PHYSICAL REVIEW E 70, 026701(2004

Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions
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Two techniques, based on the exchange of momentum and the integration of stress tensor, for the evaluation
of the hydrodynamic forces in the lattice Boltzmann simulations are investigated on the curved and moving
boundaries in two dimensions. The following results are obtained by numerical simulatjotie hydrody-
namic forces on an inclined boundary and arc in liquid without flow computed by the stress-integration method
agree with analytical predictions to a very high accuracy, while those by the momentum-exchange method have
considerable errors for small segmerits); the simulation results of the sedimentation of a circular cylinder in
a two-dimensional channel with the stress-integration method for hydrodynamic forces are in excellent agree-
ment with those by a second-order moving finite-element metfiopthe particle migrated from the centerline
is found to occur in the simulations of a circular cylinder in a Poiseuille flow by the stress-integration method,
consistent with the Segré-Silberberg effect. In conclusion, the stress-integration method can be a good candi-
date to evaluate the hydrodynamic forces on the elastic boundaries and moving particles in fluid.
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I. INTRODUCTION The determination of the hydrodynamic force involving

Since the pioneering work by Ladd], the lattice Boltz- curved and moving boundaries is an important issue in the

mann method2—5] has been a popular tool to simulate solid application of the lattice Boltzmann method to the simula-

particle moving in fluids. The ingredients of such a lattice tions of the particle suspensions. All the above simulations

Boltzmann simulation usually include: lattice Boltzmann €valuate the hydrodynamic force by the momentum-
exchange methofl,11]. The momentum-exchange method

simulations in the fluid domain, nonslip boundary conditions; be imol d and th lcul h
at solid-liquid boundaries, appropriate hydrodynamic forceS €Sy to be implemented and the accuracy to calculate the
ydrodynamic force exerting on the rest solid particles has

on the solid, and a second-order Newtonian dynamics to udtj)een demonstrated4—17
date the position, rotation, velocity, and angular velocity of Mk
P Y g vy On the other hand, He and Dool¢h8] calculated the

particles. Ladd extended the bounce-back rule for movin . .
orce by integrating the total stress on the surface on the

particles and developed a formula to calculate the hydrody*

namic force exerting on the solid particles based on the mogY/inder and the components of the stress tensor were ob-

mentum exchanggl,6,7. Aidum et al. [8,9] attempted to tained by taking respective velocity gradients. In the method
improve Ladd’s mod,el’b)./ removing the fluid within the solig ©f integrating stress tensor, the stress tensor is derived from

. . . . further processing of the distribution functions, such as ex-
region so th"."t they .COUld handle a system W!th solid dens't)frapolat?on Rece%tly Megt al. compared the simulation re-
less than fluid density and conserved the fluid mass exactl ’ ! X

Qi [10] applied the model to simulate the nonspherical par ults of several test cases with fixed and complex boundaries

) ; and found that the momentum exchange is superior to the
ticles in nonzero Reynolds number flow. Behrgid] ana- 9 P

. o stress integratiofil4].
lyzed different boundary conditions based on the bounce- |, this paper we will examine the technique of stress in-

back rule and proposed a “related bounce back at the nodegagration for force evaluation in the lattice Boltzmann simu-
(RBBN). Recently Raiskinmaket al. [12] applied the |ation on curved and moving boundaries in two dimensions
Behrend method to simulate nonspherical particles SUSyy using the formula proposed by Inamueo al. [19] to
pended in a shear flow. Miglioriret al. [13] used a lattice  calculate the stress tensor. Excellent agreement is obtained
Boltzmann approach to quantify the forces exerted on rollingyn, the particle motions at small Reynolds numbers, including
leukocytes by red blood cells in “virtual blood vessels.” Al- the particle velocity, the particle angular velocity, and the
most all previous lattice Boltzmann methods for suspensiofiprces and torques on the moving particles by numerical
particles have assumed the physical boundary is located gimulating of the sedimentation of a circular cylinder in a
the middle of the mesh link between a solid node and a ﬂuquo_dimensionaj channel and Comparing with those from a
node. The hydrodynamic radius of a suspended particle diffinjte-element metho@20-23. Moreover, the simulation on
fers from the input radiu$l2]. neutrally buoyant cylinders in a horizontal pipe flow with
this method shows that the particles migrate laterally away
both from the wall and the centerline and reach a certain
* Author to whom correspondence should be addressed. Email adateral equilibrium position that is consistent with the Segré-
dress: hpfang2000@yahoo.com Silberberg effeci23] observed in 1961. It is worth com-
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menting here that the equation to calculate the stress tensor ! ! ! !

derived by Inamureet al. [19], which avoids velocity gradi-

ents, is applied in the lattice Boltzmann simulations so that
not only the noise in the simulations is efficiently reduced,

but also the code is simpler.

The paper is organized as follows. In Sec. Il we briefly
describe the lattice Boltzmann method. Section Il and IV
review the boundary condition and the two methods to evalu-
ate hydrodynamic forces exerted on the complex and moving
boundary. The numerical simulation results are shown in
Sec. V. In Sec. VI, the conclusion and discussion are pre-

sented.

Il. THE LATTICE BOLTZMANN MODEL

The Boltzmann equation with the single relaxation time

approximation readg24]
of 1
—+{ Vi=-[f-fe9] 1
P )\[ ] (1)

where{ is the particle velocityf? is the equilibrium dis-
tribution function, and\ is the relaxation time.

Discretizing Eq.(1) in the velocity space by using a
finite set of velocitiess,, we obtain[25,2§

f; 1

e V== =], 2)
In the model on a square lattice in two dimensioeg,
=(0,0), g=c[cosw(i-1)/2,sinm(i-1)/2],i=1,2,3,4, and
e=c[cosm(2i-1)/4,sinm(2i-1)/4], fori=5,6,7,8 are the
nine possible velocity vector®2Q9), and the equilibrium
distribution functions are of the fori8,25|

3 9 3
fri=aip| 1+ 56 -u+ 58 'U)Z—Eu2 .

for athermal fluids. In the equationyg=4/9, a;=a,=a;
=a,=1/9, andas=ag=a;=ag=1/36,c=5X/ ét is the lattice

speed, andx and ¢t are the lattice constant and the time

step, respectively. The densigyand the velocityu are de-
fined by

Pzzfiv
|

Uzzfier. (4)

The lattice Boltzmann equatidd,3,5 is obtained by fur-
ther discretizing Eq(2) in spacex and timet as

0k o, t+ )=k D=-2(, -1, (5)

where 7=\/ . The macroscopic equations can be obtained
by a Chapman-Enskog procedure. The viscosity in the mac-

roscopic equations is

:@CZ&. (6)

14

In this paper, we sefx=dt=c=1.

ffr. -
- ! fluid

physical
| boundary |

I
| “..  Inode 1 |
S \

FIG. 1. The layout of the regularly spaced lattices and curved
wall boundary.

IIl. BOUNDARY CONDITION FOR COMPLEX
GEOMETRY

Filippova and Hane[27] presented their scheme for the
treating of a boundary condition by considering a curved
boundary lying between the lattice node of spdcéx as
shown in Fig. 1. The lattice nodes on the solid and fluid side
are denoted by, andx;, respectively. We assume

€ =Xp ~ X¢
and
e=-e.

The filled small circle atx,, marked by a lettemw, is the
intersection with the the physical boundary on the link be-
tweenx, and x;. The fraction of an intersected link in the
fluid is A.

Xt = X

= M 0sA<1. (7)

Xt = Xl
After the collision step, at timg the distribution functions at
x; are known. In the streaming stefi(x;) is expected to
obtained by

fT(Xf,t + &) = fT(Xb,t) . (8)

However, the distribution functiom;(x,,t) at the boundary
nodeb is unknown.
Filipova and Hanel assumed the linear interpolafia]

filXp, 1) = (1 = ) fi (%4, 1) + X (X, 1) + Bai€ - Uy, (9)

whereu,,=u(x,,t) is the velocity atx,, andy is a parameter.
fi( ) is a fictitious equilibrium distribution function given by

« 9 3
fi( )(xb,t) =ap| 1+ 38 Uyt + E(e, ug)? - Euf , (10
where us=u(x;,t) is the fluid velocity at the fluid nodé
shown in Fig. 1uy; is to be determined below. Filipova and
Hanel proposed27]

Ups= (A= 1ug/A +u,/A andy=(2A - 1)/7
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FIG. 2. A schematic diagram of extrapolation. The distribution Length of the line ( lattice unit )

functions at poinC is obtained by linear interpolation from nod&s
andB. The distribution functions at poir® on the boundary of the
cylinder is computed by linear extrapolation fratnandD.

FIG. 4. The hydrodynamic force per unit length of the boundary
in X andy directions, respectively. The dotted lines are the results
from the stress-integration method which are consistent with ana-
1 lytical predictions exactly. The solid lines are calculated from the
for A = 5, (11) method of momentum exchange and averaged from»0 to
IV. METHODS FOR FORCE EVALUATION IN THE

and LATTICE BOLTZMANN METHOD

A. Method based on momentum exchange

For eachrelevant direction ¢ from a fluid node to a
. (12 boundary node, the solid boundary obtained an amount of
momentumfi(x,,t)e —fi(x¢,t,)€, where the first term is due
to a fraction of particled;(x;,t,) colliding on the boundary
to obtain a second-order scheme for the “slow flow.” Mei and the second term comes from a fraction of particles
al. [28] improved the stability of the scheme by replacing fi(Xs,t) bouncing back from the boundary in a time step.

NI

Ups = Us andX: (ZA - 1)/(7'_ 1) for A <

Eq. (12) with Consequently, the hydrodynamic force exerted on the solid
particle at timet along this direction is
F(Xp) = [fa(Xp, 1) + (X, 1) ]€y, (14

1
Ups = Ugs and)(z(ZA—l)/(T—l) forA<—, (13) . .. . . .
2 wheret, is the post collision time, anfi(x,,t) is obtained

from Eq. (9). The particle forcé=; and torqueT ; acting on

the solid particle are obtained as
whereuy; is the fluid velocity at fluid nodéf shown in Fig. P

1. They have used the improved technique to test against Fr=2, F(Xy) (15)
several flow problems, such as the two-dimensional channel

flows with constant and oscillating pressure gradients, flonand

due to impulsively started wall, lid-driven square cavity flow,

and flow over a column of circular cylinders to demonstrate T1=2 (X = R) X F(Xp), (16)
its accuracy and robustne$®8]. This boundary treatment

will be adopted in the present paper. where R is the center of mass of the solid particle. The

summation runs over all the relevant directions of the bound-
ary node.

alk.. < fluid node Q

¢ solid node

B. Force evaluation based on stress integration

3¢ According to those proposed by Inamwbal, the stress
> 5 tensor in the lattice Boltzmann method can be calculated as

follows [19]:

1
nl6 1 1

0 & . O == p&j— (1 ——) 2 (84 = ) (€4 = U)f 4,

0 2 4 6 8 67 27
X a7

FIG. 3. A schematic diagram of an inclined boundary in lattice where &; is the Kronecker delta function arigj=x,y. This
Boltzmann simulations. The heavy line is the boundary. The dottegprocess avoids using velocity gradients to calculate the stress
lines are the links connecting fluid nodes and solid nodes. tensor. Denoted by the surface of the cylinder, the hydro-
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FIG. 5. An arc of radianB and radiusR in fluid.
B(units of )
dynamic force and torque are calculated by integrating stress — T T 1
tensor and momentum flux d&i[19]
F:f {o-n=-pu[(u-V) - nl}-ds,
s L

T:frx{cr-n—pu[(u—V)-n]}-ds, (18
S

wheren is the unit outward normal vector &) r is a vector 0.0 0.5 1.0 15 20
from the center of the cylinder to the point @V is the B(units of )
velocity of the center of mass of the solid particle. The inte-
gral in Egs.(18) is approximated by the numerical quadra-  FIG. 6. The hydrodynamic forcé from outside on the arc is
ture of 400 points. shown in Fig. 5 inx andy directions. The solid lines and the
In the calculation ofo-ij onS, f, on Sis obtained from symbols are the numerical results from the methods based on stress
extrapolation as follows, whila on Scan be computed from integration and momentum exchange, respectively. The insé# in
f,. Figure 2 shows an example of extrapolation. The distri-2nd(b) show the errors.
bution function atC is obtained by linear interpolation from
those at the node& andB. The distribution functions aD V. SIMULATION RESULTS AND DISCUSSION
are computed by linear extrapolation from those at the points
C andD. The final distribution functions at the poif for
the calculation otr; is the average of the extrapolated values When the lattice Boltzmann method is applied to simulate
of all the relevantdirections. A relevant direction is defined the flow in a tube with elastic boundaries such as the artery
here as a direction fron® to a nearest-neighbored or next [29-31], the hydrodynamic force on a curved boundary will
nearest-neighbored fluid nod®, for example. In order to  have to be evaluated. Moreover, since the motion of each
increase the stability of the scheme, we establish the followboundary segment depends on the forces acting on it, the
ing restrictions on the choice of thelevantdirections:(A)  accurate calculation of the hydrodynamic force on each small
The angle between the relevant direction and the normal disegment is of crucial importance. In this subsection, the de-
rection n of the boundary is smaller than 90(B) A  pendence of the errors on the length of the boundary seg-
=CD/CO=0.5. ments is investigated in the system shown in Fig. 3. For
The method based on momentum exchange does not reimplicity, we assume that there is no fluid flow in the system
duce the stability of the lattice Boltzmann simulations. Theand pressure in fluid keeps as a constani lattice Boltz-
extrapolation, on the other hand, usually causes instabiliynann simulations, equilibrium distribution functions with
We have performed many numerical simulations based o@ero velocity and a fixed densips~3p are set on all the fluid
the stress integration and found that it is stable for low-nodes, i.e.f,=fS% Stress tensor can obtained from E&j7)
particle Reynolds numberavhich will be defined in Sec. as
IV C), i.e., Re<10, whenris in the range 0.5& 7<<0.98 in
all the numerical simulations of the tested problems in the 1
present paper. In the special case that there is not any rel- gjj == §p5ij, (19
evant direction for extrapolation available, we suggest that
the distribution functions atD are those at the nearest-
neighbored fluid node dd and the accuracy of this sugges- and the hydrodynamic force acting on a segment of the
tion should be tested and presented elsewhere. boundary with a lengthlds:

A. Hydrodynamic force on an inclined boundary
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FIG. 8. Settling trajectory for circular cylinders releasedxat
=0.076 cm at small Reynolds numbeRe The lines are the nu-
merical results from a second-order moving finite-element method
[21]. The symbols are the simulation results from the present lattice

Boltzmann scheme with stress-integration method.

FIG. 7. A schematic diagram of a circular particle in a two-
dimensional vertical channélL=4d) released near one walG is

the gravity.
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FIG. 9. The time-dependent particle velocity in horizontal directions at different Reynolds numbers.
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FIG. 10. The time-dependent particle velocity in vertical directions at different Reynolds numbers.

1 C. Sedimentation of a circular cylinder in a vertical channel

dF = épd| n, (20)

_ ) ) A circular cylinder moving in a channel under gravita-

Wh_er_en is the unit vector perpendicular to the boundary.tjonal force has been extensively studied by Josephl.

This is exactly the analytical result. _ using a finite-element methd@0-23. In a previous paper
Figure 4 displays the hydrodynamic force per unit Iength[32], we used the momentum-exchange method to evaluate

h q df Oxtolt is clear that th Mhe hydrodynamic force on the circular particle. Excellent

exchange and averaged from IS clear that there are agreements between the lattice Boltzmann method and the

large errors for smalk, i.e., the method of momentum ex- §_econd-order finite-element method by Josephl. [20-22

change gives large errors for small segments and is not sui ) . . ; .
g€ g g 9 on the moving particles are obtained for the particle veloci-

able for the simulations of the systems with elastic bound-." " ", . . . C
aries. ties in the vertical direction, the particle angular velocities,

the forces in vertical direction, and torques at small Reynolds
numbers, while there are small discrepancies between those
B. Hydrodynamic force on arcs two methods on the particle velocities and the forces in the
The arc shown in Fig. 5 gives another example withhorizontal directi_on. In the present paper we study the same
which to evaluate the hydrodynamic forces in curved boundflow problem using the lattice Boltzmann method with the
aries. The equilibrium distribution functions are set to all theStress-integration method.
fluid nodes. The hydrodynamic forces and the directions on The flow geometry is shown in Fig. 7 with the channel
the arc from outside of the arc are shown in Fig. 6 for bothwidth L=4d, whered=0.1 cm is the diameter of the cylinder.
the methods. The insets in Figgapand(b) show the errors The cylinder is released a&=0.076 cm and then settles un-
from the evaluation from the exact solution. The methodder gravity. The density and the kinematic viscositgf the
based on stress integration gives much smaller errors thdtuid are 1 g/cm and 0.01 criV's, respectively. In our simu-
that of the momentum exchange. lation, the inlet of the domain is always d5rom the

026701-6
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FIG. 11. The time-dependent angular velocity at different Reynolds numbers.

moving particles, whereas the downstream boundary @ 15tion of the volumetric representatigl4] may improve the

or more from the boundary. Zero velocities are applied unitechnique on the mass and momentum conservation.

formly for the inlet and the normal derivative of the velocity =~ Four cases with different solid fluid density ratios are

is set to zero at outlet. The nonslip velocity condition issimulated. In Fig. 8 the settling trajectories at different ter-

applied to the left and right solid walls. A periodic boundary minal Reynolds numbers from the lattice Boltzmann simula-

condition is used for the top and bottom boundaries. tion with stress-integration method are shown together with
In the present lattice Boltzmann simulation, the radius ofthe simulation results by a second-order finite-element

the cylinder is 13 lattice unitsz=0.6. The translation of the method[21]. Excellent agreement between these two meth-

center of the mass of a particle is updated at each Newtoniamds can be clearly seen. The terminal particle Reynolds num-

dynamics time step by using a so-called half-step “leap-frog’ber in the figure is defined bRe=du,/v, whereu, is the

schemg[33]. The scheme is written as terminal velocity of the particle. Figures 9-11 further display
the time-dependent velocity and angular velocity at different

V(t + 15t> :V<t— 1&> + StF(H)/IM, (21) terminal Reynolds numbers. The lattice Boltzmann simula-

2 2 tion results agree with the finite-element simulation results to

high accuracy.

R(t+ 8t) =R(t) + &V(t - ;) + SPFL()/IM, (22

whereV is the velocity of the center of mass of the solid intlet outlet
particle, andM is the mass of the solid particle. For a two- p+Ap D| p-ap
dimensional system, the rotations of the particles are updated lﬂ@'—

in a similar way. It should be noted that both local mass and 5

momentum are conserved approximately on the boundaries Ye

as that discussed in detail in R¢BO] although a point-wise 4D

interpolation scheme usually does not obey exact local mass

and momentum conservation. We also note that the applica- FIG. 12. A neutrally buoyant circular cylinder floating in Poi-
seuille flow.
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FIG. 13. Lateral migration from different initial positions of a FIG. 14. L | miaration f diff initial . f
cylinder a Poiseuille flow at Reynolds number Re=9.288 and for - 14. Lateral migration from different initial positions of a

D,/D=0.25,0btained by lattice Boltzmann simulations simulatedCyIInOIer na PO'S?“'”G f!ow foDs/D=0.25, obtained by lattice
with stress-integration method. Boltzmann simulations with the momentum-exchange method.

D. Motion of a neutrally buoyant circular cylinder in a other hand, the cylinder always migrates to the center line by
Poiseuille flow using the method of momentum exchange, see Fig. 14.

Segré and Silberbeli@3] discovered that neutrally buoy-
ant particles in a pipe flow will migrate laterally away both
from the wall and the center line and reach a certain equilib-
rium lateral position. Karnigt al. [35] verified that this phe- The stress-integration method is used to evaluate the hy-
nomenon is due to an inertia effect of the flow. Tachibanadrodynamic force on an inclined plate, arc, and simulations
[36] found experimentally that when the ratio of the particleof a circular cylinder settling in a vertical tube and in a
diameter to the pipe diameter exceeds 0.2, the phenomendtoiseuille flow. From the computations, the following results
is more clear. Recently, Inamuiet al. [19] calculated the are obtained:
force and torque on the solid particle by integrating stress (1) In the calculations of the hydrodynamic force on an
tensor and momentum flux on a closed surface for a fixedhclined boundary, the stress-integration method gives accu-
radial distance 0.18 from the surface of the cylinder, where rate results regardless of the length of the inclined boundary
D is the diameter of the cylinder. The Segré-Silberberg effectvhen there is no fluid flow. There are considerable errors
was observed in the simulation of a line of cylinders in awhen the method based on momentum transformation is ap-
Poiseuille flow. plied. The stress-integration method is perhaps superior to

Figure 12 displays a schematic diagram in our latticethe momentum-exchange method when there are elastic
Boltzmann simulations of a single cylinder in a Poiseuille boundaries, on which the forces on small segments of bound-
flow. The width of the tunnel i® while the diameter of the aries have to be evaluated accurately to determine the motion
particle isDs. The pressure drop from inlet to outlet iAR. of these small segments.

In the simulations, the density of particles ps=1, while (2) The momentum-exchange method gives larger fluc-
those of the fluid at inlet and outlet agg+3Ap. 7=0.75, tuation in the calculation on the hydrodynamic forces on an
2Ap=0.00267, Re=9.288D=100, D,=25, and D¢/D arc, as shown in Fig. 5. The fluctuation becomes very small
=0.25. The inlet and the downstream boundary of the dowhen the arc is closed as a full circle so that the momentum-
main are always @ from the the moving particles. Pressure exchange method works quite well in the calculation of the
boundary condition$37] are applied at the inlet and outlet. force on a resting circular cylinder.

Initially, the particle is set at rest and let the fluid flow de- (3) By simulating the sedimentation of a circular cylinder
velop and approach steady statetAtLO 000 time steps, the in a two-dimensional channel, excellent agreements between
particle is released and will go from left to right. the current lattice Boltzmann method with the stress-

The lateral migration curves of the cylinders released aintegration method and a second-order finite-element method
different initial positions between the center line and theare obtained for the results of the time-dependent particle
lower walls are shown in Figs. 13 and 14. It is found from motions at small Reynolds numbers, including the particle
Fig. 13 that the cylinders migrate to the same equilibriumvelocities, the particle angular velocities, and the forces and
position aty./D=0.2874 with the stress-integration method, torques on the moving particles.
which is a little closer to the center line than the lower wall.  (4) A particle migrated from the center line is found to
This value is a little larger than that in Rdfl9], which is  occur in the simulations of a circular cylinder in a Poiseuille
0.2733. The difference between our simulation and that irflow by the stress-integration method, consistent with the
Ref. [19] is that we used the pressure boundary at the inleBegré-Silberberg effect.
and outlet while Inamuraet al. used a periodic boundary Although the method based on stress integration uses ex-
condition at the inlet and outlet so that they simulated a lingrapolation, which is more noisy and unstable, the method to
of cylinders rather than a cylinder in a Poiseuille flow. On thecalculate the stress tensor proposed by Inanatral. [19],

VI. CONCLUSION AND DISCUSSION

026701-8
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which avoids the calculation of the derivation of the velocity, aries, especially on the numerical simulations for blood flow
and the choice of the rélevant directions for extrapolation13,30,31,38
and enough points in the integration of the stress tensor in a

lattice unit reduces the noise effectively. We emphasized that

the formula to calculate the stress ten§d®] not only re-

duces the noise and instability of the lattice Boltzmann The authors thank Professor H. Hu for providing the data.
scheme, but also makes the code much simpler. The presehhis work was supported by the 100 Person Project of the
conclusion should be useful for further development of lat-Chinese Academy of Sciences and National Science Founda-
tice Boltzmann schemes with complex and moving bound4ion of China under Grant Nos. 19834070 and 19904004.
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