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Systematic errors due to linear congruential random-number generators with the Swendsen-
Wang algorithm: A warning
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We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte
Carlo simulations using the Swendsen—Wang algorithm, if the lattice size is a multiple of a very large power
of 2 and one random number is used per bond. These systematic errors arise from correlations within a single
bond-update half-sweep. The errors can be elimin@teat least radically reducgdy updating the bonds in
a random order or in an aperiodic manner. It also helps to use a generator of large niedu|ud0 or more
bits).
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I. INTRODUCTION way, because the cluster sizes and shapes are random. But

It has been known for about two decades that linear cont-he first(bond-updatghalf uses random numbers in a highly

gruential pseudo-random-number generafdissuffer from §tructureq way. 'prically one sweeps the bonds of the Ifattice
strong long-range correlatiofiz—6]: for instance, generators In some S|mple f_|xed ordge.g., lexicographic Therefore, if

with modulusm=2# have strong correlations at lags that arethe Iattlpe size is very large, the effects of the long-range
multiples of % whenever the ratia/ 8 is large enougli2—4. correlations of the random-number generator can be ob-

Furthermore, these long-range correlations are known to giv%erVEdWIthln a single half-sweeythe random numbers used

rise to systematic errors in Monte Carlo simulations employ-In updating the bonds of one part of the lattice will be

ing local (e.g., Metropolis or heat bathupdates whenever strongly correlated with those used elsewhere in the lattice.

the lattice sites are updated in a fixed order and the numbecr)ne may expect this correlation to cause systematic errors

of random numbers used per sweep is a multiple of a Iarg?agrtgi’\\ljilggﬁslfe(?g Itgrtlegl_a;;tlnc;esclécrarélsaggtr:srgen;l;roabtveervxggthe
enough power of 2: this happens because one is usin nd(b) the system’s correlation length is large enough so that

strongly correlated random numbers to update the same Iat'e long-range correlations of the random-number generator
tice sites in successive swegpgthin roughly one autocor- g 9 . 9
couplecorrelatedparts of the lattice.

relation timg [2,3,7-10. On the other hand, these systematic The purpose of this Brief Report is, first of all, to provide
errors can be eliminated by the simple expedient of throwin videncpe tﬁat such s stematicperroré can inde’ed gccur and
away one random number at the end of each lattice swe%’)1 Y

at we have accurately diagnosed their origin; and secondly,

[2,3,7-1Q. X : '
It has generally been thought that nonlocal algorithmsto show how the implementation of the Swendsen-Wang al

such as the Swendsen-Wang algorithiid] and Wolff's gorithm can be modified so as to elimingte at least _radi—
single-cluster variantl2] would be immune to these particu- cally reduce thesg systematic errors. A more detailed ac-
lar defects of linear congruential generators, inasmuch a%ount will be published elsewhef@4].

they employ random numbers in a highly aperiodic way both

in “space” and in “time.” We were therefore astonished to IIl. EVIDENCE OF SYSTEMATIC ERRORS

find, in our Swendsen—-Wang simulation of the three-
dimensional Ising moddl13], large systematic errors on the Isi

12.83 gnd 256 lattices that we eventually trace{dftgr quh odic boundary conditions, using the Swendsen—\W\Yy)
wringing of handg precisely to long-range correlations in the algorithm[11]. We studied lattice sizes=4, 6, 8, 12, 16, 24,

random-number generator.
. X 32, 48, 64, 96, 128, 192, and 256, and performed between
Recall that one iteration of the Swendsen-W4g4V) 0" and 18 SW iterations for each lattice size. We did all our
algorithm consists of two steps: first one updates the bon ns atB=0.221 654 59, which is Blotet al’s best estimate

occupation variables at a fixed configuration of the Ising spir'b]c the critical temperaturgl5] and is very near to the esti-

variables; then one computes the connected clusters assOflates of other workerid6,17 (see also the revieydg]). We

ated to the bond configuration and updates the Ising Spifyeaqred a large number of observables, including the sus-
variables by choosing a new spin value independently foE:eptibility X, the second-moment correlation lengththe
each cluster. The secorigpin-updatg half of the SW algo- energyE, and the specific heal,.

rithm indeed uses random numbers in a thoroughly aperiodic In the first version of our program, the random numbers

were supplied by a linear congruential generator with modu-

lus m=2%8, incrementc=1, and multipliera=31 167 285,
*Electronic address: giovanni.ossola@physics.nyu.edu 10 430 376 854 301, 77 596 615 844 045, or
"Electronic address: sokal@nyu.edu 181 465 474 592 829. All these multipliers give good results

We simulated the nearest-neighbor three-dimensional
ng model on arL X L XL simple-cubic lattice with peri-
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TABLE |. Results of our Swendsen—-Wang simulations on the &L =~ 0.642998) — 0.0293179)L 7082 (2
three-dimensional Ising model at criticality, using a linear congru-
ential generator with modulum=24. Error bar(one standard de- Not surprisingly, the pointé =4 andL=6 show significant
viation) is shown in parentheses. The row marked> indicates deviations from the fit curve, due to higher-order corrections
our best estimate of the asymptotic vakie The last two columns to scaling. More surprising are the poirits 128, which lies
indicate the deviation of each point from the fit cuc2g, in percent  roughly 3% (=79 standard deviatiopdelow the fit curve,
and in standard deviations. Points deviating by more thara®  and L=256, which lies a whopping 21%=170 standard

marked in boldface. deviations above the fit curve. Clearly, there are large sys-
tematic errors on the latticds=128 andL=256. Finally, the
L &I deviation (%) deviation(o) point L=192 lies approximately 0.2%~3 standard devia-
4 0.630009) 0.566% PE tions) above th(=T fit curve: thimayindicat_e the presence of a
' ' ' small systematic error also for this lattice.
6 0.6357610) -0.076% 3240 At first we worried whether we had made a programming
8 0.6376910) 0.004% 0.46 error that might lead to incorrect results on large lattices
12 0.6390911) -0.013% -0.83 (e.g., due to integer overflowMVe checked the program care-
16 0.639983) 0.002% 0.1 fully and were unable to find any such mistakes. Moreover,
24 0.6409813) 0.015% 0.83 the fact that the systematic discrepancy is much smeflér
32 0.6412€13 ~0.010% ~0-3& |ea)r((l)sbtlizrﬁt é\1/3hz";":el\_/;rligt)szc:fathuasne attlj_ozelszr?otsgggéf;?rotrza:h;he
48 0.6417210) —-0.007% —-0.5& lattice being large.
64 0.6422816) 0.032% 144 Intrigued by the fact that these large discrepancies might
96 0.6421916) -0.017% -0.76 be arising only at lattice sizes that are large powers @2
128 0.622185) -3.159% 78.940 perhaps multiples of large powers of, 2ve made shorter
192 0.64388398) 0.192% 3.230 runs(between X 10* and 16 SW iteration$ at many other
256 0.7779879) 21.052% 169.6%r lattice sizes—all multiples of 2 from 4 through 140, and all
- 0.642998) multiples of 10 through 250—in order to check whether any

other deviant points could be found. The upshot is that—to
within the statistical error of these shorter runs, which ranges

on the spectral test in low dimensions, compared to othelom 0.2% on small lattices to 1% &t~128 to an admit-
multipliers for the same modulyd,19. We verified that the tedly rather crude 2.3% on the largest lattices—there are no
runs with the four different multipliers gave results that aredetectable discrepancies exceptat128 and 256.
consistent within error bars for all the major observables; At L=128 andL=256, we found discrepancies not only
after making this verification, we averaged all the runs forfor the correlation length but also for the susceptibility, the
eachL. energy, and the specific heat. It is a curious fact, however,
The results for the correlation lengéhare reported in the that all the Fortuin-Kasteleyn identitiefRef. [20], Egs.
first two columns of Table I. Finite-size-scaling theory pre-(3.20~(3.23)] are verified perfectlyto within statistical er-

dicts thaté/L should behave for large (if indeed we are at  fon)- This contrasts with the systematic errors found by Dam-
the critical temperatupeas gaard and Hellef8] in a Metropolis Monte Carlo simulation

of theU(1) Higgs model, where a Ward identity was violated

by up to 10 standard deviations, and those found by Balles-
GL=x"+AL O+ -+, (1) teros and Martin-Mayof21] in a Wolff _single-gluster simu- _

lation of the two- and three-dimensional Ising models, in
which Schwinger—Dyson identities were violated by up to
eight standard deviations.

wherex is a universal amplitude ratio characteristic of the
given system with periodic boundary conditions, is a
correction-to-scaling exponent A is a nonuniversal Il VARIANT SIMULATIONS
correction-to-scaling amplitude, and the dots indicate higher-
order corrections to scaling. The data in Table | are qualita- In the Introduction, we have argued that long-range cor-
tively consistent with Eq(1), except for the points at L relations in the random-number generator can cause undes-
=128 and L=256,which show extremely large deviations ired correlations within a single bond-update half-sweep,
A closer examination of the data in Table | reveals that thdeading to systematic errors. In order to test whether our
point at L=192 may also exhibit a small but statistically proposed explanation for the observed systematic errors is
significant deviation from the fitting curve. To make all thesethe correct one, we ran variant simulations in which two
observations more quantitative, let us perform a weightedspects of the simulation were systematically altered: the
least-squares fit to Eq1) with «=0.82 (the best estimate modulusm=2# of the random-number generatg@=16, 20,
from [15]), using all the data with.,,,<L <96 and varying 24, 28, 32, 40, 48, 60, 63, and ,4nd the manner in which
Lmin While checking the goodness of fit. A good fi¥?  the random numbers are used within the bond-update sub-
=3.85, 6 DF, confidence levet 70%) can be obtained al- routine. The latter test is essential if we are to prove not only
ready withL,;,=8, yielding that the trouble comes from the random-number generator,
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but more specifically that it comes from the way that the The results of all these variant simulations, carried out on
random numbers are us@uthe bond-update subroutine lattice sized.=8, 16, 32, 64, 96, 128, 192, and 256 will be
All of the multipliers used here give good results on thereported elsewhergl4]; here we provide only a brief sum-
spectral test in low dimensions compared to other multipliersnary. We find that the 60/63/64-bit generators give consis-
for the same modulq]s.The purpose of trying random- tent resultswithin statistical erroy for all three variants of
number generators with fewer than 48 bits was to inducehe pond-update subroutine, confirming our expectation that
systematic errors on small lattices where they could be studney exhibit negligible systematic error on lattides: 2567
ied quantitatively to high precision and compared with thoseBy contrast, each “standard” algorithm with48 bits exhib-

observed with the 48-bit generator on larger lattices. Thexg qetectable systematic errors whenever the latticelsize

purpose of trying random-number generators with 60/63/6.‘5 multiple of a sufficiently large power of 2; how large de-

Which the Systematic etror s elimnated or a least radicaliPSnS 01 the modulus. More precisely, the 16tsp. 20-
y bit, 24-bit, 28-bit, 32-bit, 40-bit, 48-bjtstandard algorithm

reduced. exhibits detectable systematic errors whendvas a mul-
tin;/?le also tried three variants of the bond-update SUbroufiple of 8 (resp. 8, 8, 16, 32, 64, 128n addition, the 48-bit

Standard This is our original program, in which the “standard” algorithm at. =192 shows a discrepancy of al-

bonds are updated in lexicographic order, and one randofoSt ¥, which may indicate a systematic error. No other
number is used per bond. statistically significant discrepancies are observed.

Aperiodic Here the bonds are again updated in lexico- We conclude that, if one wants to use a linear congruential
graphic order, but a random number is used only if the twdgdenerator with the Swendsen-Wang algorithm, the safest ap-
spins are equallf the two spins are unequal, the correspond-proach is to use a generator of 64 lits more together with
ing bond is automatically left unoccupied, so no randomthe “shuffle” bond update. Unfortunately, the shuffle method
number is needeflIf our explanation of the cause of the is somewhat slow. A much faster—and, as far as we can tell,
systematic errors is correct, this strategem should eliminatalso safe—method is to use a 64-bit generator together with
the systematic errors on lattices that are multiples of largehe “aperiodic” bond update.
powers of 2, though it may conceivably shift those system- Despite the known problems of linear congruential gen-
atic errors to other lattice sizgaamely, those for which the erators arising from long-range correlations, there are still
lattice size, multiplied by the fraction of nearest-neighborseveral advantages in using them. First, they are relatively
spins that are equal, yields a suitable “resonance” cheap in terms of CPU time, and are convenient for use in a

Shuffle The bonds are updated in a random o?dk_érour series of successive runs because the complete state of the
explanation of the cause of the systematic errors is Correcbenerator can be saved in a single computer word. More
this strategem sho_uld entirely eliminate the systematic eImorgmportantly, they are well understood theoretically, as re-
even with a relatively pooie.g., 32-bif random-number gards both short-rangd] and long-rangé2—6,14 correla-

generator. tions; in particular, excellent equidistribution ttuples of
Our first version of the “shuffle” subroutine permuted the N p ' a P
array containing the bond indices. Unfortunately, this pro_successwe.random numk_)er_s for sntatlan be achieved by_
careful choice of the multiplier. By contrast, for more exotic

gram ran very slowly—about a factor of 2 slower than the o
“standard” version at.=16, growing to a factor=8 at L random-number generatofg.g., combination generatgrs
: the problems may not be absent, but simply hidden.

=256—probably because the highly nonlocal access to the . . . ) ;
bond array caused a large number of cache misses. Our s c.Amore detailed analysis of these simulations will be pub-

ond version permuted instead the array of random numaoerS'IShed elsewherg14], along with a discussion of the advan-

this is statistically equivalent but allows the bond array to betages and disadvantages of linear congruential versus other

accessed in sequential order. This program ran less slowltz‘i‘zq)c’f pseudo-random-number - generatdsee - also
once again about a factor of 2 slower than the “standard '

version atL=16, but growing only to a factor4 at L
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