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Band theory of light localization in one-dimensional disordered systems
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A simple approach to the problem of light localization in one-dimensional system is presented. The role of
the Bragg reflection in one-dimensional localization of light is discussed. Contrary to the existent viewpoint,
we show that the origin of band gaps of regular crystals and the localization due to disorder have a common
nature, that is, the Bragg reflection. We expand the concept of band structure to random systems of finite
thicknessL and relate the Anderson localization of light with the total band gap growth, which is observed in
our computer simulation of disordered system] dacreases.
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In quantum mechanic&M) it is well established1-3] layer. TheT matrix of two layers is equal to the product of
that in a one-dimensional case one-particle wave function ithe T matrices of these layers. A set of @limatrices forms a
localized in any infinite disordered system. The similarity of group [3]. Hence for any given finite sample of any one-
the Schrodinger and Maxwell equations suggests that lighdimensional disordered system we can find a finite sample
should be also localized in a one-dimensional disordered systhis sample may belong to another ensemble of random sys-
tem. This has been confirmed in computer simulatigijsit ~ tems that has aT matrix, which at a given frequency is
is worth mentioning that often the concept of localization hagnverse to theT matrix of the initial sample. The system of
different meaning in QM and in optics. In QNB] when  these two samples is absolutely transparent. It is the bound-
dealing with the eigenvalue problem localization is under-ary conditions realized between the samples that warrant the
stood as the existence of a special solution to the stationaigPSence of localization in the initial sample.

Schrodinger equation. This solution decays on average expo- S0; We have to be careful about recruiting the QM results

nentially with distance from a certain bounded domain in!" optics. This adoption is aggravated by the formal character

space, which is a characteristic of the particular energy ar;%fethe existing reasoning proving the fact of localization in

o . : - OM [3]. The most rigorous prooff3] is based on Fursten-
system realization. Optics considers, as a rule, a scatteri ;
: L rg’s theorenj6] and may be reduced to the statement that
problem and understands by light localization the total re- : . - .
flection from semi-infinite space filled by disordered mediumaII so_lutlons (W'tb probability Y of the IPVONEd random
[1]. In the mathematical language the difference betWeeequrcltlons have “the exponential growth.” Unfortunately, the

o e oI X IBhysical reasons of this exponential growth do not follow
these definitions lies in the application of different boundary, Frustenberg's theorem. The abstract form of Ishii's con-

conditions. The reason for employing the QM results in 0p-gtryctions in Ref[3] often hinders physicists from applica-
tics or even in a QM scattering problem is that the QMyjon of the resultysee, e.g., Refg7,8] devoted to delocal-
definition implies that the localized wave function weakly jzation due to the correlated disorder where the results of
depends on boundary conditiof. Ref. [3] are ignoredl As a clear physical pattern of wave
However, the situation is fraught with a conflict. The con- |gcalization is necessary, a search for new arguments and
sideration of a one-dimensional photonic crystal with ajnterpretation continuougsee, e.g., Refg5,9-12).
single defec{5] has shown that in the infinite photonic crys- | this respect it is necessary to mention the papers con-
tal inside the band gap there appears a defect mode with fielfldering a transfer from regular photonic crystals to disor-
distribution satisfying the QM definition of localization. dered system§13—16. Being based on the results of these
Thus, at frequency of the defect mode the light is localized inyorks but contrary to their conclusiqaé] that the band gap
the infinite system. On the other hand, any finite sample ofy crystals and localization in random media are phenomena
the crystal with a defect in the middle is nothing more than apf different naturg17], we state that it is the Bragg reflection
Fabry-Perot filter where two fragments of the photonic crys+hat is responsible not only for the appearance of band gaps
tal form the dielectric mirrors. The SyStem is transparent abu'[ also for the Anderson localization of ||ght in the one-
the very frequency of the defect mode at any system sizejimensional case. We use tfiematrix language because it
Hence, in terms of the optical definition of localization, the can describe both scattering and eigenvalue problem. So the
light wave is delocalized in such a system. results obtained in terms &f matrices language are of the
Moreover, there are special boundary conditions undegniversal character.
which the light localization does not take place in any one- Any random system and, what is even more, its finite part
dimensional disordered SyStem at all. To illustrate this Stateare not trans'ationa”y invariant. ThUS, a direct, mathemati-
ment, we use th&-matrix language. A matrix relates pha- cally rigorous application of the band theory is impossible in
sors of incident and outgoing waves on both sides of thghese cases. To attribute a band structure to any finite system,
we build up a periodic system that has this particular finite
system as a primitive cell. A band structure of the periodic
*Fax: (7 095 484 26 33. Email address: a-vinogr@yandex.ru  system is regarded as the associated band structure of the
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finite system. If there exists a band structure while the primi- Tr(T)
tive cell size tends to infinity, such a band structure can be 5
ascribed to the proper infinite system.

Below, we assume all elementary layers to be of an iden-
tical thicknessd. This restriction is not a determinative one
but it is taken to simplify our speculations and computer
simulation because it permits us to deal with impermeable
ingredients only. Indeed, the dispersion in the permittivity
values guarantees dispersion in both optical paths and im-
pedance values. We treat only the normal incidence of
waves.

The field in each layer is a sum of the left-going and
right-going waves. Employing continuity of the electrical -5
and magnetic fields at the interface surfaces the amplitudes . 1 2 L .

Aj+1,Bj41, andA_;, B;-; of such waves in the layers adjacent 0 1 2 k,d

to the jth layer can be linked with & matrix. Let us intro-

duce an auxiliary vacuum layer of the zero thickness be- FIG. 1. The dependence of (T of six-layer supercells on fre-

tween any adjacent layers. As tiiematrix of this layer is  quency. In the first cesolid line) & takes the values of 2,7,2,7,2,7,

equal to the identity matrix, this layer is of no significance.in the second celidot line) & takes values 2,7,7,2,7,2.

Now, the T matrix of thejth layer depends on its ow@nd

vacuum properties only. In the general case, after extractingafter mixing the order of the elementary layers inside a new

the Jordan form th@ matrix of a primitive cell can be writ- supercell, additional frequency gaps appear whe(@.J)

ten as exceeds 2see Fig. 1 Unfortunately, the increase of the
number of band gaps is accompanied with a decrease in the

S;é,,, (1) gap width. Thus, we cannot directly identify this increase
with the rise of the degree of localization in the system. We

where theS.; matrix depends on the cell structure. The have to look at the to_tal wi(_jth Of. all the gaps.

matrix of a system containinlyl of identical primitive cells In_ our computer S|mulat|o_nsF|g. 2)’. we calculated the
has the form(1) with L substituted by the system site fraction _(measuryof frequencies at which the Lyapunov ex-
=ML, S0,k could be regarded as the sought wave numPonent is equal to zero

ber. As T(SJS1)=Tr(J) [19] the dispersion equation can be

written employing the trace of . [20]: = lim {EJK - sigr{yTr(ko)}]dko}-
T (Tea) = 1 (3) = 2 COS (ke e @ (Ko

For the simplest primitive cell built up of two elementary The measure of the band gaps is equal ta.JAs we can see
layers with different values of permittivity, ER) yields the  from Fig. 2, the measure decreases with an increase in the
well-known resultf21]: thicknessL of a random system. For fairly thick systems
_ almost all frequencies lie in the frequency gaps. It is reason-
2 2d) =Tr (T, . o . o
008 (ke2d) =T (Teen) able to regard this fact as localization, identifyingyl(ko)

gkeftlcell 0

Tcell = SceIIJ Séll = SceII

0 e_ikeffl-cell

= 2 cos(KyVe1d)cos (KgVeod) — (Veqles
+ e le1)sin (koVe,d)sin (koVe,d),  (3)

with ky=w/c. Equation (3) predicts the existence of
band gaps wherflr(T..)|> 2 andkes; is a pure imaginary
quantity. The imaginary part ok is usually referred to
as the Lyapunov exponenty'=Im(kes)=Im{arccos

X[Tr(Tce”)/Z]}/L.

Let us trace the development of a band structure as the
construction of a primitive cell becomes more complicated.
The complication of a primitive cell implies an increase in
the number of its elementary layers. The complication can be
achieved by various methods. We can introduce new types of
elementary layers having different values of permittivity or |
simply combine several neighboring cells and intermix the 100 200 300 400 £y
available elementary layers. Now, for comparing systems
with different L., we follow the second way. In fact, a FIG. 2. The dependence of the measure of bands of transparency
simple joining of the neighboring cells of a regular systemon the thicknessL of the primitive cell. The permittivitye
cannot lead to any new physical consequences. Howevegguiprobably takes values from the interyal 3].
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with localization length. This definition of the localization

length coincides with the common ofg]
Lioe= Yk = lim —— (4) = 10°
loc = Yioc L%w<|n|t|>! N 5
. - . R F
wheret is the transmission coefficient, and the brackets in- & -
dicate ensemble averaging. Indeed, fhematrix of any 3] i
sample can be expressed in terms of the reflection coeffi- ¢\>1 10° 3
cientsrg andr corresponding to the right-incident and left- -E': - .
incident waves, as well as through the transmission coeffi- - T
cientt (because dé@t=1, the value ot is independent of the i )
direction of incidencd?22]): 10" L L
1 10 M
(t B T) t FIG. 3. The dependence of the Lyapunov exporsatid line)
T= and its variancgdot line) on the sizeM of the Bragg reflectors
_h 1 which have been randomly transformed to segments without Bragg
t reflectors.
and T(T)=t+(1-rgr)/t. Taking into account thaty™
=Im{arcco$Tr(Tee)/ 2]}/ L gives The proposed band theory partly agrees with conclusions
2 of work [25] that the Fourier harmonic of refractive index
Y= {In(—) + |n{1_rRrL+t that satisfies the condition of the Bragg reflection plays a
2 special role in the wave localization. Namely, confining to
1= o this harmonic the authors of R¢R5] obtain an evaluation of
rRr+t 2 . - . .
+ \/<—) -t H/L (5) the Lyapunov exponent, which coincides with the classical
2 perturbative resulf26]. It may seem that it is an infinitely

expanded structure underlying the distribution of inhomoge-

In a realization where the localization occurslat>« we o .
neities (the Bragg harmonicthat determines whether the

h t|<< ~|r |~ 1 but -1/~11[23]. C i foo . .
avelt] <|rgl | " |rRrT|_r |~1123). Comparison o light is localized[25] or not [27].
Egs.(4) and(5) reveals thaty'"— 4. o | o f the ch in liah
In our approach the frequencies at which the system isl. (l;r SCIrUplé ousdex?]mlnaﬁond.o tde cdanges n rLg t ar;:-
transparent lie in the bands of the associated band structurgﬁ'tu e refated to depth in the disordered system shows that

Though the measure of the bands tends to zero their numb e amplitude atten_uatio_n happens in accidentally shaped
Npange tends to infinity[24]. To understand what happens to short segments having high value of the Lyapunov exponent

the waves at these frequencies we evaluate the maximu € Bragg reflectoDsThe rest of the Iayers plays no role in
value of the group velocity inside the bands Ight localization[28]. Therefore, there is no need in a very
For a fixed frequency domaitte the Np,qeis O(L) and long array of layers to attenuate the wave because a single

the distance between neighboring bands is aldauit(L/d) Bragg reflector successfglly does this. . o
[24]. Coming back to Fig. 1 we can evaluate the derivative of To verify our hypothesis we have considered a realization
: ' of the lengthL=20 000 and test one layer after another to see

Tr(T) inside a band as the ratio of the maximum value of theWhether this layer together withl - 1 foregoing layers build

Tr(T) in the adjacent band gaps to the frequency distancgIp anM-layer Bragg reflector. If it happens we randomly

betweenTrthe bands. Taking into account thengIr(T)] change the permittivity of the layer until the Lyapunov ex-
~exp(y''L), where we can use the value @f (ko)) aver-  nonent of anyj-layer cell(j<M) ending by the layer under

aged over ensemble, we can evaluate the derivative as  ¢onsideration becomes equal to zero. Thus, after considering
all layers we obtain a system that has the Bragg reflectors of

}iTr [T(kolL)] = 112 cos(Kefil) a length greater thaivl only. We watch a decrease in the
ddk ddko Lyapunov exponent of the whole resulting system as we suc-
dkareL cessivgly perform the procedure i'ncrez_:lsM'gfrom 2to 50
- masm (Kesel) (see Fig. 3. The dependencg(M) given in Fig. 3 is a result

of averaging over 200 random realizations. We can see that
~ Lexp (7 (kL) not only y(M) but also the variance of(M) tends to zero.
d Y : This fact permits us to say that removing the Bragg reflectors

makes the system transparent. In so doing we get a random

Ultimately vy, =c(dko/dkesp) ~sin (ker)exp (—(¥"(ko))L)  system which may have long-range correlatigasleast of

that vanishes ad —«. Thus, we see that in spite of sizeM). Inthe literature there are many examples of systems

¥" (ko) =0 the wave cannot transfer energy. In this sense lighith correlated randomneg41] where the waves are delo-

is localized at any frequency. calized. A simple analysis shows that in these systems there
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are no Bragg reflectors too. We see that the existence dfero. The latter property permits us to consider these states
Bragg reflectors is a necessary condition for localization. as localized ones.

We relate the effect of wave localization with the effect of
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