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On-lattice coalescence and annihilation of immobile reactants in loopless lattices and beyond
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We study the behavior of the chemical reactidnsA— A+S and A+A— S+S (where the reactive species
A and the inert specieS are both assumed to be immobikembedded on Bethe lattices of arbitrary coordi-
nation number and on a two-dimensiong&PD) square lattice. For the Bethe lattice case, exact solutions for
the coverage in thA species in terms of the initial condition are obtained. In particular, our results hold for the
important case of an infinite one-dimensio(HD) lattice (z=2). The method is based on an expansion in terms
of conditional probabilities which exploits a Markovian property of these systems. Along the same lines, an
approximate solution for the case of a 2D square lattice is developed. The effect of dilution in a random initial
condition is discussed in detail, both for the lattice coverage and for the spatial distribution of reactants.
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[. INTRODUCTION initial condition, self-ordering phenomena, €f6]. Elucidat-
) o ) ing the role of geometry in this context is of great theoretical
A rigorous description of the dynamics of the relevantand practical interest in view of the recent progress in the
macrovariables in reaction-diffusion systems requires aevelopment of nanoscale supports.
probabilistic multilevel approach retaining the essential fea- Fluctuation-induced effects become even stronger in sys-
tures of the underlying many-body problefh—3]. In this  tems with immobile reactants, the object of the present paper.
coarse-grained picture, typical macrovariables such as coffhe particular systems we shall investigate here are the on-
centrations are no longer deterministic, but rather stochastiattice reactionA+A— A+S and A+A— S+ S with nearest-
guantities. In a number of typical situations, the equationsieighbor interactions, wherk and S denote, respectively, a
governing the dynamics of the mean concentrations turn owgite occupied by the reactive speciésccupied sitej and
to be identical with the classical law of mass action. In thethe inert specieg‘empty site”), both assumed to be immo-
absence of external asymmetries or of symmetry-breakin§ile. Popularly, these reactions are termed coalesceDig
instabilities, the latter can be regarded as a mean-fiig)  and annihilation reactio(AR), respectively. Various workers
law, in the sense that each part of the system is assumed Rave mte_nswely _lnve_st|gated the (_ZR_—9] ar_1d the AR
interact with the whole bulk at all times by means of an [8,10—1{} in the dlffusmn-con_trolled limit. Be3|d_es a series
effective field which does not account for spatial effects.  ©f _applications for nucleation and aggregation systems

The above classical approach can be regarded as a gongS,lq, the diffusion-controlled CR has also been recently

approximation as long as the characteristic time associategjsed as a model for exciton fusion in polymers and molecu-

: : ar crystals[17-19, while the AR model provides a basic
V.V'th t.he mean free path_ IS s_hort compared. to the.m(.aan rea escription for recombination processes and exciton annihi-
tion time V.V'thm the WP'C‘?" Interaction radius. Th|s IS qnly lation [19,20. In the immobile reactant limit, the AR model
the case if the system s well mixed at all times, e'.therhas been used, e.g., to study free radical recombination on
through external §t|rr|pg or through fast internal dlffu5|pn. surfaceg21], cyclization reactions in polymef&2], and col-

The opposite situation corresponds to the diffusion-iq genosition problemg23], among other applications.
controlled limit, where each reactant typically explores a sig\ (e the formal similarity of this model and models for
nificant portion of space before undergoing a reactive CO""dimer random sequential absorpti@®RSA) [24,25. In such

Si(.)n’ and _the waly in which reactants are distributed on gpga models, the deposition of a dimer on two empty sites
microscopic scale starts to become important for the deter

S . , is dual to the removal of two neighboring particles from the
mination of macrovariables such as global concentrations of,i-e upon reactions in the AR model, i.e., empty sites play

- . . The role of occupied sites and vice versa. There exists also a
Species. In such cases, classical MF apprqache; fail to dﬁ'ess obviousmapping between the CR model and a particu-
scribe the onset of inhomogeneous fluctuations induced by, ..o« of random monomer filing with nearest-neighbor
the intrinsic chemical noise of the system. Such fluctuation ooperativity[26—28. However, most studies concerning the
are nowadays directly observable at nanometric scales withy,, e RSA models were performed for a fixed initial condi-
the help of STM and FIM _mlcroscopy_technlqugsa and tion. Typically, the latter corresponds to a situation where all
can be enhanced by specific geometric constraints and/or {dyjce " sites are vacant, which in the dual picture of our
low dimensionge.g., catalytic surfacgswhere external stir- 46/ is equivalent to a fully covered lattice. In contrast, we

fing is_ diffﬁcult and diffusjon inefficient; eventually, they shall consider here the general case in which the lattice is
may give rise to nonclassical effects such as memory of thBartially filled initially and study how this affects the subse-
quent dynamics and steady state of the system.
Previous studies have shown that in the immobile reactant
*Electronic address: eabad@ulb.ac.be limit, the one-dimensional CR and AR models with nearest-
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neighbor interactions are characterized by an exponential déime out of two, since in a single event the particle inside the
cay of the mean coverag&t) in the reactive species to a cluster has the same probability of vanishing as the neighbor
nonergodic set of invariant states, as opposed to the empfparticle outside the cluster.

state predicted by the MF equati¢@9,3d. In the present We now seek a special solution of the hierarghy cor-
work, we extend these results to the case of a partially filledesponding to our initial condition. One can easily check that
Bethe lattice with arbitrary coordination number. In suchin our caseP,(0)=pK. As it turns out, the hierarchy can be
loopless lattices, the relevant hierarchy of probabilities carexactly truncated after the first two equations,

be truncated exactly using a shieldifigarkovian property

of the conditional probabilities for the state of a given site. apy - ’_’Zp (2a)
This method is used to generalize previous results by Evans dr 27 %

[31] and by Majumdar and Privmdi32]. Next, we treat the

case of a 2D square lattice by performing an expansion based dP,

on the shortest unshielded path approximation developed by o P, = v(z=1)P;. (2b)

Nord and Evans for a series of RSA modg38]. The results

for the asymptotic coverage are then compared with Monte

Carlo(MC) simulations. The effect of the initial condition on

the spatial ordering induced by the reaction is also discusse
) . . . _ k-times

by studying the dynamical behavior of the conditional prob the conditional probability that a site is occupied given that

abilities _and the assomgted fluctu_atlon corr_elatlons. In t_h(itS k nearest neighbors along any irreversible path starting
last section, we summarize the main conclusions and outlin

bl . f K from the site are occupied. Here “+” denotes an occupied site,
possible extensions of our work. while “4” denotes a conditioning occupied site, Rewriting
Eqgs. (2) in terms of these probabilities, one has

Exact truncation is possible because of the existence of a
special property for the quantity Q... (7)=Pi. /Py, ie.,

Il. THE CR AND THE AR MODEL IN BETHE LATTICES: d 7
EXACT SOLUTION VIA SHIELDING PROPERTY d—ln Q.=- VEQ.;, (38
T

As a starting point, we consider an ensemble of Bethe
lattices with coordination numbez (the casez=2 corre- d vz
sponds to an infinite 1D lattige In each lattice, sites are —InQu=-1+—Q.;,— v(z— 1)Q.,, (3b)
initially occupied at random with probability [equal to the dr 2
initial lattice coveragey(0)]. We then let the particles interact yhere the notatior). =P, has been used. Now, in a Bethe
according to the CRAR) scheme with nearest-neighbor in- |attice conditioning sites specified as occupied “shields,” i.e.,
teractions specified above. By construction, the resulting stecjusters belonging to disjoint irreversible paths starting from
tistical system will be tranS|ati0na"y invariant at all times. the occupied Site, evolve independenﬂy of each olthsfa
Let us absorb the reaction raeinto the time scale by in-  consequence, one h§27,31,34
troducing the dimensionless time variable Rt Let us de-
note byP,(7) the probability thak randomly chosen nearest- Qu=Q.y=Q.y---, etc, (4)
neighbor sites in a given lattice are all simultaneously.

occupied(k-site clustey. The evolution equations for the en- I-€., the memory of the system is limited to the nearest-
semble probabilitie®, read[32] neighbor site. In this sense, the subset of occupied sites can

be said to displayfirst-ordep spatial Markovianity[35].

Using the shielding properti}), Egs.(3) become a closed
two-variable system. Since the system is translationally in-
variant, the local probability. is identical with the global
k=1,2,.., 1) coveraged. The solution of Eqs(3) reads

wherev=1,2 for the CR and the ARnhodel, respectively. _
The first term on the right-hand side represents the de- Qu(7) = (7
struction of ak-site cluster by interaction between two par- (z-2 _
ticles inside the cluster and is proportional to the number of =p|1+ > vp(l-e™) , (5a)
internal bonds(=k-1 bond$. The second term represents
the destruction of &-site cluster due to the disappearance of .
a particle inside the cluster upon interaction with a neighbor- Q1) = pe
ing particle just outside the cluster. Such an event is only 1+ (z-2)
possible if a(k+1)-site cluster preexists, implying that this 2
term is proportional td°,,,. Its coefficient is proportional to
the number of bonds between tkheluster sites and external
neighboring sites(=zk-2k+2). The different value ofv
stems from the fact that tHesite cluster is only destroyed if  %in the special case of a 1D latti¢e=2), this means that sites to
the particle vanishes upon interaction with a filled neighborthe left of the occupied site do not “see” those on the right-hand
outside the cluster. In the CR case, this only happens onside.

dp
~ K = (k= 1)P, - Z(zk- 2k + 2)Pys,
dr 2

-2(z-2)

(5b)

vp(l-€e7)

Thus, the global coverage attains the asymptotic value
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z-2 |?@2 in the whole range op values, we must refine the truncation
2 vp (6) procedure inspired by @patia) Markovian property of the
system analogous to the one observed for the 1D system:
Regardless of the value a@f 65 increases monotonically while in 1D a single occupied site disconnects the reactive
with increasingp for the CR model, while in the AR model dynamics in the left and right half lines, in 2D an infinite line
it follows a non-monotonic behavior with a universal maxi- of sites specified as occupied decomposes the lattice into two
mum atp:%. This may be related to the fact that the meanindependently evolving sublattices. More generally, it can be
asymptotic number of particles vyielded by islandsshown that for two-site processes such as the CR and the AR
(=disconnected clustersreated by the ongoing reactions model in regular lattices of arbitrary Euclidean dimensional-
does not grow monotonically with the island size, as opposedty, “hyperwalls” of thickness equal to one lattice site shield
to the CR casé36,37. Thus, larger islands characteristic of one side of the lattice from the othg24].
high values of the initial coverage may eventually yield a Recently, Nord and Evans used this generalization of the
lower number of particles than smaller ones. In particulaiMarkovian property as a starting point to devise an expan-
two-particle islands are known to disappear from the systengion scheme in terms of conditional multisite probabilities
while one-particle islands survive forever. for a DRSA model on a square lattig83]. The main idea is
As expected,fs decreases strongly as a function f to neglect the influence of conditioning occupied sites be-
approaching a zero value wher-. This is in agreement yond a certain cutoff distanod, (measured in lattice spac-
with our intuitive expectation that the system must approactings). However, the calculation af, should be tailored so as
the classical MF prediction with increasing connectivity.  to reflect the shielding property of occupied sites. The effec-
Equation(5a) generalizes previous results by Evans fortive distance between an occupied site ardsde should be
the DRSA problem equivalent to thee=1 cas€31] and Ma-  defined as the shortest “unshielded” path which is not
jumdar and Privman for the=2 case[32]. The special case blocked by othe¥ sites. For instance, in the particular case
of a 1D lattice is obtained when— 2*. In this limit, Egs.(5) to be studied her@an infinite 2D square lattigethe distance

Os= 6() = p|:1 +

become d. between the ¢ site and the rightmdsiite associated with
B _, the (translationally invariant probabilities Q.;,Q.,, and
0(7) = p exp(vple” - 1]), (78 ., s, respectively, one, four, and five lattice spacings.
44
Q. (7 =pe. (7b) The case studied by Nord and Evans corresponds to the

AR model with an initially full lattice. We shall now extend
The conditional probabilitQ.; is the same for both reac- their calculations to the AR and the CR models with an ar-
tion schemes, as opposed to thelependent lattice cover- pitrary initial lattice coverage. The starting points to per-
age. The latter approaches the nonvanishing asymptotigrm the expansion are again the evolution equations for
value clusters of occupied sites. The first few equations for the
0= () = pe™P ®) evolution of low-order clusters are

in contrast to the prediction of the MF solutiofye(7) dP.

=p/(1+vp7). Note that forr=2 and p=1, the asymptotic dr == 2vP.., (9a)
coverage predicted by E(B) is compatible with Flory’s fa-

mouse 2 prediction for the isomorphic dimer filling problem

dP..
[38,39. o, = PemvPu-20P (9b)
T .

IIl. APPROXIMATE EXPANSION VERSUS “EXACT*
MONTE CARLO RESULTS ON A 2D SQUARE LATTICE dp,

We now turn to the task of finding a suitable approxima- 4, - &P m2k (99)
tion scheme for the AR and the CR in lattices containing : '
loops. The complex topology of particle clusters does not
allow for an exact solution in this case. One must therefore dpP..
resort to truncated expansions in terms of conditional prob- .
abilities and to MC simulations. gy - 2P TP P

As in the 1D cas¢30], an Ursell expansion of the cluster ) ) ’
probabilities using fluctuation correlation functions does not -vP,. —-P,., etc. (9d)
yield good results here either, since multisite fluctuation cor- . .
relations do not decay monotonically with an increasing . ) ) o )
number of sites and are therefore non-negligitdee Sec. Rewriting the first four equations of this hierarchy in terms
Il B). On the other hand, neglecting the cluster probabilitief the Q's, we obtain
beyond a certain order may provide good agreement with
simulations in the lowp regime, but the agreement is much iln Q.=-21Q (108

. . = o$s

worse whemp= 1. In order to obtain a reasonable agreement dr
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d
d—ln Qu=-1-1vQ.4—2vQ,; +2vQy, (10b)
T '
d
d_ln Qi == 1+vQuu+2vQ.; —1Q.yy — Q.4 —1Quy
T ‘ ’ / / T
- Q. , (109

44

= Q.4 —vQ.yy

/ / /

(10d)

d
_an.; :_2+2VQ.* +2VQ.;
dT 4 4

_VQ,‘ _VQ,f.

44 44

A. First-order approximation

Let us first consider the first-order approximation, i.e., we 1
neglect thosé sites beyond a distance farther than one lattice

spacing. We then hav®.,— Q.;,Q.; — Q.;, and Eqgs(10)
]
lead to the closed set of equations

E|n Q.=-21Q., (119
dr

EIn Q.,=-1-1Q.. (11b)
dr

Taking into account the initial conditio®.(0)=Q.,(0)=p,
these equations are readily integrated to obtain

p

Q.(n=P.(7)= m, (129
_ pe”
Qu(7) = Trmpl-en (12b)

Notice that this result for the lattice coverage and the

conditional probabilityQ.; is identical with the exact result

in a Bethe lattice witle=4 [cf. Eqg. (5)].
The asymptotic result

p
0= P. =— 13
5= P) = (1 o (13
can be expanded in powers pfto obtain
0s=p— 2vp® + 3°p> + O(p*). (14)

PHYSICAL REVIEW E 70, 031110(2004)

TABLE I. A comparison between the values @fobtained from
MC simulations and the approximated values obtained by trunca-
tion of the hierarchy for the CR model.

Truncation Truncation
p MC simulation (first ordey (second order
0.05 0.04535379 0.04535147 0.04535233
0.1 0.08265606 0.08264463 0.08265592
0.2 0.1390146 0.1388889 0.1390138
0.3 0.1779778 0.1775148 0.1779583
0.4 0.2050887 0.2040816 0.2050757
0.5 0.2239603 0.2222222 0.2223642
0.6 0.2369787 0.2343750 0.2369514
0.7 0.2456631 0.2422145 0.2456311
0.8 0.2510806 0.2469136 0.2510572
0.9 0.2540033 0.2493075 0.2539584
0.2549411 0.2500000 0.2548402

Let us now compare the asymptotic values of the cover-
age 65 obtained from the first order truncation of the cluster
hierarchy with “exact” results from MC simulations. The
MC algorithm for the AR and the CR model is performed as
follows. At the beginning of each statistical realization, the
sites of arlN X N periodic square lattic&orug are randomly
filled with particles until a predetermined global coverame
is attained. The elementary time stéfpis chosen in such a
way that each lattice site is visited once on average after one
time unitAt, i.e., st=At/N°. At each time step, a siteand
one of its four nearest-neighbor sitésare chosen at random.

If both are occupied, the reaction step takes place with prob-
ability pg=R 8t=67 (Where s7=A7/N?), i.e., the particle at
sitei is removed from the lattice in the CR case, while in the
AR model both sites andi’ are vacated. Fortunately, the
convergence is rather fast with increasing linear $izand
number of statistical realizatioms.,. The limiting valuesfg
given in Tables | and Il correspond td=200 andng,
=5000 and the accuracy is at least equal t6°10

Figure 1 shows the coveragkas a function of the dimen-
sionless time for the CR model. For an initially full lattice, a
comparative plot between the 1D solution, the MC result on
the 2D square lattice, and the simple MF approach is dis-
played. In the square lattice case, the mean coverage does not
significantly change for times= 10 and above, and its lim-
iting value is found to be 0.2549, about 30.7% smaller than
the 1D resulte™*~0.3679. As expected, the higher connec-
tivity of the 2D lattice(z=4, in contrast taz=2 for the 1D
cas@ leads to an increased number of reactive events per

The different terms on the right-hand side are recovered by accupied site, and the system gets closer to the empty state.
somewhat rougher truncation scheme neglecting all clustess in the 1D case, the long-time decay to the final state
probabilities involving more than a given number of sitesappears to be well fitted by an exponential.

Kmax in Egs. (9). Note that the term irp? on the right-hand

In the AR case, the simulation yields the exact vatide

side of the formulg14) for the dilute case contains an addi- =0.0932 for an initially full lattice, off by about 31.1% from
tional factor 2 with respect to the expansion of the 1D resulthe exact value in 1D. Figure 2 shows the stationary cover-
(8) for small p. This suggests that, in a hypercubic lattice age 65 as a function ofp for both the CR and the AR. The
with coordination numbeg, the prefactor of this term might dependence is monotonic for the CR, whereas a maximum at
have the formvz/2, as is the case in the corresponding ex-p=0.5 is observed in the AR case. As in the case of a Bethe

pansion of Eq(5a) for a Bethe lattice.

lattice, this generic dependence on the initial coverage is
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TABLE II. A comparison between the values @f obtained L L e B e S
from MC simulations and the approximated values obtained by ] E
truncation of the hierarchy for the AR model. —— 2D (sim) 3
- 1D (formula) £
Truncation Truncaton Vv, 777 MF E
p MC simulation (first ordey (second order 3
0.05 0.04131765 0.04132231 0.04132796
0.1 0.06952005 0.06944444 0.06950689 _
0.2 0.1025630 0.1020408 0.1025378 £
0.3 0.1185036 0.1171875 0.1184757 E 3
0.4 0.1255734 0.1234568 0.1255286 e 3
05 0.1274785 0.1250000 0.1274201 /o R
0.6 0.1259282 0.1239669 0.1259275 T
0.7 0.1217432 0.1215278 0.1219250 FIG. 1. Comparative plot displaying the analytical 1D solution
0.8 0.1150304 0.1183432 0.1158427 for the coverage, the 2D simulation result on a square lattice, and
0.9 0.1057193 0.1147959 0.1078826 the MF solution for the CR model.
1 0.09318323 a111111 0.09812664

d

d_ln Q.{ :_1_VQ.f y (15C)

likely to be robust in hypercubic lattices with arbitrary coor- T 4 4

dination numbelcf. Fig. 3 for the AR case q
For p=1 and the CRv=1), we getfs=1/4=0.25 from Zin -2+ —9 + 15

Eq. (13), which is smaller than the simulation value by dr Q;’ Q4 VQ': VQ;*' (159

19.2%(cf. Fig. 4 and Table)| whereas fow=2, the formula . . .
(13) yields 6s=1/9=0.1111, which is larger than the exact AN analytical solution for these equations does not seem

numerical value by 16.1%¢f. Fig. 5 and Table )L Thus, for ~ Possible, but they can be integrated numerically. The results
a sufficiently largep, the first-order truncatiofBethe lattice ~ for the stationary coverage are given in Tables | and II. They

solution) underestimates the asymptotic coverage in the CF'e significantly better for the CR case; the deviation from
case and overestimates it in the AR case. the numerical result is maximal far=1 and is about —0.4%;

On the other hand, for sufficiently low values pfthe  its absolute valugA s/ 64 diminishes monotonically with

approximation gets better in both cases. Thuspfef.5 the ~decreasing. In contrast, the maximal deviation f@=1 in
simulation value is larger than the approximated one by justh® AR case makes about 5.3%. Fig. 6). _

0.8% for the CR(cf. Table ). The fact that, for a given order  Better approximations can be obtained at higher orders,
the parametric regiop<1 corresponding to a dilute system account grows dramatically. It then becomes necessary to
is by no means surprising: in the dilute limit, tae4 Bethe automate the generation of the hierarchical equations. For

lattice becomes a good approximation for the 2D square latNstance, to third order one has 24 different probabilities, and

tice, since “lattice animals” containing loops become rare. to fourth order, 76§33]. _ N o
Nevertheless, the approximate conditional probabilities

B. Second-order approximation obtained from the second-order hierar¢hi$) are already in
ood agreement with exact simulation results, both at the
evel of the stationary coverage and at the level of the time

evolution(data not shown Interestingly, the dynamics turns

For the second-order approximation, we take the whol
set(10) as a starting point and make the approximations

Qi Quyy . Q.y —Quy; Q. ,Q. —Q.ys out to be qualitatively different depending on the valueyof
i g ! ' ! In the CR case, the inequali®.> Q.; holds for all times,

while in the AR case this is only true provided that the initial
Q.y —Q.y, coverage is sufficiently low, i.e., fgp<<1/2. This behavior

i f is observed in Fig. 7, which also displays the time evolution

thereby retaining all unshielded paths with lengths smallePf the other conditional probabilitiegor typographical rea-

than or equal to two lattice spacings. With this approxima-SOns, the symbol®;, Q,, Qs, and Qg used in the legend

tion, we get from Eqs(10) represent, respectively, the quantit(@sQ.,,Q,: , andQ; i)
In contrast, above=1/2 the ARsystem displays a cross-

d
d_rln Q.==21Qy, (158 over between a short time regime for whi€a<Q.; and a
long time regime withQ.> Q., beyond ap-dependent cross-
d over time(see Fig. 8 That is, for short times the probability
—InQ,=-1+vQ,-21Q.; , (15b) to find a site occupied given that its neighbor is occupied is
dr / larger than for a randomly chosen site with no previous in-
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j PR | IR Lo wn ooy | TR | ISR 1 WSS | P | | |
1 e CR{(sim) E ] . :
0253 o AR(sim) e * ° L 2 0254 s 3
E . : ] -
0.2 . E 0.2 -
E L4 E 1 L
E E « i r
@"0.15] N 3 @ 0'15: :
o ° ° ° o 0.1
0.1 o ° & 1 o simulations
j e E 1 — 1storder (BL) |
i ° E 0.05+ --- 2nd order -
0053 ¢ 3 ] i
E 3 0t LARARARRS LNBARRERRS LSRR UARARERRA
0 Frrrrrrrr e P P e 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 P

) ) FIG. 4. Exact simulation results for the CR vs the first two
FIG. 2. Comparative plot showing the dependence of the orders of the shortest unshielded path approximatio first order

aSYmtOtiC coverage for the CR and the AR models on a 2D Squarsorresponds to a Bethe |attkd\jote the good agreement of the
lattice. second-order results with the simulation over the whplange.

formation on the state of the neighbor site, whereas for Iong |n order to interpret some of the above results, let us first
times the opposite is true. Remarkably enough, the qualitacharacterize the occupation of a given sity an occupation
tive behavior of both reaction schemes appears to be univefqumber n; (equa| to one if the site is Occupied and zero
sal, in the sense that it remains the same in Bethe lattices @fherwisg. The fluctuationsn; is defined as the deviation
arbitrary coordination numbdcf. Egs.(5)]. from the average occupation in a given statistical realization,
As far as higher-order conditional probabilities are con-j e sn=n,—(n;). A special kind of two-site fluctuation cor-

cerned, the inequalityQ.>Q.,> Q. : >Q ¢ holds at all - ygjation is thenf,,=(an; oni,yy), wherei andi+m are two

times both in the CR case and in the d|Iute AR case wittSites separated by bonds along a 1D path. By definition,
p<1/2(cf. Fig. 7). However, for sufficiently short times we f, is translationally invariant and depends only on the dis-
again observe a departure from this behavior at highgr ~ tancem. . - o .
the AR case. In fact, all three conditional probabilities The behavior of the conditional probabilities in our hier-

Q Q‘,Q } become |arger tha@ for asufficienﬂy |argq) aI’Chy iS giVen by the CIUSter probabllltl@ |n tum the
latter are related to the fluctuation correlations, which mea-

(cf. Fig. & In this regime, the detailed behavior of the abovesure the reaction-induced ordering in the system. For ex-
Q probabilities with respect to each other is rather complexample, the sign of the differend@.-Q., is the same as the

and shall not be discussed further here. sign of the nearest-neighbor two-site fluctuation correlation
0.2 N Y S T i S I I I i N WA W | | I Lisan iy | T

] 0.15 -

0.15 -
§ OO ‘ 0.1

q:u) 0.1 o "o, 3 o«n

1 F . : ; -
{1 / o 2D (sim) : 0.05 o simulations

005 4 --- 2D (spline fit) E ] — 1st order (BL)
3 — 1D (formula) g --- 2nd order

i e AR AR MaAay RARSS b RARSA LR RARSY AN F 0 Frrrrrree LA LARARARAN LIAARARRASI LA -
0 01 02 03 0.4 ops 06 07 08 0.9 1 0 0.2 0.4 0.6 0.8 1
o]

FIG. 3. Nonmonotonic behavior of the final coverage as a func- FIG. 5. Exact simulation results for the AR vs the first two
tion of the initial coverage in the AR case. The continuous line orders of the shortest unshielded path approximatioa first order
displays the 1D analytic result, while the dots correspond to simu€orresponds to a Bethe latticdNote that the agreement of the ap-
lation results on the 2D square lattice. The dot-dashed curve repre@roximate results with the simulation in the saturation region
sents a spline fit of the MC results. p~1 is worse than in the CR case.

031110-6



ON-LATTICE COALESCENCE AND ANNIHILATION OF ... PHYSICAL REVIEW E 70, 031110(2004)

j P I P S RIS P I I DI S | 1.0
] 09 }
0.05 ; 3 0
0.04 3 - 0.7 T
» 0.6 [\
P 003 3 05
» E E 04 |
D 3 E
3 0024 ° 0s |
0.013 . E 02 ;
E b 01 -
0400 o o o o o ° 3 0.0 . . . T
00 05 10 15 20 25 30
-0.01 e e e e F T

FIG. 8. Time evolution of the conditional probabilities obtained
from Eqgs.(15) for the AR case in the saturation regirfie=1). The

FIG. 6. Relative error ofds as a function ofp in the second- legend uses the same notation as in Fig. 7.

order approximation for the AR case.

these quantities as— . In terms of conditional probabili-

— 2_ ;
=P P =(Q4—Q.)Q.. < ) . : wn
'Ivlvo!D artiPc.Ie(cQquste?rs)?jis;n aéla?alsne SI;1 g al\jlgl_c);omsl?t(:taionstles’ this means thap.,> Q. andQ.. ;<Q., where *-” de-
P ) ppear. 9.2 M putalions, nies a site in an unspecified state. Notice also that the ab-
for the dynamical behavior of the two-site correlations

. i solute value of the three-site correlatioh| becomes
f1, f2, f3 and the three-site correlatidm=(on; onj., oni.o) significantly larger thaifs|. Moreover, for yet smaller values

in the dilute AR Casép<%) are shown. As in the CR case, of the initial CoverageLh may get |arger tha“2|_ This sug-
one hasf, <0 for all times, i.e.,P..>PZ. However, as soon gests that any expansion of the cluster probabilities retaining
asp>1/2, one hasf;>0 for sufficiently short timegsee only two-site correlation functions fails to describe the be-
Fig. 10. In other words, the probability to find a pair of havior, since long-range correlations propagate throughout
neighboring sites simultaneously occupied is higher than ithe system in the course of reaction. As a matter of fact, in
both sites are chosen at random. Most probably, the reasontisge 1D case such an expansion leads to a zero stationary
that for short times the typical size of particle islands is stillcoverage to any order of the distance between $8&p
relatively large, and so is the value &%.; however, the At higher values ofp, the behavior is again modified in
reaction-induced growth of empty-site clusters takes place ¢he AR case. The functionf, and f3 change sign, and the

a higher rate than in the CR case. Thus, the probability tha@P0ve inequalities for the conditional probabilities change
one finds an empty site beyond a certain correlation lengtf€ir direction. In contrast) keeps its positive sign. How-

from a given particle is comparatively high, thereby decreas€Ve. in this case, it remains well below the absolute value of
ing the value ofP2. the two-site correlatiori; for sufficiently large times.

As for the behavior of,, fs, andh, both schemes again The analysis prgsented in this subsection'suggests t'hg't the
display very similar qualitative features in the lgwregime. nature of Fhe spatial self-orderlng_ as a function of the initial
The numerical plots in Fig. 9 suggest tHat>0 andf;<0 condl_tlon is rather comple(es_pemally in the AR cageand
for all times (for very short times, however, our precision €mains to be fully characterized.
does not allow us to determine the sign of the correlation
functions. In any case, this holds for the stationary values of

0003 y——————— T
0.001 { _o=r Tl A
i
-0.001 -
0.25 | -0.003 -
-0.005 - — 1,
020 1 -0007{\ - f,
0.15 ' -0.009 1 T fa
oom{ ~_ h
010 -0.013 |
L -0.015 T
0.05 0 2 a 6 8 10
0.00 . e : T
00 05 10 15 20 25 30 . . . . .
T FIG. 9. Dynamical behavior of the first three two-site fluctuation

correlation functions and the three-site correlation function the
FIG. 7. Time evolution of the conditional probabilities obtained dilute AR casgp=0.25. For this computation, we have performed
from Egs.(15) for the AR case in the dilute regim@=0.25. simulations over 5000 realizations on a 20200 lattice.
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FIG. 10. Dynamical behavior of the first three two-site fluctua-

tion correlation functions and the three-site correlation fundbiam
the AR case with an initially full lattice(p=1). The simulation
parameters are the same as in Fig. 9.

IV. CONCLUSIONS AND OUTLOOK
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provides a better approximation than for the AR model.

The approach used in the present paper can also be ap-
plied to mixed systems combining both coalescence and an-
nihilation steps as well as to more complex kinds of initial
condition [40]. The correspondence between such models
and RSA problems may prove useful in the context of pre-
patterning of the substrate as a tool to improve self-assembly
in certain systems.

We have also seen that our model yields good results for
the fluctuation-induced dynamical behavior of the system.
The main conclusion is that the subsequent dynamics of the
spatial distribution is very sensitive with respect to the de-
tails of the initial condition, especially in the AR case, where
several types of crossovers for the correlation functions have
been identified.

Possible extensions of our work include a more complete
characterization of the transient behavior of the spatial dis-
tribution for the reactant speciéand not only for the special
kind of correlation functions considered hees well as its
dependence on the initial condition. However, exact decima-
tion at any scale is in principle only possible in one dimen-
sion[41] and probably also on Bethe lattices, but the analo-

Using the analogy with RSA problems, we have used thejous problem on a lattice with loops still requires the use of
method of conditional probabilities to compute estimates forapproximate techniques.

the lattice coverage in the framework of a unifying descrip-

In the above context, it is also of interest to compare the

tion for two different types of irreversible binary reactions, properties of such systems with those of their diffusion-
i.e., coalescence and annihilation. More traditional methodsontrolled counterparts. This work could then be further ex-
based on a spatial cutoff of fluctuations fail here, since theended to other systems such as the two-species annihilation
latter are propagated by the reactions over the whole systed+B— S+S. This reaction is known to induce reactant seg-
size. In contrast, the method of conditional probabilities isregation at low dimensions and has been widely investigated
exact in 1D and branching media such as Bethe latticesn the diffusion-controlled casgl2—4§, but its version with
which can be used as a starting point for density expansionshnmobile reactant§32] has not received much attention yet.

in other regular lattice$31] (in the dilute limit, the Bethe

In particular, it would be interesting to see whether a shield-

lattice approximation should be good, since clusters withing property can also be derived in this case, at least for a
loops are rarg A further advantage of the method is that it specific kind of initial conditions.
provides a reasonable approximation for the “exact” simula-

tion results beyond the dilute limit, thereby allowing us to

obtain a fairly good estimate in the vicinity @=1 (corre-

sponding to the usual initial condition in RSA problems
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