results are for monodispersgaction rapidly approaches 1. The approachigf, to 1 and

branched aggregates. Branch content was indirectly conto d; for diffusion-limited aggregates agrees with the simu-
trolled through a sticking probability. The simulations were |ations of Meakinet al. [36].

used to calculate the pairwise correlation function which was

transformed into scattering functions for comparison with

light-scattering data from colloidal aggregates. Scattering

curves from simulations were reported as a functioaz far

smallz, monodisperse aggregates. Lattuatlal. also simu- Table V shows results from fits to scanned, simulated

lated scattering curves for largepolydisperse aggregates as scattered intensity from diffusion-limited, reaction-limited,

a function of time of growth for comparison with experimen- and ballistic aggregates by Hasmy and JulljéB]. An ex-

tal results. pected increase i is seen across these three growth
Figure 5 shows simulated scattering data for theom-  mechanisms. From unified fits using the approach outlined in

01F

Intensity (arb. units)

0.01 |

B. Comparison with simulation results for monodisperse
diffusion-limited aggregates (DLA)

C. Comparison with simulation results for DLA, RLA, and
ballistic growth

TABLE |V. Fit results and calculations from simulations by Lattuadaal. [42] of variablez and time for diffusion-limited aggregates.
L8, L30, and L100 refer to Fig. 5 while the time series refer to Fig. 6.

L8 L30 L100 125 s 275 s 515 s 965 s
G 1.03 1.01 1.08 1.24 15.4 150 1670
Ry 2.37 4.96 9.91 16800 23400 32900 45100
B; 0.251 0.0617 0.0166 2.3810°8 2.06x 1077 1.08x 1078 7.73x 1076
ds 1.86 1.86 1.898 1.85 1.82 1.83 1.8
Armin 1.16 1.15 1.16 1.38 1.13 1.28 1.03
1.6 1.62 1.64 1.34 1.61 1.43 1.74
8 30 100 2069 3342 6518 9958
Dor 0.54 0.73 0.83 0.95 0.99 0.98 1.00
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10} ——rrr e creases in the same order, indicating slightly higher branch-
o ggs ing, as reflected in the branch fractiaf,, from Eg. (9).

E S Surprisingly, the largest effect, and the dominant one in
<&

515s
965 s terms of the fractal dimensiord;=c d.,;,, comes from in-

Global Fit | creased convolution of the minimum path rather than in-
_ creased branching.

IV. CONCLUSION

Intensity (arb. units)

An approach to the determination of branch content in
- aggregates using static, small-angle scattering was described.
The approach requires measurement of the power-law scal-
) ing and Guinier regimes for the aggregates across a wide
10 range of scattering vector. The branch fraction can be ob-
tained if the degree of aggregatian,is known. The topo-
logical dimensiongl,,, andc can be obtained by an exten-
sion of the structure factor for linear-chain aggregates
following assumptions similar to those used by Debye in
derivation of the linear, Gaussian structure factor for polymer
coils. ¢ andd,,;; can be used to describe branching in ran-
domly aggregated structures. Structure factors for regular ob-
jects such as randomly oriented disks and rods can be repro-
duced as can the structure factor for a Gaussian coil and
self-avoiding walks.

The approach was compared with one experimental study
and with three simulation studies from the literature. Values
for d.,;; measured in this way agree with the expected value
of 5/3 for branched polymers in a good solvent from the
experimental results of Antonietti and Rosena[#t]. The
aggregate-size simulations of Lattuaetaal. [42] for mono-

disperse aggregates mimicked the experimental results of
Antonietti and Rosenauer in that the minimum dimension
remained fairly constant as the branch content increased with
1.0 L ' 0.0 z. Diffusion-limited aggregate growth simulations of Lat-
0 200 400 600 800 1000 tuadaet al. on polydisperse aggregatp?] showed growth
(b) Time, s dominated by branching and a termirkgy,, that agrees with
literature valueq36]. For a series of three simulations by

FIG. 6. (a) Lattuada time series simulation resuitcattering  Hasmy and Jullier{43] on diffusion-limited, ballistic, and
data agree with experimental results in Ré]). The simulations  reaction-limited aggregation, the dominant difference in
are for diffusion-limited aggregation with polydisperse aggregatesihase growth mechanisms appears to be changes in the con
(b) Branch fraction,c, df, and dmy, versus time from unified fits  \,q|ution of the minimum path rather than branching, al-
shown in(a). though branching also increases for comparable simulations.

The pr nalysis of small-ang| rin lari-
this article,dy,, increases in the order diffusion-limited ag- ¢ aenfbicic]%()it‘?gg Zsigiigtgdswﬁh adi?feiesﬁgét: ing g(?at\?tecr%g
gregati(_)n _(DL_A), baIIistic,_ reaction-lim_ited aggregation ., res for linearc=1, branched and regulaz=d;, objects.
(RLA), indicating that the minimum path is more convoluted sty gh a reconstruction of branched structures cannot be
for ballastic and reaction-limited growth compared 10 4chieved from static-scattering data alone, consistent with
diffusion-limited growth. The connectivity dimension in- o 1055 of phase information inherent to scattering tech-
nigues, significant average features of scaling and branch
content are, in fact, available from a single static measure-
ment if a sufficient range of scattering vector is probed. The
information concerning branch content is contained in a scal-
ing dimension for topologyd,i, or ¢, which can be used to
oy calculate the fraction of a structure that is not contained in
the minimum path,p. This fraction is termed the branch
DL (low-g) 4096 4000 76.5 6.45 1.60 1.43 1.11 0.56 fraction ¢y,. If independent information is available concern-
Ballistic 4096 4150 44.6 4.19 1.95 1.62 1.20 0.75 ing the length of an average branch, then the average coor-
RL 4096 4070 35.0 3.58 212 1.71 1.24 0.80 dination number and the number of branches in an aggregate
can be determined fronp,,,.

(a)

2.0

dimension
A cuondeay youeag

1.2

TABLE V. Fit results from simulated scattering patterns of
Hasmy and Jullien[43]. DL=diffusion-limited growth and
RL=reaction limited growth(The fit to the simulated scattering
from diffusion-limited growth was for the low-data only)

z G % Bs ds dimin C
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The approach presented in this article is intended for agpolydispersity, Fig. 6, if attention is paid to the possible con-
gregates of low size dispersion since it is not possible t@sequences of polydispersity.
universally isolate the effects of dispersion in size from ag-
gregate branch content. An index paramefers suggested
that can be used to qualitatively determine if the aggregate-
size dispersion is important in extreme cases—that is, when This work was supported by the U.S. National Science
A>1. Determination of the branch fraction should be made~oundation(Grant No. CTS-0070224 Swiss National Sci-
with some caution when a wide dispersion in aggregate sizence FoundatiogGrant No. 200021-101901y1and by the
is anticipated. It is shown that the effect of size dispersionCommission for Technology and InnovatiofGrant No.
and branch content are opposite in terms of the value of th€@opNan021-5487)1 Discussions with S. K. Sukumaran, H.
scaling prefactoBy; branching results in a lower value B¢ K. Kammler, and S. E. Pratsinis were helpful in the devel-
relative toG andRy while polydispersity leads to a largB. opment of this article. G.B. thanks the University of Cincin-
This indicates an underestimation of branching for polydis-nati for a sabbatical leave to the Institut fir Verfahrenstech-
perse branched aggregates. It was demonstrated that the agik, ETH Zentrum Zurich, Switzerland where this article was
proach might be qualitatively useful even in cases of weakvritten.
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