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Density-functional theory(DFT) is applied to investigate the structural and thermodynamic properties of
concentrated electrolyte and neutral component mixtures that are highly asymmetric in terms of both size and
charge mimicking a crowded cellular environment. The excess Helmholtz energy functional is derived from a
modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expan-
sion for the electrostatic interactions. The direct correlation functions are obtained from the analytical solutions
of the mean-spherical approximation. In the context of a primitive model where biomacromolecules are rep-
resented by neutral or charged hard spheres and the solvent is represented by a continuous dielectric medium,
this DFT is able to take into account both the excluded-volume effects and the long-ranged electrostatic
interactions quantitatively. The performance of the theoretical method has been tested with Monte Carlo
simulation results from this work and from the literature for the pair correlation functions, excess internal
energies, and osmotic coefficients for a wide variety of aqueous dispersions of charged and neutral particles.
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I. INTRODUCTION

There has been growing interest in recent years to study
the structural and thermodynamic properties of macroion dis-
persions in the presence of neutral species. Such systems
provide a primitive model for a crowded cellular environ-
ment that contains numerous biomacromolecules and cellular
polymers [1,2]. The so-called “macromolecular crowding”
affects many aspects of cellular functions and biomacromo-
lecular properties including protein stability, association, en-
zymatic activity, and diffusion. For instance, biomacromol-
ecules at a high concentration play an important role in many
diseases, including cataract in eye lens, sickle cell anemia,
and so forth that are caused by the condensation of proteins
[3]. Dispersions of macroions and neutral species are also
relevant to traditional applications such as in the selective
precipitation or purification of proteins by addition of neutral
polymers[4].

In a primitive model where biomacromolecules are repre-
sented by charged and neutral species, the properties of mac-
romolecular crowding are primarily determined by the
excluded-volume effects and the long-ranged Coulomb inter-
actions. A wide variety of theoretical and simulation tech-
niques, including the symmetric Poisson-Boltzmann(SPB)
equation, modified Poisson-Boltzmann(MPB) equation, and
the hypernetted chain(HNC) approximation, have been used
to investigate the structural and thermodynamic properties of
macromolecular crowding systems within the primitive
model [5–9]. Among these theories, HNC performs better
than Poisson-Boltzmann(PB) type approaches but it has
convergence problems for strongly asymmetric systems[6].

Density-functional theory(DFT) represents a powerful al-
ternative to the Poisson-Boltzmann equation and integral-

equation theories with even higher accuracy, more conve-
nience for calculations and broader applications. A
comprehensive comparison of DFT with various conven-
tional theories for describing the structures and thermody-
namics of electric double layers has been published earlier
[10]. Very recently, Kinjo and Takad used DFT to study the
effect of macromolecular crowding on the static and dynamic
properties of protein folding and aggregation in a neutral
solution environment[11,12]. They concluded that the addi-
tion of a crowding agent will stabilize native proteins and
enhance the aggregation of denatured proteins, in good
agreement with experiments qualitatively. As in many other
previous investigations on macromolecular crowding, this
work is primarily concerned with the excluded-volume ef-
fects; all other intermolecular interactions are neglected. In
the present work, we propose a quantitative density-
functional theory that accounts for both excluded volume
and electrostatic interactions. This theory is expected to be
more useful than the hard-sphere model for predicting the
structural and thermodynamic properties of macromolecular
crowding. The excess free-energy functional due to the short-
ranged repulsion is evaluated through a modified fundamen-
tal measure theory(MFMT) that has been proved to be very
accurate for hard-sphere fluids[13–15]. The electrical con-
tribution is calculated using a quadratic functional Taylor
expansion of the Helmholtz energy functional[10]. The the-
oretical predictions are tested with extensive computer simu-
lation data for the corresponding model systems.

The present density-functional theory has a number of
advantages in comparison with the conventional approaches.
First, it utilizes an accurate free-energy functional for hard
spheres, which is important for macromolecular crowding
where the excluded volume effects are significant. Although
the quadratic density-functional expansion is essentially
equivalent to HNC, such expansion applies only to the elec-
trostatic part in the present version of density-functional
theory, but to both hard-sphere and electrostatic interactions
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in HNC. In addition, the extension of the DFT approach to
include other forms of intermolecular potentials such as dis-
persion, association, and polymeric molecules is relatively
straightforward. Such extension is less obvious in more tra-
ditional theories. However, inclusions of nonprimitive inter-
actions are expected to be important for a refined theory of
macromolecular crowding. Although DFT has its own limi-
tations at low electrolyte concentrations(inherited from the
direct correlation function) and for systems with strong elec-
trostatic interactions, it provides accurate thermodynamic
properties at least as good as HNC and much better than SPB
and MPB. From a methodological point of view, this work
represents the first application of the residual direct correla-
tion function (DCF) from the mean-spherical approximation
(MSA) to highly asymmetric electrolyte solutions.

The remainder of this paper is organized as follows. We
first introduce the basic formulism of the DFT for asymmet-
ric electrolytes. Then it follows the application of DFT to
dispersions of neutral species and macroions in electrolyte
solutions. Specifically, we consider systems with the size ra-
tio of macroions, counterions and neutral particles equal to
10:1:4 s4 nm/0.4 nm/1.6 nmd, and the valence ratio be-
tween macroions and counterions ranging from 6:1 to 15:3.
Apart from the structural properties as represented by the
pair correlation functions, we have also investigated the per-
formance of the DFT in comparison with that of HNC, SPB,
and MPB for predicting the excess internal energies and os-
motic coefficients of dispersions with different concentra-
tions of neutral species and electrolytes as well as at different
valences of macroions and counterions.

II. DENSITY-FUNCTIONAL THEORY

We consider model macromolecular crowding systems
consisting of spherical macroions and neutral particles dis-
persed in an electrolyte solution. The macroions and neutral
species provide a coarse-grained representation of biomacro-
molecules in a cellular environment. As in the primitive
model of electrolyte solutions, the macroions and small ions
are represented by charged hard spheres and the solvent is
modeled as a continuous dielectric medium. The pair poten-
tial uijsrd between two speciesi and j is given by

uijsrd = 5`, r , si j

ZiZje
2

«r
, r ù si j 6 , s1d

wheree is the electron charge,Zi andsi are the valence and
diameter of particlei, respectively,si j =ssi +s jd /2, andr is
the center-to-center distance between the particles. For a
neutral particle, the valence is zero and the pair potential is
reduced to that for two hard spheres. In Eq.(1), «=4p«0«r
stands for the dielectric constant of the solvent with«0 being
the vacuum permittivity and«r being the solvent relative
permittivity. We use«r =78.4 in all our calculations, corre-
sponding to that for pure water at 298.15 K. As in most
previous investigations of macroion systems, we neglect the
dielectric discontinuity at the macroion surface. Recently, the
effect of image charges for spherical colloids has been thor-
oughly discussed by Messina[16].

The central task of a density-functional theory is to derive
an analytical expression for the grand potential of an open
system as a functional of the density profiles. In general, the
grand potential is related to the intrinsic Helmholtz energy
functionalFfhrisr djg via the Legendre transformation

Vfhrisr djg = Ffhrisr djg + o
i=1

N E drrisr dfVisr d − mig, s2d

wherehrisr dj is a set of density profiles for all species,N is
the number of components,mi is the chemical potential, and
Visr d is the external potential. For a uniform system as con-
sidered in this work, the external potentialVisr d can be in-
troduced by fixing a particle in the origin. In that case, the
density profiles divided by the average densities correspond
to the pair distribution functions around the fixed particle.

For a mixture of charged and neutral particles, the intrin-
sic Helmholtz energy functionalF can be decomposed into
four parts, i.e.,[17–20],

Ffhrisr djg = Fidfhrisr djg + Fhs
exfhrisr djg + FC

exfhrisr djg

+ Fel
exfhrisr djg, s3d

where Fidfhrisr djg is the corresponding intrinsic Helmholtz
energy for an ideal gas,Fhs

exfhrisr djg represents the contribu-
tion due to the hard-sphere repulsions,FC

exfhrisr djg is the di-
rect Coulomb energy, andFel

exfhrisr djg represents correlations
due to Coulomb and hard-sphere interactions. The ideal-gas
term Fidfhrisr djg is known exactly,

bFidfhrisr djg = o
i=1

N E drrisr dhlnsrisr dli
3d − 1j, s4d

wherel denotes the thermal wavelength andb=1/kBT, with
kB being the Boltzmann constant andT being the absolute
temperature. The direct Coulomb termFC

exfhrisr djg is given
by

bFC
exfhrisr djg =

1

2
E E dr dr 8o

i,j

ZiZje
2risr dr jsr 8d

«kBTur − r 8u
. s5d

The intrinsic Helmholtz energy functional due to the hard-
sphere repulsionsFhs

exfhrisr djg is represented by a modifica-
tion of Rosenfeld’s fundamental measure theory[21,22],

bFhs
ex=E Fhsfnasr dgdr , s6d

where the reduced excess Helmholtz energy densityFhs is
given by

Fhs= − n0 lns1 − n3d +
n1n2 − nV1 ·nV2

1 − n3
+

1

36p
Fn3 lns1 − n3d

+
n3

2

s1 − n3d2GSn2

n3
D3S1 −

nv2
2

n2
2 D3

. s7d

The detailed expressions for the weighted densities,nasr d,
a=0,1,2,3,V1,V2, can be found in our previous publica-
tions or in Rosenfeld’s original work[14,15,23]. In the bulk
limit, the two vector weighted densitiesnV1 andnV2 vanish
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and the Helmholtz free-energy densityFhs becomes identical
to that from the Boublik-Mansoori-Carnahan-Starling-
Leland (BMCSL) equation of state[24,25].

To obtain an expression for the residual Helmholtz free-
energy functionalFel

exfhrisr djg due to the electrostatic interac-
tions and intermolecular correlations, we make a quadratic
functional Taylor expansion around the bulk densitieshri

bj by
neglecting all higher-order terms

bFel
exfhrisr djg = bFel

exfhri
bjg −E dro

i=1

N

DCi
s1delfrisr d − ri

bg

−
1

2
E E dr dr 8o

j=1

N

o
i=1

N

DCij
s2delsur − r 8ud

3frisr d − ri
bgfr jsr 8d − r j

bg, s8d

where the DCFs are defined as

DC1
s1del = − udbFel

ex/drisr dub, s9d

DCij
s2delsur − r 8ud = − ud2bFel

ex/drisr ddr jsr 8dub. s10d

The first term on the left-hand side of Eq.(8) corresponds to
the electrostatic part of the excess Helmholtz energy for a
uniform fluid and the third term takes into account correla-
tions among ion distributions. Because the direct Coulomb
term is explicitly taken into account in Eq.(5), the two-body
excess direct correlation function is given by

DCij
s2delsrd = Cijsr d +

bZiZje
2

«r
− Cij

hssr d. s11d

In this work, DCij
s2delsrd is calculated from the analytical ex-

pressions derived from the MSA[26]. The expressions for the
two-body direction correlation functions of electrolyte solu-
tions from MSA are reproduced in the appendix.

The pair correlation functions(PCF) in a uniform highly
asymmetric mixture can be calculated using the Percus’ test-
particle method. The idea is that the system is invariant when
a particle is fixed at the origin; the pair correlation functions
are equivalent to the reduced density profiles of other species
around the fixed particle. As the grand potentialVfhrisr djg
reaches a minimum at equilibrium, the pair correlation func-
tion gijsrd satisfies the Euler-Lagrange equation

− kBT lnfgijsr dg = − kBT lnFr jsr d
r j

b G
= F dFhs

ex

dr jsr d
− m j ,hs

ex G + Zjefcisr d − ci
bg

− kBTo
k=1

N E frksr 8d − rk
bgDCjk

s2del

3sur − r 8uddr 8, s12d

wherecisr d stands for the mean-electrostatic potential. In the
spherical coordinates, the mean-electrostatic potential can be
expressed as

cisrd =
4pe

«
E

r

`

o
k=1

N

rksr8dZkFr8 −
r82

r
Gdr8, s13d

where r is the distance to the center of the fixed particle.
From the condition of electrostatic neutrality, we have

Zi = − 4po
k=1

N E
sik

`

rksrdZkr
2dr, s14d

whereZj and si are the valence and diameter of the fixed
particle, respectively. Equation(12) can be solved self-
consistently using the Picard iteration. Once we have the pair
correlation functions, all thermodynamic properties of the
system can be calculated following the standard statistical-
mechanical equations.

III. MONTE CARLO SIMULATIONS

Besides the simulation data from the literature[6],
NVT-ensemble Monte Carlo simulations are also carried out
in this work to test the performance of the DFT for systems
containing 15:n sn=1/2/3d electrolyte-neutral component
mixtures and 6:1 pure electrolyte. For 15:n systems, the cu-
bic simulation box contains 20 macroions, 300/150/100
neutralizing counterions depending on the valence, and 3000
neutral particles. The corresponding concentrations of elec-
trolyte and neutral component areCe=0.002M and C0
=0.3M, respectively. The periodical boundary conditions are
applied to each dimension of the simulation box and the
Ewald sum method is used to account for the long-ranged
Coulomb interactions[27]. The system is claimed at equilib-
rium after 105 Monte Carlo steps per particle and another 2
3105 configurations are used to calculate the ensemble av-
erages.

IV. RESULTS AND DISCUSSION

A. Microscopic structure

The systems considered in this work consist of an electro-
lyte and a neutral species that are highly asymmetric in both
size and valence. The diameters of cations, anions, and neu-
tral particles are 4, 0.4, and 1.6 nm, respectively. These sys-
tems provide a primitive model for the so-called “macromo-
lecular crowding” environment. We first test the performance
of DFT for predicting the microscopic structures of such
mixtures. The subscripts “11,” “ 22,” “ 12,” “0+,” “0−”
and “00” designate macroion-macroion, counterion-
counterion, macroion-counterion, neutral-macroion, neutral-
counterion, and neutral-neutral pair correlation functions, re-
spectively. The Monte Carlo simulation data are from either
Ref. [6] or this work.

Figure 1 shows the DFT predictions for solutions of 6:1
electrolyte without or with a neutral component. Here the
molar concentration of the electrolyte isCe=0.002M and that
for the neutral species isC0=0.1M, corresponding to a pack-
ing (volume) fraction of h0=0.129. In general, the theoreti-
cal predictions are in very good agreement with simulation
results. The correlations between like- or unlike-charged ions
are similar to those in a simple electrolyte solution. In accor-
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dance with the prediction of the Poisson-Boltzmann equa-
tions, the density profiles of macroions and microions around
a fixed ion are monotonic, with a significant accumulation of
counterions accompanied by a depletion of coions. The pres-
ence of the neutral component attenuates the correlations be-
tween like-charged ions but strengthens those between
unlike-charged ions. Because of the excluded-volume ef-
fects, macroions, counterions, and neutral particles all accu-
mulate to the neutral particle surface and the degree of accu-
mulation is directly related to the particle size.

Figure 2 presents the effects of counterion valence on the
pair correlation functions at a fixed macroion charges+6d.
Here the concentrations of electrolyte and neutral component
remain atCe=0.002M andC0=0.1M and the counterion va-

lence can be monovalent, divalent, and trivalent. As the
counterion valence increases, the accumulation of counteri-
ons near the macroion surface becomes more evident, ac-
companied by a stronger repulsion between counterions.
However, the long-range correlation between macroions di-
minishes with the increase in the counterion valence, indicat-
ing a stronger screening of the macroions by counterions.
The DFT faithfully reproduces the MC results when the sys-
tem contains monovalent counterions. For systems contain-
ing multivalent counterions(6:2 and 6:3), however, the ac-
curacy of DFT deteriorates. In particular, it underestimates
the contact values of the macroion-macroion pair distribution
functions. At the small separation of macroions, the correla-
tion is probably also sensitive to the macroion-counterion-
macroion three-body interaction that is ignored in the qua-
dratic expansion.

Next, we consider a more complicated situation that in-
volves macroions of higher valences+15d. The counterion
valence is also changed from monovalent to trivalent. The
concentrations of electrolyte and neutral component are at
Ce=0.002M andC0=0.3M respectively. Under these concen-
trations, the total packing fraction reaches 0.43, very close to

FIG. 1. Structures of 6:1 electrolytesCe=0.002Md without or
with neutral speciessC0=0.1Md. Symbols represent MC results
from this work and from Ref.[6]. For clarity, the macroion-
macroion, counterion-counterion, and macroion-counterion pair
correlation functions with neutral component have been shifted up-
ward by one unit.

FIG. 2. Macroion-macroion, counterion-counterion, and
macroion-counterion pair correlation functions for 6:n sn=1,2,3d
electrolytesCe=0.002Md and neutral componentsC0=0.1Md mix-
tures. Symbols represent MC results from Ref.[6]. As in Fig. 1, the
curves for 6:2 and 6:3 have been consecutively shifted upward by
one unit.
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the solidification of the mixture. Figures 3 and 4 show all the
pair correlation functions at different valences of counteri-
ons. In Fig. 3, we observed that, as in Fig. 2, the depletion
between counterions and the accumulation between unlike-
charged ions become stronger, but the correlation between
macroions is weakened with the increase of the counterion
valence. Figure 4 indicates that the change of counterion
valence has only minor influence on the distributions of mac-
roions, counterions, and neutral particles near the surface of
a fixed neutral particle. The DFT agrees with MC fairly well
for predicting the macroion-counterion, macroion-neutral,
counterion-neutral, and neutral-neutral distributions under all
the three conditions. But for stronger electrostatic interac-
tions, i.e., in 15:2 and 15:3 solutions, the DFT fails for the
macroion-macroion and counterion-counterion correlation
functions. In addition to a significant underestimation of the
contact values of the macroion-macroion distributions as
shown in Fig. 2, the DFT erroneously predicts a discontinu-
ity of the counterion-counterion distributions. This disconti-
nuity is probably related to the inaccuracy of the DCFs from
MSA, in particular, at low concentrations of electrolytes.

B. Thermodynamic properties

With the pair correlation functions presented above, it is
relatively straightforward to calculate the thermodynamic
properties of highly asymmetric electrolyte-neutral species
mixtures. The reduced excess internal energy per particle is
given by [28]

bEex

Nt
=

1

2
rto

i=1

N

o
j=1

N

xixj E 4pr2gijsrdbuijsrddr, s15d

whereNt is the total number of all particles,rt is the total
number density in the bulk, andxi represents the molar fac-
tion of particlei. The osmotic coefficient can be obtained via
the virial pressure equation[29]

f = 1 +
bEex

3Nt
+

2prt

3 o
i=1

N

o
j=1

N

xixjsi j
3gijssi jd. s16d

Tables I and II present the excess internal energies and os-
motic coefficients of a variety of electrolyte mixtures from

FIG. 3. Same as Figure 2 but for 15:n sn=1,2,3d electrolyte
sCe=0.002Md and neutral componentsC0=0.3Md mixtures. Sym-
bols represent MC results also from this work. The macroion-
counterion pair correlation functions for 15:2 and 15:3 have been
shifted upward by 10 and 20, respectively.

FIG. 4. Macroion-neutral, counterion-neutral, and neutral-
neutral pair correlation functions for 15:n sn=1,2,3d electrolyte
sCe=0.002Md and neutral componentsC0=0.3Md mixtures. Sym-
bols represent MC results also from this work. For clarity, the
curves for 15:2 and 15:3 have been shifted upward by 1 and 2,
respectively.
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MC simulation, DFT, HNC, SPB, and MPB. Here the MC,
HNC, MPB, and SPB results are from Ref.[6]. To evaluate
the overall performance of various theories, we calculate the
average deviation for all systems shown in Tables I and II

Fdivs%d =
1

N
o
i=1

N UuTH − uMC

uMC U 3 100%, s17d

whereuTH anduMC are the values predicted by the theory and
MC simulation, respectively, andN is the total number of
systems investigated. The average deviation for the excess
internal energies predicted by DFT is slightly higher than
those from HNC but much lower than those from PB equa-
tions. For osmotic coefficients, the DFT is the best among
the four theories and the predicted results agree very well
with simulations. When the electrolyte concentration reaches
0.01M, the performances of HNC, SPB, and MPB signifi-
cantly deteriorate but the DFT remains highly accurate.

From these two tables, we may make the following con-
clusions. First, the addition of neutral species increases both
the excess internal energy and the osmotic coefficient. Sec-
ond, an increase in the electrolyte concentration will reduce
the excess internal energy but raise the osmotic coefficient.
Third, both the excess internal energy and osmotic coeffi-
cient decline with the increase of the macroion valence. Fi-
nally, for pure electrolytes the osmotic coefficient falls as the
counterion valence increases, but the opposite is true for
electrolyte-neutral component mixtures, and the excess inter-
nal energy always falls with increasing counterion valence.

In Table III, we compare the excess internal energies and
osmotic coefficients from Monte Carlo simulations and from
DFT for 15:n sn=1,2,3d electrolyte and neutral component
mixtures corresponding to those shown in Figs. 3 and 4.
Although the DFT has some limitations in predicting the
microscopic structures, it provides accurate thermodynamic
properties because at low concentration of the electrolyte, the

TABLE I. Reduced excess internal energy and osmotic coefficient calculated from MC, DFT, HNC, SPB, and MPB at a variety of
solution conditions. MC, HNC, SPB, and MPB results are from Ref.[6].

Z+ C0sMd Z− CesMd

Excess internal energy Osmotic coefficient

MC DFT HNC SPB MPB MC DFT HNC SPB MPB

+6 0 −1 0.002 0.552 0.558 0.550 0.491 0.513 0.941 0.944 0.943 0.970 0.954

0.005 0.682 0.697 0.683 0.600 0.633 1.06 1.07 1.06 1.17 1.09

−2 0.002 1.28 1.30 1.27 1.12 1.19 0.802 0.802 0.806 0.839 0.819

0.005 1.55 1.58 1.55 1.33 1.42 0.920 0.930 0.925 1.06 0.967

−3 0.002 2.13 2.13 2.12 1.84 1.99 0.670 0.650 0.666 0.699 0.678

0.005 2.52 2.51 2.52 2.11 2.29 0.771 0.777 0.783 0.929 0.839

0.1 −1 0.002 0.0683 0.0703 0.0688 0.0613 0.0644 1.90 1.90 1.94 1.93 1.92

0.005 0.182 0.186 0.180 0.158 0.168 2.22 2.22 2.31 2.37 2.28

−2 0.002 0.0954 0.0992 0.0962 0.0847 0.0907 1.92 1.92 1.97 1.95 1.94

0.005 0.266 0.271 0.264 0.225 0.244 2.28 2.28 2.39 2.42 2.35

−3 0.002 0.121 0.123 0.122 0.106 0.116 1.93 1.93 1.97 1.96 1.94

0.005 0.334 0.337 0.335 0.280 0.307 2.30 2.30 2.41 2.42 2.37

+8 0 −1 0.002 0.792 0.807 0.776 0.687 0.726 0.890 0.897 0.899 0.930 0.907

0.005 0.960 0.982 0.961 0.828 0.883 1.00 1.01 1.01 1.15 1.04

−2 0.002 1.86 1.91 1.85 1.57 1.70 0.709 0.703 0.711 0.747 0.725

0.005 2.19 2.23 2.19 1.83 1.99 0.807 0.825 0.818 0.972 0.866

0.1 −1 0.002 0.122 0.126 0.123 0.106 0.113 1.87 1.87 1.91 1.93 1.90

0.005 0.302 0.314 0.304 0.260 0.280 2.16 2.15 2.24 2.37 2.24

−2 0.002 0.172 0.179 0.171 0.145 0.158 1.90 1.90 1.94 1.95 1.92

0.005 0.447 0.461 0.447 0.370 0.408 2.22 2.22 2.32 2.42 2.32

+10 0 −1 0.002 1.05 1.07 1.04 0.883 0.940 0.839 0.852 0.849 0.893 0.862

0.005 1.25 1.28 1.25 1.05 1.14 0.953 0.970 0.958 1.14 0.993

−2 0.002 2.47 2.56 2.46 2.01 2.21 0.620 0.613 0.628 0.659 0.636

0.005 2.84 2.91 2.85 2.32 2.56 0.713 0.735 0.726 0.897 0.778

0.1 −1 0.002 0.194 0.199 0.186 0.161 0.173 1.84 1.84 1.88 1.92 1.88

0.005 0.451 0.467 0.451 0.378 0.412 2.08 2.09 2.17 2.38 2.20

−2 0.002 0.270 0.282 0.267 0.218 0.243 1.87 1.87 1.92 1.94 1.91

0.005 0.669 0.693 0.670 0.541 0.605 2.16 2.16 2.25 2.42 2.28

Fdivs%d ... 2.44 0.65 14.92 8.16 ... 0.70 2.07 8.70 3.34
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thermodynamic properties become insensitive to the micro-
scopic structures.

V. CONCLUSIONS

We have tested the performance of DFT for predicting the
pair correlation functions, excess internal energies, and os-
motic coefficients of macroion-neutral particle dispersions
by extensive comparison with the Monte Carlo simulation
results. Due to the limitation of MSA at very low electrolyte
concentration and quadratic expansion, the DFT is unable to
reproduce the macroion-macroion and counterion-counterion
pair correlation functions faithfully for systems with strong
electrostatic interactions. However, even under these circum-
stances, the DFT still captures all the other pair correlation
functions and the thermodynamic properties successfully.
The limitation of the DFT at low electrolyte concentration
may be eliminated by using a more accurate direct correla-
tion functions.

A theoretical investigation of the so-called “macromo-
lecular crowding” requires many drastic approximations re-
garding both biomacromolecules and the solution conditions
as encountered in a typical cellular environment. Although

the primitive model discussed in this work may not com-
pletely reflect many aspects of real systems, it represents at
least a significant step forward toward understanding macro-
molecular crowding beyond merely the excluded-volume
considerations. In our previous works, we have demonstrated
that, in principle, the DFT can be directly extended to in-
clude, chain connectivity[30–32], intermolecular associa-
tions [33], and van der Waals attractions quantatively
[32,34]. Because of its versatility to account for various in-
termolecular forces, the DFT approach appears promising for
further theoretical study of macromolecular crowding under
more realistic situations.
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APPENDIX: DIRECT CORRELATION FUNCTIONS
FROM THE MSA

According to the MSA, the two-body direct correlation
functions are

Cijsrd = Cij
hssrd −

2be2

«
f− ZiNj + XisNi + GXid

− ssi/3dsNi + GXid2g, sA1d

whensi ,s j and 0ø r ø ss j −sid /2 or

TABLE III. Reduced excess internal energy and osmotic coeffi-
cient calculated from MC and DFT for 15:n sn=1,2,3d electrolyte
sCe=0.002Md and neutral componentsC0=0.3Md mixtures.

Z−

Excess internal energy Osmotic coefficient

MC DFT MC DFT

−1 0.178 0.189 7.42 7.42

−2 0.286 0.252 7.59 7.60

−3 0.328 0.293 7.64 7.66

TABLE II. Reduced excess internal energy and osmotic coefficient calculated from MC, DFT, HNC, SPB, and MPB for 6:n sn
=1,2,3d electrolytesCe=0.01Md under different concentration of neutral componentsC0=0,0.05M ,0.1M ,0.15Md. MC, HNC, SPB, and
MPB results are from Ref.[6].

Excess internal energy Osmotic coefficient

Z− C0sMd MC DFT HNC SPB MPB MC DFT HNC SPB MPB

−1

0 0.803 0.815 0.784 0.700 0.729 1.35 1.37 1.38 1.72 1.42

0.05 0.470 0.484 0.464 0.411 0.430 2.05 2.06 2.15 2.45 2.17

0.1 0.335 0.325 0.330 0.292 0.307 3.03 3.05 3.32 3.43 3.20

0.15 0.263 0.277 0.257 0.228 0.240 4.53 4.53 5.23 4.88 4.75

−2

0 1.80 1.82 1.79 1.50 1.60 1.24 1.29 1.29 1.67 1.36

0.05 0.811 0.825 0.803 0.674 0.721 2.14 2.16 2.27 2.52 2.29

0.1 0.527 0.542 0.521 0.437 0.470 3.22 3.23 3.55 3.55 3.41

0.15 0.393 0.411 0.388 0.324 0.351 4.81 4.82 5.59 5.08 5.06

−3

0 2.88 2.86 2.88 2.33 2.52 1.14 1.16 1.16 1.58 1.30

0.05 1.09 1.09 1.09 0.881 0.958 2.17 2.19 2.30 2.52 2.35

0.1 0.679 0.687 0.676 0.546 0.598 3.28 3.30 3.64 3.57 3.49

0.15 0.496 0.509 0.493 0.398 0.438 4.92 4.93 5.72 5.12 5.17

Fdivs%d ... 2.29 1.03 16.44 10.56 ... 0.97 8.64 16.98 6.93
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rCijsrd − rCij
hssrd =

be2

« 1
ssi − s jd5

sXi + Xjd
4

fsNi + GXid − sNj + GXjdg

−
ssi − s jd

16
fsNi + GXi + Nj + GXjd2 − 4NiNjg 6

− r5sXi − XjdsNi − Njd + sXi
2 + Xj

2dG + ssi + s jdNiNj

−
1

3
fsisNi + GXid2 + s jsNj + GXjd2g 6

+ r25
Xi

si
sNi + GXid +

Xj

s j
sNj + GXjd + NiNj

−
1

2
fsNi + GXid2 + sNj + GXjd2g 6

+ r4H sNi + GXid2

6si
2 +

sNj + GXjd2

6s j
2 J

2 , sA2d

when usi −s ju /2ø r , ss j +sid /2. The parametersXi, Ni, and
G are calculated numerically from

Xi =
Zj

1 + Gsi
−

csi
2

1 + Gsi

o
j=1

N
r j

bs jZj

1 + Gs j

1 + co
j=1

N
r j

bs j
3

1 + Gs j

, sA3d

Xi = Zi + Nisi , sA4d

G2 =
bpe2

«
o
i=1

N

ri
bXi

2, sA5d

where

c =
p

2F1 −
p

6
o
i=1

N

ri
bsi

3G . sA6d
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