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We present a modification of the geometrical optics method, which allows one to properly separate the
complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomoge-
neous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly
anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction,
which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand
circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in
the group velocities results in the shift of the rays of different polarizations(the optical Magnus effect). The
difference in the phase velocities causes an increase of the Berry phase along with the interference of two
modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory
developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal
topological effects. In this paper the Hamilton ray equations giving a unified description for both of these
phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been
predicted. Specific examples are also discussed.
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I. INTRODUCTION

The first consistent presentation of the geometrical optics
approximation, as applied to the electromagnetic-wave
propagation through a smoothly inhomogeneous isotropic
medium, was given by Rytov[1]. There was indicated that in
the zero geometrical optics approximation, only the phase
and amplitude of a transverse wave can be determined, but
not the polarization. This is due to the fact that two modes
with distinct polarizations turn out to be degenerate or indis-
tinguishable. The polarization degeneracy can be removed
through a consideration of the first-order terms in the geo-
metrical optics approximation. Hence the familiar Rytov law
about the rotation of the polarization plane of an electromag-
netic wave in a smoothly inhomogeneous medium follows
[1–3]. The geometrical properties of this law were detailed
by Vladimirsky [2]. Subsequently, it was shown that the Ry-
tov law is nothing but a consequence of the appearance of
the Berry geometric phases of photons(see[4–6]).

The anisotropic medium differs from the isotropic one in
that (in the general case) it has no polarization degeneracy
and thus the polarization of electromagnetic waves is deter-
mined even in zero geometrical optics approximation[3]. In
this regard, the account of the first geometrical optics ap-
proximation in an isotropic medium is similar to the case of
a weakly anisotropic medium. Provided this analogy has
good grounds, what this means is the smooth inhomogeneity
causes a real weak anisotropy of the medium. In this case,

the assumed anisotropy will result in the propagation of the
eigenmodes(waves of right-hand and left-hand polariza-
tions) along different trajectories.

The changes of ray trajectories with polarization corre-
spond to the so-called optical Magnus effect, which was sug-
gested in 1990 by Zel’dovich and co-workers[7]. The optical
Magnus effect was calculated theoretically and supported ex-
perimentally for waves in optical fibers. After that, the phe-
nomenological theory describing this phenomenon in the
geometrical optics approximation was advanced in[8]. The
results of the present work support and generalize the correc-
tions introduced by Liberman and Zel’dovich and demon-
strate that the relevant equations and effects follow from the
initial principles of geometrical optics.

Below is shown that in the first(Rytov) geometrical optics
approximation, an isotropic smoothly inhomogeneous me-
dium is actually anisotropic. What this means is(i) the re-
fractive index of this medium depends on the wave-vector
direction; (ii ) the medium contains two independent trans-
verse modes with right-hand and left-hand polarizations, and
their group velocities and phase velocities are distinct;(iii ) as
a consequence of the anisotropy, the right-hand polarized and
left-hand polarized modes propagate along different ray tra-
jectories.

In that way a ray of the wave with mixed(not circular)
polarization is split into two independent rays with right-
hand and left-hand polarizations. This fact makes a predic-
tion about a novel phenomenon, which is not covered by the
theory of the optical Magnus effect[7,8]. Really, Zel’dovich
theory describes thedisplacementof the ray’s center of grav-
ity depending on its polarization, but does not point to a
possible raysplitting. Our theory suggests that only circular
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polarized independent rays exist in the framework of the ap-
proximation considered. The rays of other polarizations arise
from the interference of the eigenmodes that propagate along
different trajectories.

In fact, the theory developed establishes a link between
two fundamental phenomena—the Berry geometrical phase
and the optical Magnus effect. It is shown in the paper that
the former implies the difference of phase velocities of the
eigenmodes, whereas the latter is caused by the difference of
group velocities. We demonstrate that the optical Magnus
effect, as well as the Berry phase, is a nonlocal topological
effect described by the geometry of the system’s trajectory in
a momentum space.

The results mentioned follow immediately from the initial
principles of geometrical optics. The reason why these phe-
nomena have not been theoretically revealed before is that in
the conventional geometrical optics(see, for example,[3])
the separation of the complex amplitude and complex phase
was performed not quite correctly. As a result, terms of the
first order, which cause the above-mentioned effects, have
been disregarded in the wave eikonal. Below the modified
geometrical optics theory is presented, which is free of the
drawbacks outlined. Specific examples are also analyzed
(Sec. IV).

II. SEPARATION OF THE PHASE AND THE AMPLITUDE
IN THE WAVE SOLUTIONS

In the conventional geometrical optics, the monochro-
matic wave field in an isotropic medium can be written as

E < sEs0d + k0
−1Es1d + k0

−2Es2d + ¯ dexpsik0cd, s1d

where k0
−1=c/v is the inverse wave number in vacuum,

which is small as compared to the typical scale of inhomo-
geneity. The phasec can be determined from the eikonal
equation

s¹cd2 = n2 ; «, s2d

and]c /]t=−c, while the amplitudesEskd are found from the
transport equations of the relevant order. It is assumed that
the phase characteristics of wave are determined by the
phasec and the eikonal equation, whereas the amplitudes
Eskd and the transport equations specify the current amplitude
of the wave and its polarization.

However, in general, this is not the case. Actually, the
adiabatic (or WKB or geometrical optics) solution to the
stationary-wave equation is constructed by the perturbation
method for the unitary complex phase in the exponent(see
[9–11]):

E < expsik0F̂dE0 ; expSik0o
k=0

m

k0
−kĈskdDE0. s3d

Herem=0,1,2, . . . is theapproximation order, andE0 is the

field initial value, whileF̂ andĈskd are the matrix operators
since the field is a vector changing its direction. Some of the
terms comprising the complex phase of Eq.(3) can be taken
out and inserted into the preexponent factor(amplitude). It is

obvious that the separation of these terms into the phase and
amplitude is a matter of convention(in so far as the ampli-
tude is a complex value). Hence it is primarily important to
define a criterion, according to which we can separate these
terms.

In the conventional geometrical optics[3] the phasec and
the eikonal equation correspond to the zeroth-order approxi-
mation in Eq.(3):

c = Ĉs0d ; Cs0d s4d

(Ĉs0d is a scalar or a diagonal operator with the equal eigen-
values; this is just the polarization degeneracy). The ampli-
tudeEskd and the associated transport equation correspond to
perturbations of ordersk+1d:

Es0d = expsiĈs1ddE0 s5d

and so on.1 In this equation,Ĉs1d is now the operator with
different eigenvalues, which determines the Rytov evolution
of wave polarization. Thus, in the framework of conventional
geometrical optics, the phase and amplitude are separated
according to their orders, for which, actually, there are no
grounds.

We suggest another way. Note that the phase is anonlocal
or integral value, since its increment is determined by the
entire path covered by the wave. To the contrary, the ampli-
tude in a passive nonabsorbing medium with independent
eigenmodes is conceptually alocal value, being dependent
only on the initial conditions and the current values of pa-
rameters. Indeed, the amplitude specifies the wave energy,
whose variation is bound to be governed by the initial and
final points only, and not by the transfer path.2 In the case of
an absorbing or active medium, the amplitude is no longer a
local value. Then the local amplitude should be multiplied by
the part of nonlocal exponential function with a real
exponent.

Thus the procedure for separating the phase and the am-
plitude is as follows. In Eq.(3) we separate local and non-
local terms:

E < expsik0F̂slocd + ik0F̂snonlocddE0. s6d

Then the amplitude and the phase can be separated in the
following manner:

E < Â expsif̂dE0, s7d

where

1We assume that the operator in the exponent Eq.(3) can be put in
a diagonal form, corresponding to a basis of normal independent
modes. Hence, by reason of asymptotic nature of the series, all
operators under the summation sign will be diagonal in this basis.
By this is meant that these operators commute, since from here on
we shall be able to represent the exponent of their sum as a product
of the exponents.

2Probably, the existence condition for an adiabatic invariant serves
as the locality condition for the amplitude(see[3,12]). In [10] it is
proved for linear ordinary differential equations.
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Â = expsik0F̂slocdd, f̂ = k0F̂snonlocd. s8d

The eigenvectors of the operator expsik0F̂d determine the
medium eigenmodes at each point. At that the derivatives

] /]t and ] /]r of the eigenvalues of the operatork0F̂snonlocd

determine their complex frequencies and wave vectors of the
medium’s independent modes, while the eigenvectors

of the operatorÂ specify the wave polarization. It should be
noted that the separation of the values into local and nonlocal
ones is ambiguous and is determined up to the gauge
transformation

f̂ → f̂ + ŵ, Â → Â exps− iŵd, s9d

where ŵ is the local scalar potential. However, as will be
seen from the next section, these transformations have no
effect on the physically observable values.

III. GEOMETRICAL OPTICS OF A SMOOTHLY
INHOMOGENEOUS ISOTROPIC MEDIUM

A. Eikonals and refractive indices

In order to derive correct characteristics of a smoothly
inhomogeneous isotropic medium, let us use the familiar for-
mulas for the wave eikonals of the right-hand and left-hand
circularly polarized waves. They follow immediately from
Maxwell’s equations and can be given as[1,6]

f± =E
0

s

ks0dds± q. s10d

Here ks0d=ns0dsr dk0 stands for the current wave number,
ns0dsr d=Î«sr d is the local refractive index of the relevant
isotropic medium,k0=v /c, s is the length of the ray arc, and
q is the Berry geometric phase, which has opposite signs for
the waves of right-hand and left-hand polarizations. We have
assumed in Eq.(10) that uf±us=0=0, since any constant addi-
tions can be included into complex amplitudes and below we
will use only gradients of the eikonals(10). The superscript
(0) indicates that the current values correspond to the zeroth-
order geometrical optics approximation. Below we will de-
rive the corrections to the wave vectors and to the refractive
indices. Here and further the medium smoothness implies the
short-wave asymptotick0;v /c→`, whereas formula(10)
is derived in the first approximation ink0

−1. The first-order
correction terms are contained in the Berry phase, which can
be given in the form[6]

q =E
0

s

Gṗ ds=E
L

G dp. s11d

Here the dimensionless wave momentump=k /k0 has
been introduced,G=Gspd is a certain nonpotential field inp
space, the overdot signifies differentiation with respect tos
(that is, along the ray), andL is the contour along which the
system is moving inp space. Equation(11), as well as all
first-order correction terms below, is calculated along the tra-
jectories of the zeroth-order approximation(i.e., with p
=ps0d=k s0d /k0). The fieldG is not uniquely defined; particu-

larly, it can be chosen in the formGspd=spadfp3ag /
pufp3agu2, wherep= upu anda is an arbitrary constant vector.
With gauge transformations(9), the fieldG transforms as

G → G +
]w

]p
s12d

[wherewspd is an arbitrary scalar potential], while the physi-
cally measurable values are related to the curl of the fieldG,
which is equal to[3]

F ]

]p
3 GG = −

p

p3 . s13d

Equation(13) is obtained by explicit differentiation ofG and
determines the gauge-invariant magnetic monopole type
structure in the wave momentum space(see[17]). The geo-
metric phase(11) may be considered as an integral along the
ray as well as a contour integral inp space.

Let us determine the refractive indices of the right and left
circularly polarized waves by writing the eikonal equation
for Eqs.(10) and (11) as

n± = k0
−1u ¹ f±u = ns0dsr d + ns1dsr ,pd,

s14d

ns1d = ± k0
−1dq

ds
= ± k0

−1Gṗ.

In the conventional geometrical optics[1,3], the correction
term ns1d did not arise[13] since the eikonal was derived in
the zeroth-order approximation ink0

−1, while all higher-order
terms [including the nonlocal factors exps±iqd associated
with the geometric phase] pertained to the transport
equation—i.e., to the amplitude. Meanwhile, the geometric
phase is a nonlocal value, which cannot be attributed to the
wave amplitude. The Berry phase can distort substantially
the phase front. For example, for a ray with torsion, the
phase front gradient has an additional fixed component
±¹q, which changes the wave vector and the phase velocity.
As will be seen, the obtained correction termns1d leads to
corrections in the geometrical optics equations, which are
supported experimentally and, hence, have real physical
grounds. Note that in view of the essential dependence of the
geometric phase on the ray trajectory, the correction termns1d

depends not only on the current coordinater , but also on the
wave vectordirection—that is, on the wavemomentum. This
points to the weak anisotropy of a locally isotropic medium.

B. Basic equations

Let us write the Hamiltonian equations for ray propaga-
tion [3]. By choosing the Hamiltonian asH=p−n±sr ,pd=0
and using Eqs.(14), we have

dp

ds
=

]n±

]r
=

]ns0d

]r
± k0

−1 ]

]r
Sdq

ds
D =

]ns0d

]r
± k0

−1 ]

]r
sGṗd,

s15d
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dr

ds
= −

]n±

]p
= l 7 k0

−1 ]

]p
Sdq

ds
D = l 7 k0

−1 ]

]p
sGṗd. s16d

Here l =p /p is the unit vector of the normal to the wave
phase front.(At the same time, it is the unit tangent vector of
the ray in zero approximation ink0

−1.) It worth noticing also
that theṗ term [see Eq.(14)] in the ray Hamiltonian should
be interpreted not as an independent quantity, but only as
expressed in the end from the zeroth-order Hamiltonian
equations(see below).

Equations(15) and (16) can be analyzed by applying the
perturbation method ink0

−1. By representing all values in the
form a=as0d+as1d sas0d,1, as1d,k0

−1d, we have, from Eqs.
(15) and (16) in zero approximation,

dps0d

ds
=

]ns0d

]r
,

dr s0d

ds
= l s0d. s17d

These are the familiar geometrical optics equations for an
isotropic medium[3]. The second terms on the right sides of
Eqs.(15) and (16) introduce corrections of the order ofk0

−1,
and hence they should be considered on the solutions(trajec-
tories) of zero approximation. As a result, for the first-order
corrections we obtain

dps1d

ds
= ± k0

−1 ]

]r
sGṗds0d,

dr s1d

ds
= 7 k0

−1 ]

]p
sGṗds0d,

s18d

where the superscript(0) signifies that all values on the right-
hand sides of Eq.(18) are derived from zeroth-order equa-
tions (17). Here and further it is considered thatl s1d=0 and
l = l s0d. As we will see later, Eqs.(18) describe the deviations
in a wave momentum and coordinates that are associated
with the spatial and momentum gradients of the Berry phase,
respectively. As will be seen, the first equation in Eqs.(18)
governs the emergence of Berry phase, while the second
equation describes the deviations of the rays of different po-
larizations by virtue of the optical Magnus effect[7].

It is significant that the wave evolution for right and left
circular polarizations is given by independent equations and
thus these waves are the independent medium eigenmodes.
This fact correlates well with the quantum-mechanical notion
of photons, according to which a photon may possess helic-
ity equal to +1 or −1 only, which corresponds to right and
left circular polarizations. In the framework of a given ap-
proximation, an arbitrarily polarized wave cannot be treated
independently, but only as a superposition of circular eigen-
modes.

C. Equation for momentum, Berry phases,
and phase velocities

Consider initially the first equation in Eqs.(18). First of
all, let us note that after integration with the operator
k0edr edt, it exactly defines the geometrical termq in the
phases(10) and (11). The first equation in Eqs.(18) is re-
sponsible for the change of themomentum(wave vector) and
thephasevelocity of waves inabsolute value, but not direc-
tion. To prove this, let us multiply scalarly the first equation

in Eqs. (18) by l and, taking into account thatl] /]r =d/ds,
we obtain

dps1d

ds
= l

dps1d

ds
= ± k0

−1 d

ds
sGṗds0d. s19d

Consequently, in the first geometrical optics approximation,
the wave momentum(wave vector) is

p = ps0d ± k0
−1sGṗds0dl . s20d

When integrating Eq.(19), we assume for simplicity that
ps1ds0d=0. Equation(20) follows immediately from the ini-
tial expressions(10), (11), and(14) for eikonals and refrac-
tive indices.

When integrating along the ray, two terms in Eq.(20)
represent the dynamic phase and the geometric phase(parts
of the eikonal), respectively. From Eq.(20) and(14) we have
the following expression for the phase velocities of the left-
hand and right-hand waves:

vph
± =

c

ns0dS1 7
1

ns0dk0

dq

ds
Dl =

c

ns0dS1 7
sGṗds0d

ns0dk0
Dl . s21d

It should be noted that the right-hand side of the first
equation in Eqs.(18) involves also the component that is
orthogonal tol. Nominally, it causes the deviation of the
momentum from the direction of the zero momentumps0d.
However, this deviation does not exceedk0

−1 in the order of
magnitude and essentially depends on gauge transformations
(9) and(12). The reason is that under the gauge transforma-
tions a certain part of the phase turns into the amplitude, with
a consequent slight distortion of the phase front(or small
deviations of the front normal from the zero-approximation
direction). The momentum(wave vector), however, is not a
physically measurable value in this range(in view of the
uncertainty relation), and hence, the above-mentioned devia-
tions are irrelevant to the values under observation. Among
these values are the phase(that is, an integral of the wave
vector projection onto the ray) and the ray trajectory accurate
to a wavelength. From these arguments it follows that it
makes sense to consider only the longitudinal component in
the right-hand side of the first equation in Eqs.(18) resulting
in Eq. (20). After elimination of the immeasurable transver-
sal deviations, the first equation in Eqs.(18) takes the form

dps1d

ds
= ±k0

−1lF1
]

]r
sGṗdGs0d

= ±k0
−11

d

ds
sGṗds0d. s22d

This equation is integrable[see Eq.(20)] and, as is seen from
Eq. (11), is responsible for the appearance of the Barry
phase. It follows that the first-order corrections do not
change the direction of the phase front normal—that is,l s1d

=0, l = l s0d.

D. Equation for coordinates, the optical Magnus, effect,
and group velocities

We now turn our attention to the analysis of the second
equation in Eqs.(18). It describes the shift of the right and
left circularly polarized rays, which is associated with the
optical Magnus effect[7]. The right-hand side of the second
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equation in Eqs.(18) is responsible for the ray trajectory
deviations—that is, for variations in thegroup velocity. As
will be seen, this correction is directed orthogonally to the
ray and changes thedirection of the group velocity. By dif-
ferentiating the scalar product in the right-hand side of the
second equation in Eqs.(18), we obtain

dr s1d

ds
= 7k0

−1Fṗ 3 F ]

]p
3 GGG 7 k0

−1Sṗ
]

]p
DG. s23d

Here and further the superscript(0) is omitted for simplicity.
Let us integrate Eq.(23):

r s1d = 7k0
−1E

0

sHFṗ 3 F ]

]p
3 GGG + Sṗ

]

]p
DGJds

= ±k0
−1E

0

s fṗ 3 pg
p3 ds7 k0

−1uGup0

p . s24d

Here formulas(13) andp0=ps0d have been used.
Note now that Eq.(24) for the ray shift comprises two

summands. The first one, being nonlocal, may grow infi-
nitely ass increases. The second summand represents a local
function of the momentump. It cannot grow infinitely and
does not exceed the wavelengthl,k0

−1 in the order of mag-
nitude. Evidently, the second term does not lead to observ-
able physical effects and depends on the gauge transforma-
tions (9) and (12). This is related to the uncertainty of the
notion of a ray trajectory within the range of the wavelength.
Like the Berry phase, the first nonlocal term in Eq.(24) is
gauge invariant. Note also that with the cyclic evolution,
when the ray direction coincides with the initial one, we have
p=p0, and all nonlocal terms vanish.

Thus, when analyzing the ray shift, we have to retain only
the first term in Eq.(24). As a result, we have

r s1d = ±k0
−1E

0

s fṗ 3 pg
p3 ds= 7k0

−1E
L

fp 3 dpg
p3 . s25d

The ray shift is seen to be directed orthogonally to the ray:
pṙ s1d=0. Formula (25) demonstrates that the ray shifts
caused by the optical Magnus effect, as well as Berry geo-
metric phase(11), can be represented as a contour integral in
p space. Moreover, the shift is dictated by the geometry of
the contourL in p space and not by the particularpssd de-
pendence on the ray. Hence the optical Magnus effect is a
fundamentaltopological effect. The Berry phase and the
Magnus effect represent wave divergences in phases and tra-
jectories, respectively.

Displacement(25) corresponds to the differential equation
that takes the place of the second equation in Eqs.(18):

dr s1d

ds
= ±

1

k0p
s0d3

fṗ 3 pgs0d. s26d

Equations(22) and(26) along with the zeroth-order equa-
tions (17) describe geometrical optics of a smoothly inhomo-
geneous medium in the first approximation ink0

−1. In this
case, Eq.(12) for a momentum describes the increment of
Berry phase, whereas Eq.(26) for a coordinate gives the
shifts of differently polarized rays owing to the optical Mag-

nus effect. By substituting the expressionsṗs0d=]ns0d /]r and
ps0d=ns0d from the zero approximation, Eqs.(17), into the
right-hand sides of Eqs.(22) and (26), we obtain

dps1d

ds
= ± k0

−1lF ]

]r
SG

]ns0d

]r
DG = ± k0

−1 d

ds
SG

]ns0d

]r
D ,

s27d
dr s1d

ds
= ±

1

k0n
s0dF ] ln ns0d

]r
3 lG .

These “evolutionary” equations can be solved without regard
to Eqs.(17). However, the theory of Berry phases has clearly
demonstrated that in a number of problems it is better to use
general “geometric” equations(22) and (26) by integrating
them inp space. In particular, we could not have derived the
above-discussed equations if we had not applied this ap-
proach dealing with the properties of locality and nonlocal-
ity.

Note that the second equation in Eqs.(27) corresponds
precisely to the correction that has been introduced into the
geometrical optics equations by Zel’dovich and Liberman
[8]. It has also been shown in[8] that this equation describes
properly, in agreement with experiments[7], the optical
Magnus effect in a circular waveguide. However, in the geo-
metrical optics of Zel’dovich and Liberman, the equation for
momentum is free of the correction that corresponds to the
first equation in Eqs.(27) and that is responsible for Berry
phase. The matter of the fact that in Ref.[7] the polarization
of a wave corresponds to its independent degree of freedom,
for which the evolutionary equations are written; this adds
complexity to the theory. Meanwhile, as has been shown, this
is not the case. For every eigenmode, the polarization(right-
hand or left-hand circular) is strictly fixed(the helicity is the
adiabatic invariant of a photon), while the polarization evo-
lution for an arbitrarily polarized wave is nothing but the
result of the interference of two eigenmodes of fixed polar-
izations. This kind of interference is completely described
within the context of our theory.

It follows from the above that our theory makes a predic-
tion about a new phenomenon, which is not present in the
theory of the optical Magnus effect. In Refs.[7,8], thedevia-
tion of the ray center of gravityin relation to the polarization
has been described. For example, this deviation is zero for a
linearly polarized ray. Meanwhile, as has been shown, a
single linearly polarized ray simply does not exist. When
propagating, this ray will split into two circularly polarized
independent rays. In Sec. IV B, we suggest the simple
scheme of the experiment for observing the predicted effect
of splitting of a noncircularly polarized ray into two circu-
larly polarized ones.

From Eqs.(26) and(27) along with Eqs.(17) the expres-
sions for the group velocities of the waves of right-hand and
left-hand polarizations follow:

vg
± =

c

ns0dSl ±
1

k0p
s0d3

fṗ 3 pgs0dD =
c

n0
Sl ±

1

k0n0
f= ln n0 3 lgD .

s28d

The above formula points to the fact that the group velocities
of the right-hand and left-hand waves are equal in magnitude
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in the given approximation,uvg
+u= uvg

−u+Osk0
−2d, and deflect

in the opposite directions from the ray of the zeroth-order
approximation.

IV. EXAMPLES: RAY SHIFTS
IN CIRCULAR WAVEGUIDES

A. Rays in the paraxial approximation

In [7], the rotation of the plane of meridional right-hand
and left-hand circularly polarized rays has been calculated in
the mode approximation. Then, in[8], the same effect has
been calculated from the suggested correction to the geo-
metrical optics equations, which is similar to the second
equation in Eqs.(27). The results of these calculations are
found to be coincident and in good agreement with experi-
mental data[7]. Thus we may assert that the theory sug-
gested above also describes adequately the optical Magnus
effect in a circular waveguide. Nevertheless, we would like
to present the calculation of this effect, which is based not on
Eqs. (27), but immediately on the initial equation(16), vir-
tual ray trajectories, and the presence of Berry phases. This
will allow us to demonstrate clearly the physical and geo-
metrical meaning of the theory constructed above.

Consider a meridional ray propagating in the positivez
direction in a circular waveguide with a gradient parabolic
profile in the paraxial approximation. Let the refractive index
be the following function of the distancer to the waveguide
center:

nsrd = n0F1 − DS r

r0
D2G , s29d

whereD!1, while n0 andr0 are the characteristic refractive
index and the radius of the waveguide. Here and further,
unless otherwise specified, we imply the values of the
zeroth-order approximation, Eqs.(17); for the sake of sim-
plicity, the indices are omitted. Let us introduce the natural
cylindrical coordinatessr ,w ,zd. The ray propagation process
will be observed from the waveguide end(Fig. 1). As fol-
lows from Eqs.(16) and (18), the ray displacement is pro-
portional to the momentum gradient of its Berry phase per a
unit of length. Although the meridional ray represents a
plane curve and its Berry phase is zero, the adjacent, virtual,
rays may possess the Berry phase, and hence, its gradient
will be different from zero.

First note that variations in momentum componentspr
andpz do not move the trajectory away from the propagation
plane, and hence, the derivatives] /]pr and ] /]pz of Berry
phase of the meridional ray are equal to zero. Thus only the
w component of the momentum gradient of Berry phase of
the meridional ray will be different from zero. Therefore,
with the use of Eqs.(18), the following equation for the
desired ray shift can be written:

dr s1d

ds
= 7 k0

−1 ]

]pw
Sdq

ds
Dj w. s30d

Herej w is the unit vector directed along thew coordinate. As
was noted, the Berry phase of the meridional rayspw=0d
equals zero. Consequently, to determine the gradient(30), we
must consider a ray close to the meridional one and possess-
ing a small value ofpwÞ0. The ray trajectories[given by
Eqs.(17)] in parabolic profile(29) admit analytical solutions
and are fully considered in[14]. It is well known[2,4–6] that
the Berry phase(11) of the ray is equal to the oppositely
signed area that is swept by the tangential vectorl on a unit
sphere. In the Appendix, it is shown that in the paraxial
approximation the tangential vector traces an ellipse on a
small section of the unit sphere. The area of this ellipse
equals

S=
Î2Drpw

n0r0
. s31d

Formula (31) with the opposite sign specifies an incre-
ment of the Berry phaseq over one trajectory period,z0
<Î2pr0/ÎD [see Eq.(A2)]. Therefore, the increment of the
Berry phase over a unit of length can be written(taking into
account the sign) as

]q

ds
< −

S

z0
< −

Drpw

pr0
2n0

. s32d

Hence it follows that the correction to the refractive index for
a spiral trajectory is

ns1d < 7
Drpw

pk0r0
2pz

. s33d

Formulas (32) and (33) are actually the averaging of the
corresponding values over a period of the trajectory. It is
quite sufficient, since a ray shift is immeasurable for smaller
scales; the effect shows itself over many periods. By substi-
tuting Eq.(32) into Eq. (30), we arrive at

dr s1d

ds
< ±

Dr

pk0r0
2n0

j w. s34d

Since the shiftr s1d is proportional tor and is directed along
the w coordinate, it can be written as the shift inw:

dws1d

ds
< ±

D

pk0r0
2n0

= const. s35d

Expression(35) indicates thatall ray trajectories(regardless
of pw) and not only the meridional ones are rotated uniformly
clockwise or anticlockwise depending on the polarization
sign (Fig. 1). This inference explains the good agreement

FIG. 1. (Color online) Propagation of almost meridional rays in
a circular waveguide with a gradient profile(view from the negative
z end). To the left: the meridional ray(thick line) and the virtual ray,
close to the meridional one(dashed line) in the zero approximation
of the geometrical optics. To the right: the shift of the left(blue
dashed line) and right(red dashed line) polarization rays relative to
the trajectory of the zero approximation(black line).
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between the mode approximation experiments[7] and the
ray theory. The trajectory rotation angle is found from
Eq. (35):

ws1d < 7
D

pk0r0
2n0

z. s36d

This formula corresponds exactly to the results obtained
in [7]. Its derivation has revealed that the optical Magnus
effect is indeed closely related to the presence of the Berry
phase in the system and its anisotropy. Let us remark that if
one considered a ray similar to the meridional one in a planar
waveguide, the ray shift would not be observed. This is be-
cause the Berry phase in a planar waveguide isidentically
equal to zero for all rays. At the same time, the initial me-
ridional ray may have precisely the same trajectory as it has
in a circular waveguide.

B. Splitting of a circular ray

Considering the ray shift effect from the viewpoint of the
presence of the Berry phase of the adjacent, virtual, rays, we
can propose a straightforward scheme for observing both the
optical Magnus effect and the raysplitting. Let us consider a
finite ray propagating along a circle in thez=const plane in a
radially inhomogeneous medium(circular gradient wave-
guide) (Fig. 2). This kind of a ray corresponds to so-called
modes of a whispering gallery. The ray by itself represents a
plane trajectory with Berry phase equal to zero(2p, to be
more specific). However, the adjacent rays with smallpz
Þ0 become spiral and gain a geometric phase. This suggests
at once that the ray considered will shift in the direction of
positive or negativez according to its polarization(see Fig.
2). If both of the waveguide ends are open, the right-hand
polarized wave will emerge from one end, whereas the left-
hand polarized wave will emerge from the opposite end. This
kind of experiment can be used to demonstrate thesplitting
of a ray of mixed polarization into two circularly polarized
eigenrays. Indeed, if the initial ray is linearly polarized, the
right and left circularly polarized radiation appears from two
waveguide ends to the observer. Notice that, according to the
interpretation of the Magnus effect given in[7,8], the lin-
early polarized ray is free from any displacement. In fact,
these works estimate only the shift of the ray center of grav-
ity and this shift is zero for a linearly polarized ray(since the
shifts of two equal circularly polarized ray compensate each
other). The splitting of a ray of mixed polarization into two
circular rays can be obtained only from the proposed theory.
Hence the experiment under discussion can support our
theory.

The analyzed effect can be estimated easily by analogy
with the above example. It is readily seen that the ray will be
shifted in thez coordinate according the equation

dzs1d

ds
= 7 k0

−1 ]

]pz
Sdq

ds
D . s37d

The tangent vectorl of the initial ray is moving along the
equator of the unit sphere, and hence the Berry phase over
one period of the trajectory equals 2p (the unit hemisphere
area). (In Fig. 2 we consider the initial ray that corresponds
to the anticlockwise movement when seen from the negative
z side. Therefore the area swept by the tangent vector on the
unit sphere is negative and the Berry phase is positive.) For
the ray with smallpz, the tangent vector will be moving
along the parallel close to the equator; this will result in a
small deviation of the geometric phase from 2p. The paral-
lel’s latitude ispz/p<pz/n0, and the Berry phase over one
period equals

q < 2p −
2ppz

n0
. s38d

To obtain Berry phase gained by a wave over a unit of the
trajectory length, expression(38) should be divided by the
period length 2pr:

dq

ds
< −

pz

n0r
. s39d

The term 2p in Eq. (38) has been omitted as inessential. By
substituting Eq.(39) into Eq. (37) we have

dzs1d

ds
< ±

1

n0k0r
= const. s40d

Equation(40) demonstrates the expected uniform displace-
ment of the initial ray alongz. In order to rewrite this dis-
placement in an easy-to-use form, represent the trajectory
length ass=2prN, whereN stands for the number of ray
revolutions (periods). Then, upon integrating Eq.(40), we
arrive at

zs1d < ±
2pN

n0k0
= Nl, s41d

wherel is the wavelength that corresponds to the refractive
index n0. Thus, with the characteristic length of the wave-
guide of 2L, the circularly polarized ray has to complete
n0k0L /2p=L /l revolutions to leave the waveguide.

V. CONCLUSIONS

Above, the modified geometrical optics theory has been
constructed for a smoothly inhomogeneous isotropic me-
dium. In our derivations, we rely in large measure on the
concept of locality and nonlocality, which allows us to find
the proper way of separating complex phases and complex
amplitudes of the wave solutions. It turns out that all nonlo-
cal terms should be assigned to the wave phase and not to the
amplitude. We have derived the first-order geometrical optics
equations that properly and in a uniform way describe the

FIG. 2. (Color online) Splitting of a finite ray of mixed polar-
ization (black line) into two rays of left(blue thin line) and right
circular polarization(red line) in a circular waveguide(angle view).
The z axis is directed from left to right.
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Berry’s geometric phases and the optical Magnus effect
[4–8] (the relationship between Berry’s phase and the Mag-
nus effect was discussed also in Ref.[15]).

We have shown that in the first geometrical optics ap-
proximation a smoothly inhomogeneous locally isotropic
medium becomes weakly anisotropic. The eigenmodes of
this medium are the waves of right and left circular polariza-
tions. This is due to the fact that the polarization form of
circular waves remains unchanged during their propagation
in a smoothly inhomogeneous medium.(An elliptically po-
larized wave changes its own polarization in accordance with
the Rytov law[1–3], which is merely the result of the inter-
ference of two eigenmodes with different phase velocities.3)
The eikonals of the right and left circular modes differ by the
arising Berry phase of opposite signs, Eq.(10). Hence, with
the use of the eikonal equation, we have obtained the effec-
tive refractive indices(14) for circular modes. An essential
dependence of the Berry phase not only on the coordinates,
but also on the wave vector direction, determines a weak
anisotropy of the medium.

From the Hamilton principle, for the obtained refractive
indices, we have constructed ray equations(17) and (18),
which involve the correction terms of the first order ink0

−1.
These corrections, being proportional to the spatial and mo-
mentum gradients of the Berry phase, respectively, determine
the deviations in momentums and coordinates for right and
left circular waves. We have used the separation of local and
nonlocal terms to bring these equations to a more convenient
form like Eqs.(22) and (26), or (27). At the same time, we
have shown that the correction in the equation for momen-
tum causes the difference inabsolute valueof the phase
velocities, while the correction in the equation for coordi-
nates is responsible for the difference indirection of the
group velocities. The former effect describes the appearance
of Berry phases of the wave solutions, whereas the latter one
is associated with the deviation of the rays of different po-
larizations, which has been called before the optical Magnus
effect [7,8].

Hence the Berry phases, as well as the optical Magnus
effect, are the accompanying phenomena that arise in the
same orderk0

−1 in the geometrical optics equations. These
phenomena describe the divergence in phase and trajectory,
respectively, between the waves of different polarizations.
We have found that the formula for the ray shifts for different
polarizations, Eq.(25), is geometric in character, just like the
Berry phase, and represents a contour integral in the momen-
tum space. Thus both the optical Magnus effect and the
Berry phase arefundamental nonlocal topological phenom-
ena. It follows that in a one-dimensionally inhomogeneous
medium (the medium with plane ray trajectories and free
from Berry phases) the ray shift does not occur.

In addition to the above-listed findings, the suggested
theory predicts a novel effect, which is not contained in the

preceding theory of the optical Magnus effect[7,8]. Namely,
a ray of mixed polarization not only undergoes the displace-
ment of its center of gravity, but alsosplits into two indepen-
dent rays of right and left circular polarizations. Thus, in the
approximation considered,no independent ray of arbitrarily
mixed polarization exists. This ray may occur only as a result
of the interference of the circular eigen rays propagating
along different trajectories.

Our theory follows immediately from Maxwell’s equa-
tions, the eikonal equations, and the Hamilton equations for
rays. This theory describes from a unified standpoint repeat-
edly observed phenomena: the Berry phase and the optical
Magnus effect, which confirms its validity. Note also that the
correction obtained in the coordinate equation of geometrical
optics is exactly in line with the correction introduced by
Liberman and Zel’dovich[8]. Consequently, this correction
describes reliably the experimental data associated with the
optical Magnus effect[7]. At the same time, geometrical op-
tics of Ref.[8] is free of the correction of the same order in
the momentum equation(it is responsible for the Berry
phase), since in[8] the evolution of the polarization is de-
scribed by a separate equation.

In parallel with the general theory, we have analyzed par-
ticular examples(both familiar and novel) of ray displace-
ments for different polarizations. They fully support the in-
ferences of our theory. With the help of the theory suggested,
we have succeeded in calculating and analyzing the ray shifts
associated with the optical Magnus effect. We have also pro-
posed a novel scheme of the experiment that allows one to
observe the splitting effect for the rays of mixed polarization.

It worth noticing that the effects of the ray deviations
have the same order of magnitude,k0

−1, as the ray diffraction.
Therefore the diffraction spreading interferes significantly
with the ray splitting. Nevertheless, observations of the ray
deviations are possible(see, for example,[7]) against the
background of the diffraction spreading, since they are con-
nected with the polarization characteristics of the ray.

Finally note that, owing to the general character of the
Berry phase as the phenomenon observed in dynamic sys-
tems, analogs of the optical Magnus effect would be ex-
pected to occur in many systems. In particular, the effects of
this kind occur during the propagation of quantum particles
with a spin in external fields(see, for example,[16,17] and
references there).
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APPENDIX: THE MOTION OF THE TANGENTIAL
VECTOR OF A RAY IN A CIRCULAR WAVEGUIDE

OF PARABOLIC PROFILE

Bellow we consider the ray equations in the geometrical
optics zero approximation. It is readily seen from Eqs.(17)

3The conclusion about difference in phase velocities of right and
left circular waves is contained already in the pioneer work of[1].
However, the corresponding formula in that paper is not correct
because the calculations were made in the rotational reference
frame related to Frenet trihedron of the ray.
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(see also[3,14]) that in cylindrically inhomogeneous me-
dium a wave possesses two ray invariants that are constant
along the trajectory,I1=pz and I2=pwr / r0. Considering that
l =p /n, these invariants can be rewritten in terms of the tan-
gent vector component. Note also that in the paraxial ap-
proximation, the vectorl is almost aligned with thez axis.
The transversal component can be written as

l'
2 = l r

2 + lw
2 = 1 − lz

2 = 1 −
I1
2

n2srd
< 1 −

I1
2

n0
2 − 2DS r

r0
D2

.

sA1d

Here and further all calculations are performed in the first-
order approximation inD!1. To derive the dependence of
l' on the ray coordinates (which practically coincides withz
in the paraxial approximation), we should substitute the
equation for the ray trajectoryrszd into Eq. (A1). For the
parabolic profile(29), the ray trajectory can be obtained ana-
lytically from Eqs. (17). Its projection onto a circular cross
section of the waveguide represents an ellipse(Fig. 1) and is
given by equation[14]

r = F r1
2 + r2

2

2
−

r1
2 − r2

2

2
cosS z

z0
DG1/2

, z0 =
Î2pr0pz

ÎDn0

<
Î2pr0

ÎD
.

sA2d

Herez0 is the period of the ray trajectory, whiler1 andr2 are
the major and minor ellipse semiaxes, which are equal to

r1,2
2 =

r0
2

4n0
2D

fsn0
2 − I1

2d ± Îsn0
2 − I1

2d2 − 8Dn0
2I2

2g . sA3d

By substituting Eq.(A2) into Eq. (A1), we obtain

l'
2 < 1 −

I1
2

n0
2 − D

r1
2 + r2

2

r0
2 + D

r1
2 − r2

2

r0
2 cosS4pz

z0
D . sA4d

Hence it follows that the end of the tangent vector is tracing
an ellipse around the pole on the unit sphere. The pole on the
sphere corresponds exactly to thez direction, while the el-
lipse occupies a small area, within which the surface may be
treated as a part of a plane. Using Eq.(A3), we can derive
from Eq. (A4) that the squares of the ellipse semiaxes are
equal to

a2 = 1 −
I1
2

n0
2 − 2D

r2
2

r0
2 < 1 −

I1
2

n0
2, b2 = 1 −

I1
2

n0
2 − 2D

r1
2

r0
2 <

2DI2
2

n0
2 − I1

2 .

sA5d

The area of the ellipse is

S= pab<
Î2DI2

n0
=

Î2Drpw

n0r0
. sA6d

Expression(A6) is obtained with the sign of the oriented
area in mind: this sign will change with the sign ofpw.
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