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Modified geometrical optics of a smoothly inhomogeneous isotropic medium:
The anisotropy, Berry phase, and the optical Magnus effect
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We present a modification of the geometrical optics method, which allows one to properly separate the
complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomoge-
neous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly
anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction,
which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand
circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in
the group velocities results in the shift of the rays of different polarizatitimes optical Magnus effegtThe
difference in the phase velocities causes an increase of the Berry phase along with the interference of two
modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory
developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal
topological effects. In this paper the Hamilton ray equations giving a unified description for both of these
phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been
predicted. Specific examples are also discussed.
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I. INTRODUCTION the assumed anisotropy will result in the propagation of the
' . . . ._eigenm wav f right-hand and left-han lariza-
The first consistent presentation of the geometrical Optlcg(?nes) al?)clj"nZS(dif?ereesnt?craje%tori:s.d and left-hand polariza
approximation, as applied to the electromagnetic-wave tnqo changes of ray trajectories with polarization corre-
propagation thfough a_smoothly mhomo_ger)eous 'SOtr.Op'gpond to the so-called optical Magnus effect, which was sug-
medium, was given by Rytop]. There was indicated that in ested in 1990 by Zel'dovich and co-worké7s. The optical

thed zerolgegme';rlcal optics approxmatlog, c()jnly th? pgaz agnus effect was calculated theoretically and supported ex-
and amplitude of a transverse wave can be determined, Erimentally for waves in optical fibers. After that, the phe-
n(_)t th_e polarlzatl(_)n. .Th's is due to the fact that two m_od_e omenological theory describing this phenomenon in the
with distinct polarizations turn out to be degenerate or indis- eometrical optics approximation was advanced@h The

tlr?gmsrr:able. Thg po!anzafuor? ?{ggene(;acy can be Lemove sults of the present work support and generalize the correc-
through a consideration of the first-order terms in the geog;, s jntroduced by Liberman and Zel'dovich and demon-

metrical optics approximation. Hence the familiar Rytov law strate that the relevant equations and effects follow from the

about the rotation of the polarization plane of an electromagl-l,mi‘,:1I principles of geometrical optics

nletlc Vﬁ]ve In a smoolthly mho_mog?nﬁ_ouls med|umdfolk_)|w§ Below is shown that in the firgRytov) geometrical optics
[1-3]. The geometrical properties of this law were detailed, o imation, an isotropic smoothly inhomogeneous me-

by VIadimirsky[Z]. Subsequently, it was shown that the Ry- dFjum is actually anisotropic What this means i¢i) the re-
tov law is nothing but a consequence of the appearance Ffactive index of this medium depends on the wave-vector

the Berry geometric phases of photasse[4-6)). direction; (i) the medium contains two independent trans-

H The arr]nsotroplc lmedlL_Jmhdlffers frolm_the_ |sotdrop|c ON€ Nyerse modes with right-hand and left-hand polarizations, and
that (in the general cagat has no polarization degeneracy ,qir oroup velocities and phase velocities are distiiic): as

ar]d thus the_ polarization of _electromagnenc Waves 1S deterél consequence of the anisotropy, the right-hand polarized and
mined even in zero geometrical optics approximafigh In

. ; ) . left-hand polarized modes propagate along different ray tra-
this regard, the account of the first geometrical optics ap P propag ¢ y

O ) . L SR jectories.
proximation in an isotropic medium is similar to the case of

Kl . ) di Provided thi | h In that way a ray of the wave with mixeghot circulay
a weakly anisotropic medium. Provided this analogy a.EoIarization is split into two independent rays with right-

good grounds, what this means is the smooth inhomogeneity,, ang left-hand polarizations. This fact makes a predic-

causes a real weak anisotropy of the medium. In this Cas€n about a novel phenomenon, which is not covered by the

theory of the optical Magnus effeft,8]. Really, Zel'dovich
theory describes tha@isplacemenof the ray’s center of grav-
*Electronic addresses: kostya@bliokh.kharkiv.com, ity depending on its polarization, but does not point to a
k_bliokh@mail.ru possible raysplitting. Our theory suggests that only circular

1539-3755/2004/1@)/02660%9)/$22.50 70 026605-1 ©2004 The American Physical Society



K. YU. BLIOKH AND YU. P. BLIOKH PHYSICAL REVIEW E 70, 026605(2004

polarized independent rays exist in the framework of the apebvious that the separation of these terms into the phase and
proximation considered. The rays of other polarizations arisamplitude is a matter of conventigm so far as the ampli-
from the interference of the eigenmodes that propagate alongide is a complex valyeHence it is primarily important to
different trajectories. define a criterion, according to which we can separate these

In fact, the theory developed establishes a link betweemerms.
two fundamental phenomena—the Berry geometrical phase In the conventional geometrical optif3] the phase) and
and the optical Magnus effect. It is shown in the paper thathe eikonal equation correspond to the zeroth-order approxi-
the former implies the difference of phase velocities of themation in Eq.(3):
eigenmodes, whereas the latter is caused by the difference of ~
group velocities. We demonstrate that the optical Magnus Y= =ypO (4)
effect, as well as the Berry phase, is a nonlocal topological ..
effect described by the geometry of the system’s trajectory if¥'” is a scalar or a diagonal operator with the equal eigen-
a momentum space. values; this is just the polarization degenepadyhe ampli-

The results mentioned follow immediately from the initial tudeE® and the associated transport equation correspond to
principles of geometrical optics. The reason why these pheperturbations of ordefk+1):
nomena have not been theoretically revealed before is that in .
the conventional geometrical opti¢see, for example}3]) EQ =expiv¥)E, (5)
the separation of the complex amplitude and complex phase -
was performed not quite correctly. As a result, terms of theand so ort. In this equation,¥® is now the operator with
first order, which cause the above-mentioned effects, hav@ifferent eigenvalues, which determines the Rytov evolution
been disregarded in the wave eikonal. Below the modifiedf wave polarization. Thus, in the framework of conventional
geometrical optics theory is presented, which is free of th&eometrical optics, the phase and amplitude are separated
drawbacks outlined. Specific examples are also analyze@ccording to their orders, for which, actually, there are no

(Sec. IV). grounds.
We suggest another way. Note that the phasenigrdocal

or integral value, since its increment is determined by the
Il. SEPARATION OF THE PHASE AND THE AMPLITUDE entire path covered by the wave. To the contrary, the ampli-
IN THE WAVE SOLUTIONS tude in a passive nonabsorbing medium with independent
eigenmodes is conceptuallylacal value, being dependent
In the conventional geometrical optics, the monochro-only on the initial conditions and the current values of pa-
matic wave field in an isotropic medium can be written as rameters. Indeed, the amplitude specifies the wave energy,
1 5 . whose variation is bound to be governed by the initial and
E=~EV+IgEV+IgE? + - explikoy), (1) final points only, and not by the trgansfer pﬁth¥ the case of
where k(;l:C/w is the inverse wave number in vacuum, an absorbing or active medium, the amplitude is no longer a
which is small as compared to the typical scale of inhomodocal value. Then the local amplitude should be multiplied by
geneity. The phases can be determined from the eikonal the part of nonlocal exponential function with a real
equation exponent.
o o Thus the procedure for separating the phase and the am-
(V) =n"=e, 2 plitude is as follows. In Eq(3) we separate local and non-

anday/ t=—c, while the amplitude€® are found from the local terms:
transport equations of the relevant order. It is assumed that L2 00) 4 L o (nonlod
the phase characteristics of wave are determined by the E =~ explikg®™® +iko® )Eo. (6)
phasey and the eikonal equation, whereas the amplitude§hen the amplitude and the phase can be separated in the
E® and the transport equations specify the current amplitudgy|iowing manner:
of the wave and its polarization. '

However, in general, this is not the case. Actually, the E~A exp(i&ﬁ)Eo, 7)
adiabatic(or WKB or geometrical optigssolution to the
stationary-wave equation is constructed by the perturbatiowhere
method for the unitary complex phase in the exporieet

[9-1T):

YWe assume that the operator in the exponent®&qcan be put in
~ m R a diagonal form, corresponding to a basis of normal independent
E = expliko®)Eqy = exp<ik02 kak‘I'“‘)) Eo. 3) modes. Hence, by reason of asymptotic nature of the series, all
k=0 operators under the summation sign will be diagonal in this basis.

Herem=0,1,2,... is thexpproximation order, anf, is the By this is meant that these operators commute, §ince from here on

N “ we shall be able to represent the exponent of their sum as a product
field initial value, while® and W™ are the matrix operators of the exponents.
since the field is a vector changing its direction. Some of the 2probably, the existence condition for an adiabatic invariant serves
terms comprising the complex phase of [E8).can be taken as the locality condition for the amplitudsee[3,12)). In [10] it is
out and inserted into the preexponent fagamplitudg. Itis  proved for linear ordinary differential equations.
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A:exqikoci)(loc))’ a):ko(i)(nonloo. 8) larly, it can be chosen in'the fom@(p)z(pa)[pxa]/
A p|[p % a]|?, wherep=|p| anda is an arbitrary constant vector.
The eigenvectors of the operator ¢ikgd) determine the With gauge transformation®), the fieldG transforms as
medium eigenmodes at each point. At that the derivatives

dlat and a/or of the eigenvalues of the operatigyd(nonioo GG+ I (12)
determine their complex frequencies and wave vectors of the ap

medium’s independent modes, while the eigenvectors

of the operatoA specify the wave polarization. It should be [Wheree(p) is an arbitrary scalar potentjalvhile the physi-
noted that the separation of the values into local and nonloc&@lly measurable values are related to the curl of the &ld
ones is ambiguous and is determined up to the gaug@hich is equal tg3]

transformation

A I K -_P
$— d+o A—Aexp-ip), 9) [apXG}_ =5 (13
where ¢ is the local scalar potential. However, as will be

seen from the next section, these transformations have

r@quation(l?;) is obtained by explicit differentiation ¢ and
effect on the physically observable values.

etermines the gauge-invariant magnetic monopole type
structure in the wave momentum spdsee[17]). The geo-
metric phas&11) may be considered as an integral along the
Ill. GEOMETRICAL OPTICS OF A SMOOTHLY ray as well as a contour integral pispace.

INHOMOGENEOUS ISOTROPIC MEDIUM Let us determine the refractive indices of the right and left

circularly polarized waves by writing the eikonal equation
for Egs.(10) and(11) as
In order to derive correct characteristics of a smoothly

A. Eikonals and refractive indices

inhomogeneous isotropic medium, let us use the familiar for- nt=ksY V ¢* =n@(r) + nV(r,p),

mulas for the wave eikonals of the right-hand and left-hand (14)

circularly polarized waves. They follow immediately from d9

Maxwell’'s equations and can be given [4s6] nW=+ kgld— = +k;'Gp.
S

S
+ _ (0)
¢ = fo k7dsz . (10 In the conventional geometrical opti¢$,3], the correction

termn® did not arise[13] since the eikonal was derived in
Here k@=nO(r)k, stands for the current wave number, the zeroth-order approximation kgl, while all higher-order
n©(r)=1/e(r) is the local refractive index of the relevant terms [including the nonlocal factors ekpi9) associated
isotropic mediumk,=w/c, sis the length of the ray arc, and with the geometric pha$epertained to the transport

¥ is the Berry geometric phase, which has opposite signs fogquation—i.e., to the amplitude. Meanwhile, the geometric
the waves of right-hand and left-hand polarizations. We have@hase is a nonlocal value, which cannot be attributed to the
assumed in Eq.10) that ¢*|-,=0, since any constant addi- wave amplitude. The Berry phase can distort substantially
tions can be included into complex amplitudes and below weéhe phase front. For example, for a ray with torsion, the
will use only gradients of the eikonai40). The superscript phase front gradient has an additional fixed component
(0) indicates that the current values correspond to the zerothtV 9, which changes the wave vector and the phase velocity.
order geometrical optics approximation. Below we will de- As will be seen, the obtained correction tent? leads to
rive the corrections to the wave vectors and to the refractiveorrections in the geometrical optics equations, which are
indices. Here and further the medium smoothness implies theupported experimentally and, hence, have real physical
short-wave asymptoti&,= w/c— o, whereas formulg10)  grounds. Note that in view of the essential dependence of the
is derived in the first approximation il@l. The first-order geometric phase on the ray trajectory, the correction t&étn
correction terms are contained in the Berry phase, which cadlepends not only on the current coordinatéut also on the

be given in the forni6] wave vectordirection—that is, on the wavenomentumThis
points to the weak anisotropy of a locally isotropic medium.

S
19=f Gpds=f G dp. (11
0 L B. Basic equations

Here the dimensionless wave momentyrk/k, has Let us write the Hamiltonian equations for ray propaga-
been introduced>=G(p) is a certain nonpotential field ip o [3]. By choosing the Hamiltonian @d=p-n(r,p)=0
space, the overdot signifies differentiation with respecs to 5ng using Eqs(14), we have
(that is, along the rgy andL is the contour along which the
system is moving irp space. Equatioiill), as well as all p ot n® 9 (do\ an© 9
first-order correction terms below, is calculated along the tra- —=—=—-4% ‘1—<—> =—+= k{)l—(Gp),
jectories of the zeroth-order approximatigne., with p ds o or ar\ds/ or or
=p@=k©/ky). The fieldG is not uniquely defined; particu- (15)
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dr on* .0 [dd .0 . in Egs.(18) by | and, taking into account th&#/or =d/ds,
—=-—=|F 1—<—>=|— '—(Gp). (16 i
ds- o ko oo\ ds +ko ‘9p( p). (16)  we obtain
Here I=p/p is the unit vector of the normal to the wave dp'¥ :|dp(1) - +k51£(Gb)(o) (19)
phase front(At the same time, it is the unit tangent vector of ds ds =~ " ds '

the ray in zero approximation kgl_) Itworth noticing also Consequently, in the first geometrical optics approximation
that thep term [see Eq(14)] in the ray Hamiltonian should N y: 9 ) P PP ’
tgwe wave momentuniwave vectoy is

be interpreted not as an independent quantity, but only a
expre;sed in the end from the zeroth-order Hamiltonian p=p?+k1Gp)Ol. (20)
equationgsee below _ ) o
Equations(15) and(16) can be analyzed by applying the When integrating Eq(19), we assume for simplicity that
perturbation method ik~ By representing ali values in the P™(0)=0. Equation(20) follows immediately from the ini-
form a=a@+a® (a®~1, a?~k3l), we have, from Egs. t!al expressiong10), (11), and(14) for eikonals and refrac-
(15) and(16) in zero approximation, tive indices.
When integrating along the ray, two terms in EGQ)
dp©@ gn©@ ar©@ © 1 represent the dynamic phase and the geometric pipeses
ds o ' ds = (17) of the eikona), respectively. From Eq20) and(14) we have

. ) . ) the following expression for the phase velocities of the left-
These are the familiar geometrical optics equations for amang and right-hand waves:

isotropic mediuni3]. The second terms on the right sides of
Egs.(15) and(16) introduce corrections of the order ki’ A 1 do L (Gp)©@
and hence they should be considered on the solutiosigc- Vph= - n(O)kOE

ph~™ L0 1= nOk,
tories of zero approximation. As a result, for the first-order . ) i
corrections we obtain It should be noted that the right-hand side of the first

equation in Egs(18) involves also the component that is
orthogonal tol. Nominally, it causes the deviation of the
momentum from the direction of the zero momentpff.
(19) However, this deviation does not excelggt in the order of
magnitude and essentially depends on gauge transformations

where the superscrigd) signifies that all values on the right- (9) and(12). The reason is that under the gauge transforma-
hand sides of Eq(18) are derived from zeroth-order equa- tions a certain part of the phase turns into the amplitude, with
tions (17). Here and further it is considered thH&'=0 and  a consequent slight distortion of the phase fromt small
=11, As we will see later, Eqg18) describe the deviations deviations of the front normal from the zero-approximation
in a wave momentum and coordinates that are associatatirectior). The momentunfwave vectoy, however, is not a
with the spatial and momentum gradients of the Berry phasephysically measurable value in this ranga view of the
respectively. As will be seen, the first equation in E®)  uncertainty relatiop and hence, the above-mentioned devia-
governs the emergence of Berry phase, while the secontibns are irrelevant to the values under observation. Among
equation describes the deviations of the rays of different pothese values are the pha@kat is, an integral of the wave
larizations by virtue of the optical Magnus effg@f. vector projection onto the raynd the ray trajectory accurate

It is significant that the wave evolution for right and left to a wavelength. From these arguments it follows that it
circular polarizations is given by independent equations andnakes sense to consider only the longitudinal component in
thus these waves are the independent medium eigenmodéle right-hand side of the first equation in E¢K8) resulting
This fact correlates well with the quantum-mechanical notiorin Eq. (20). After elimination of the immeasurable transver-
of photons, according to which a photon may possess helicsal deviations, the first equation in Eq48) takes the form

PG

)I. (21)

J
= + k1% (Gp©@ - =117 (ap)O
s ko&r( p)"®, s +koﬁp(Gp) :

ity equal to +1 or —1 only, which corresponds to right and ) o

left circular polarizations. In the framework of a given ap- dp™” = ikgll[li(Gp)} =¢k511£(<3p)<°>. (22)
proximation, an arbitrarily polarized wave cannot be treated ds or ds

mgzgindently, but only as a superposition of circular 198N This equation is integrablsee Eq(20)] and, as is seen from

Eq. (11), is responsible for the appearance of the Barry
phase. It follows that the first-order corrections do not
C. Equation for momentum, Berry phases, change the direction of the phase front normal—thats,
and phase velocities =0,1=10,

Consider initially the first equation in Eggl8). First of
all, let us note that after integration with the operator
koS dr fdt, it exactly defines the geometrical terthin the
phaseq10) and (11). The first equation in EqQY18) is re- We now turn our attention to the analysis of the second
sponsible for the change of tineomentunfwave vectoyand  equation in Eqs(18). It describes the shift of the right and
the phasevelocity of waves inabsolute valugbut not direc-  left circularly polarized rays, which is associated with the
tion. To prove this, let us multiply scalarly the first equation optical Magnus effecf7]. The right-hand side of the second

D. Equation for coordinates, the optical Magnus, effect,
and group velocities
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equation in Eqs(18) is responsible for the ray trajectory nus effect. By substituting the expressigni®=on©/dr and
deviations—that is, for variations in thgroup velocity. As ~ p©=n© from the zero approximation, Eqsl7), into the
will be seen, this correction is directed orthogonally to theright-hand sides of Eqg22) and(26), we obtain

ray and changes thdirection of the group velocity. By dif- dp® o9 on© d({ on©
ferentiating the scalar product in the right-hand side of the — =z k{ﬂ{—(G—)] =+ _1—(G—>,
second equation in Egél8), we obtain ds o o ds o @
(1) 0
dr _ :kgl{p x [i x G” + k(;l(pi)e. (23) a1 {‘9'” L |].
ds p ap ds kon©@|  ar
Here and further the superscrii® is omitted for simplicity. ~ These “evolutionary” equations can be solved without regard
Let us integrate Eq23): to Egs.(17). However, the theory of Berry phases has clearly
s J J demonstrated that in a number of problems it is better to use
== kf_’lf {p % {_ % G” + (p—>G ds general “geometric” equation®2) and (26) by integrating
0 P p them inp space. In particular, we could not have derived the
S[p X p] above-discussed equations if we had not applied this ap-
= ik{)lf Tds; kal G|go_ (24) proach dealing with the properties of locality and nonlocal-
0 ity.

_ Note that the second equation in E@87) corresponds
Helr\le Iormulai(hliat) zndzpz—fp(ozhhave be:._?t used. . N precisely to the correction that has been introduced into the
e ey ometical optcs cquatons by el v and iverr
) g ’ ' ]. It has also been shown [8] that this equation describes
nitely ass increases. The second summand representsaloc%ﬁoperly, in agreement with experimenfg], the optical

function of the momentunp. It canggu grow infinitely and Magnus effect in a circular waveguide. However, in the geo-
does not exceed the wavelengih-k;" in the order of mag- metrical optics of Zel'dovich and Liberman, the equation for

nitude. Evidently, the second term does not lead to ObserVr'nomentum is free of the correction that corresponds to the

able physical effects and depends on the gauge transforma- R - ;
tions (9) and (12). This is related to the uncertainty of the first equation in Eqs(27) and that is responsible for Berry

notion of a ray trajectory within the range of the wavelength phase. The matter of the fact that in Re] the polarization
. , ; . ‘'of a wav rr nds to its in ndent r f fr m
Like the Berry phase, the first nonlocal term in Eg4) is of a wave corresponds to its independent degree of freedom,

; iant. Note also that with th i luti for which the evolutionary equations are written; this adds
giugetr:nvarla:jr_l ) t'o € a_so_d a V\':Ih th € fyf IC evo uh'on'complexity to the theory. Meanwhile, as has been shown, this
when he ray direction coincides wi € Initial one, We NaVeis 1ot the case. For every eigenmode, the polarizdtigint-

p:{i’ﬁ’ and ;" ”0”'?06!' te:rr]ns Vaniﬁ.h& h to retai | hand or left-hand circulais strictly fixed(the helicity is the
us, when analyzing the ray shift, we have to retain only, yiapatic invariant of a photonwhile the polarization evo-

the first term in EQ(24). As a result, we have lution for an arbitrarily polarized wave is nothing but the
L (PP xp] _ . [pxdp] result of the interference of two eigenmodes of fixed polar-
i =+kg J 3 ds=Fk J ~——3 . (29 jzations. This kind of interference is completely described
o P L P within the context of our theory.
The ray shift is seen to be directed orthogonally to the ray: It follows from the above that our theory makes a predic-
prP=0. Formula (25 demonstrates that the ray shifts tion about a new phenomenon, which is not present in the
caused by the optical Magnus effect, as well as Berry geotheory of the optical Magnus effect. In Ref3.8], thedevia-
metric phas€11), can be represented as a contour integral irfion of the ray center of gravitin relation to the polarization
p space. Moreover, the shift is dictated by the geometry ohas been described. For example, this deviation is zero for a
the contourL in p space and not by the particulpts) de-  linearly polarized ray. Meanwhile, as has been shown, a
pendence on the ray. Hence the optical Magnus effect is &ngle linearly polarized ray simply does not exist. When
fundamentaltopological effect. The Berry phase and the Propagating, this ray will split into two circularly polarized
Magnus effect represent wave divergences in phases and tf@dependent rays. In Sec. IV B, we suggest the simple

jectories, respectively. scheme of the experiment for observing the predicted effect
Displacement25) corresponds to the differential equation Of Splitting of a noncircularly polarized ray into two circu-
that takes the place of the second equation in Etf: larly polarized ones.

From Eqs(26) and(27) along with Eqs(17) the expres-
(26) sions for the group velocities of the waves of right-hand and
left-hand polarizations follow:

dr® 1
— =+
ds kop<0>3

Equationg22) and(26) along with the zeroth-order equa- * — < | + L[p X p]@ | = £(| + i[V In ne X |]>_
tions (17) describe geometrical optics of a smoothly inhomo- ¢ n@\" ™ g ,©° o\ Koo 0

geneous medium in the first approximation kgt In this (29)
case, Eq(12) for a momentum describes the increment of

Berry phase, whereas E¢26) for a coordinate gives the The above formula points to the fact that the group velocities
shifts of differently polarized rays owing to the optical Mag- of the right-hand and left-hand waves are equal in magnitude

[p x p]©.
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x it

First note that variations in momentum componepgs
andp, do not move the trajectory away from the propagation
plane, and hence, the derivative&ip, and d/ dp, of Berry
phase of the meridional ray are equal to zero. Thus only the
] ¢ component of the momentum gradient of Berry phase of

r the meridional ray will be different from zero. Therefore,
with the use of Eqs(18), the following equation for the

FIG. 1. (Color onling Propagation of almost meridional rays in desired ray shift can be written:

a circular waveguide with a gradient profiew from the negative

zend. To the left: the meridional ragthick line) and the virtual ray, dr® . 0 (dU).

close to the meridional on@lashed lingin the zero approximation d9s " ko 5 ds Jo- (30

of the geometrical optics. To the right: the shift of the Idftue ¢

dashed lingand right(red dashed linepolarization rays relative to  Herej . is the unit vector directed along tkecoordinate. As

the trajectory of the zero approximatioblack line). was noted, the Berry phase of the meridional tay=0)
equals zero. Consequently, to determine the grad&twe

in the given approximationl.vg|:|v5|+0(k52), and deflect Must consider a ray close to the meridional one and possess-

in the opposite directions from the ray of the zeroth-orderNd & small value ofp,#0. The ray trajectorieggiven by
approximation. Eqgs.(17)] in parabolic profilg29) admit analytical solutions

and are fully considered if14]. It is well known[2,4—§ that

the Berry phas€l1l) of the ray is equal to the oppositely
signed area that is swept by the tangential vettmm a unit
sphere. In the Appendix, it is shown that in the paraxial
A. Rays in the paraxial approximation approximation the tangential vector traces an ellipse on a

In [7], the rotation of the plane of meridional right-hand small section of the unit sphere. The area of this ellipse

and left-hand circularly polarized rays has been calculated if94als

the mode approximation. Then, 8], the same effect has \;ﬁrp

been calculated from the suggested correction to the geo- =—""*. (31)

metrical optics equations, which is similar to the second Mof'o

equation in Eqs(27). The results of these calculations are  Formula (31) with the opposite sign specifies an incre-

found to be coincident and in good agreement with experiment of the Berry phase} over one trajectory periodz,

mental data[7]. Thus we may assert that the theory sug-~\2zr,/\A [see Eq(A2)]. Therefore, the increment of the

gested above also describes adequately the optical Magn@grry phase over a unit of length can be writ{gaking into

effect in a circular waveguide. Nevertheless, we would likeaccount the signas

to present the calculation of this effect, which is based not on

Egs.(27), but immediately on the initial equatioid6), vir- o9 ~— S ~— ﬂe (32

tual ray trajectories, and the presence of Berry phases. This ds 24 wréno

will allow us to demonstrate clearly the physical and geo-

metrical meaning of the theory constructed above.
Consider a meridional ray propagating in the positive

IV. EXAMPLES: RAY SHIFTS
IN CIRCULAR WAVEGUIDES

Hence it follows that the correction to the refractive index for
a spiral trajectory is

direptio_n in a circu_lar Waveguide_z with a gradient pargbolic a0~ = Arp, 39
profile in the paraxial approximation. Let the refractive index Wkorépz'
be the following function of the distanceto the waveguide
center; Formulas(32) and (33) are actually the averaging of the
5 corresponding values over a period of the trajectory. It is
n(r) = no[l —A(L) } (29) quite sufficient, since a ray shift is immeasurable for smaller
ro/ |’ scales; the effect shows itself over many periods. By substi-

. - . tuting Eq.(32) into Eq.(30), we arrive at
whereA <1, while ny andrg are the characteristic refractive 9 Eq.(32) a-(39

index and the radius of the waveguide. Here and further, dr® . Ar
unless otherwise specified, we imply the values of the ds = wkorénoj“"
zeroth-order approximation, Egg€l7); for the sake of sim- ) ) ) ) o
plicity, the indices are omitted. Let us introduce the naturalSince the shifr ¥ is proportional tor and is directed along
cylindrical coordinatesr, ¢,2). The ray propagation process the ¢ coordinate, it can be written as the shiftgn

will be observed from the waveguide eiiig. 1). As fol- de®W A

lows from Eqgs.(16) and (18), the ray displacement is pro- s kot 2 = const. (39)
portional to the momentum gradient of its Berry phase per a 0o

unit of length. Although the meridional ray represents aExpression(35) indicates thagll ray trajectoriegregardless
plane curve and its Berry phase is zero, the adjacent, virtuabf p,) and not only the meridional ones are rotated uniformly
rays may possess the Berry phase, and hence, its gradieziockwise or anticlockwise depending on the polarization
will be different from zero. sign (Fig. 1). This inference explains the good agreement

(34)
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XX The analyzed effect can be estimated easily by analogy
il + with the above example. It is readily seen that the ray will be
PP j shifted in thez coordinate according the equation
1)
FIG. 2. (Color onling Splitting of a finite ray of mixed polar- % = F ‘1i<d—ﬁ) (37
ization (black ling into two rays of left(blue thin ling and right ds ap,\ ds

circular polarizatior(red line in a circular waveguidéangle view.

The tangent vectol of the initial ray is moving along the
The z axis is directed from left to right. 9 y 9 9

equator of the unit sphere, and hence the Berry phase over
one period of the trajectory equalsr2the unit hemisphere
between the mode approximation experimefits and the  areg. (In Fig. 2 we consider the initial ray that corresponds
ray theory. The trajectory rotation angle is found fromtg the anticlockwise movement when seen from the negative

Eq. (35): z side. Therefore the area swept by the tangent vector on the
unit sphere is negative and the Berry phase is posjtivEor
w_ — A the ray with smallp,, the tangent vector will be moving
o= F 5L (36) AT :
Kol 5o along the parallel close to the equator; this will result in a

. . small deviation of the geometric phase from.2l'he paral-
. This formul_a cprresponds exactly to the resglts obtainegg|s |atitude is p,/p=p,/n, and the Berry phase over one
in [7]. Its derivation has revealed that the optical Magnusperiod equals

effect is indeed closely related to the presence of the Berry
phase in the system and its anisotropy. Let us remark that if
one considered a ray similar to the meridional one in a planar
waveguide, the ray shift would not be observed. This is be- ) _ )
cause the Berry phase in a planar waveguidilésitically ~ T obtain Berry phase gained by a wave over a unit of the
equal to zero for all rays. At the same time, the initial me-trajectory length, expressio@8) should be divided by the
ridional ray may have precisely the same trajectory as it haBeriod length Zr:

in a circular waveguide. dg 0,

— =, 39
ds Nor (39

2mp,

O =2m7- (38)

No

B. Splitting of a circular ra
PITIng Y The term 27 in EqQ. (38) has been omitted as inessential. By

Considering the ray shift effect from the viewpoint of the substituting Eq(39) into Eq.(37) we have
presence of the Berry phase of the adjacent, virtual, rays, we 2
can propose a straightforward scheme for observing both the % - 4 1 - const (40)
optical Magnus effect and the raplitting. Let us consider a ds " Nokor '
finite ray propagating along a circle in tke const plane in a
radially inhomogeneous mediurtircular gradient wave-
guide (Fig. 2). This kind of a ray corresponds to so-called
modes of a whispering gallery. The ray by itself represents
plane trajectory with Berry phase equal to z€Par, to be
more specifiz. However, the adjacent rays with smail) .
# 0 become spiral and gain a geometric phase. This suggeﬁé”ve at

Equation(40) demonstrates the expected uniform displace-
ment of the initial ray along. In order to rewrite this dis-
lacement in an easy-to-use form, represent the trajectory
ength ass=2#rN, whereN stands for the number of ray
revolutions (periodg. Then, upon integrating Eq40), we

at once that the ray considered will shift in the direction of 2N
positive or negative according to its polarizatiofsee Fig. Y~ ¢ m =N\, (41)
2). If both of the waveguide ends are open, the right-hand 0

polarized wave will emerge from one end, whereas the leftwhere is the wavelength that corresponds to the refractive
hand polarized wave will emerge from the opposite end. Thisndex n,. Thus, with the characteristic length of the wave-
kind of experiment can be used to demonstratesipliéting  guide of 4., the circularly polarized ray has to complete
of a ray of mixed polarization into two circularly polarized nyk,L/27=L/\ revolutions to leave the waveguide.
eigenrays. Indeed, if the initial ray is linearly polarized, the
right and left circularly polarized radiation appears from two
waveguide ends to the observer. Notice that, according to the
interpretation of the Magnus effect given i8], the lin- Above, the modified geometrical optics theory has been
early polarized ray is free from any displacement. In fact,constructed for a smoothly inhomogeneous isotropic me-
these works estimate only the shift of the ray center of gravdium. In our derivations, we rely in large measure on the
ity and this shift is zero for a linearly polarized résince the  concept of locality and nonlocality, which allows us to find
shifts of two equal circularly polarized ray compensate eaclithe proper way of separating complex phases and complex
othep. The splitting of a ray of mixed polarization into two amplitudes of the wave solutions. It turns out that all nonlo-
circular rays can be obtained only from the proposed theorycal terms should be assigned to the wave phase and not to the
Hence the experiment under discussion can support owmplitude. We have derived the first-order geometrical optics
theory. equations that properly and in a uniform way describe the

V. CONCLUSIONS
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Berry’'s geometric phases and the optical Magnus effecpreceding theory of the optical Magnus eff¢¢t8]. Namely,
[4-8] (the relationship between Berry’s phase and the Maga ray of mixed polarization not only undergoes the displace-
nus effect was discussed also in Rdf]). ment of its center of gravity, but alsplitsinto two indepen-

We have shown that in the first geometrical optics ap-dent rays of right and left circular polarizations. Thus, in the
proximation a smoothly inhomogeneous locally isotropicapproximation considereao independent ray of arbitrarily
medium becomes weakly anisotropic. The eigenmodes ahixed polarization exists. This ray may occur only as a result
this medium are the waves of right and left circular polariza-of the interference of the circular eigen rays propagating
tions. This is due to the fact that the polarization form ofalong different trajectories.
circular waves remains unchanged during their propagation Our theory follows immediately from Maxwell's equa-
in a smoothly inhomogeneous mediufAn elliptically po-  tions, the eikonal equations, and the Hamilton equations for
larized wave changes its own polarization in accordance witlays. This theory describes from a unified standpoint repeat-
the Rytov law[1-3], which is merely the result of the inter- edly observed phenomena: the Berry phase and the optical
ference of two eigenmodes with different phase velocities. Magnus effect, which confirms its validity. Note also that the
The eikonals of the right and left circular modes differ by thecorrection obtained in the coordinate equation of geometrical
arising Berry phase of opposite signs, Ef0). Hence, with  optics is exactly in line with the correction introduced by
the use of the eikonal equation, we have obtained the effed-iberman and Zel'dovicH8]. Consequently, this correction
tive refractive indiceg14) for circular modes. An essential describes reliably the experimental data associated with the
dependence of the Berry phase not only on the coordinatesptical Magnus effecf7]. At the same time, geometrical op-
but also on the wave vector direction, determines a weakics of Ref.[8] is free of the correction of the same order in
anisotropy of the medium. the momentum equatiokiit is responsible for the Berry

From the Hamilton principle, for the obtained refractive phasg, since in[8] the evolution of the polarization is de-
indices, we have constructed ray equati¢hg) and (18), scribed by a separate equation.
which involve the correction terms of the first orderldgil. In parallel with the general theory, we have analyzed par-
These corrections, being proportional to the spatial and maticular examplegboth familiar and novelof ray displace-
mentum gradients of the Berry phase, respectively, determinments for different polarizations. They fully support the in-
the deviations in momentums and coordinates for right anderences of our theory. With the help of the theory suggested,
left circular waves. We have used the separation of local and/e have succeeded in calculating and analyzing the ray shifts
nonlocal terms to bring these equations to a more conveniemissociated with the optical Magnus effect. We have also pro-
form like Egs.(22) and(26), or (27). At the same time, we posed a novel scheme of the experiment that allows one to
have shown that the correction in the equation for momenebserve the splitting effect for the rays of mixed polarization.
tum causes the difference iabsolute valueof the phase It worth noticing that the effects of the ray deviations
velocities, while the correction in the equation for coordi- have the same order of magnitudigl,, as the ray diffraction.
nates is responsible for the difference direction of the  Therefore the diffraction spreading interferes significantly
group velocities. The former effect describes the appearancwith the ray splitting. Nevertheless, observations of the ray
of Berry phases of the wave solutions, whereas the latter ongeviations are possiblésee, for example[7]) against the
is associated with the deviation of the rays of different po-background of the diffraction spreading, since they are con-
larizations, which has been called before the optical Magnusected with the polarization characteristics of the ray.
effect[7,8]. Finally note that, owing to the general character of the

Hence the Berry phases, as well as the optical MagnuBerry phase as the phenomenon observed in dynamic sys-
effect, are the accompanying phenomena that arise in thtems, analogs of the optical Magnus effect would be ex-
same orderk{)l in the geometrical optics equations. Thesepected to occur in many systems. In particular, the effects of
phenomena describe the divergence in phase and trajectotiis kind occur during the propagation of quantum particles
respectively, between the waves of different polarizationswith a spin in external field¢see, for example[16,17 and
We have found that the formula for the ray shifts for differentreferences theje
polarizations, Eq(25), is geometric in character, just like the
Berry phase, and represents a contour integral in the momen-
tum space. Thus both the optical Magnus effect and the
Berry phase aréundamental nonlocal topological phenom-  The authors are grateful to Yu. A. Kravtsov and V. A.
ena It follows that in a one-dimensionally inhomogeneous Permyakov for their interest in the work and for fruitful dis-
medium (the medium with plane ray trajectories and freecussions. We also thank B. Ya. Zel'dovich for drawing our
from Berry phasesthe ray shift does not occur. attention to Refs[13,15. The work was partially supported

In addition to the above-listed findings, the suggestedhy INTAS (Grant No. 03-55-1921
theory predicts a novel effect, which is not contained in the

ACKNOWLEDGMENTS

- APPENDIX: THE MOTION OF THE TANGENTIAL
The conclusion about difference in phase velocities of right and  VECTOR OF A RAY IN A CIRCULAR WAVEGUIDE
left circular waves is contained already in the pioneer work1pf OF PARABOLIC PROFILE
However, the corresponding formula in that paper is not correct
because the calculations were made in the rotational reference Bellow we consider the ray equations in the geometrical
frame related to Frenet trihedron of the ray. optics zero approximation. It is readily seen from E@{s)
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(see also[3,14]) that in cylindrically inhomogeneous me- r2
dium a wave possesses two ray invariants that are constant r3,= ﬁ[(ng— 13+ (ng-19)?-8And13].  (A3)
along the trajectoryl;=p, andl,=p,r/r,. Considering that 0

[=p/n, these invariants can be rewritten in terms of the tan-By substituting Eq(A2) into Eq. (A1), we obtain
gent vector component. Note also that in the paraxial ap- ' '

proximation, the vectof is almost aligned with the axis. ) 12 2412 r2-p2 A7z
The transversal component can be written as 1 =1 2 A 2 + AT co ) (A4)
0 0 0
12 12 r\2
12 =1F+12=1-17=1- 2 1-5-2A ). Hence it follows that the end of the tangent vector is tracing
o 0

an ellipse around the pole on the unit sphere. The pole on the
(A1) sphere corresponds exactly to thelirection, while the el-
lipse occupies a small area, within which the surface may be
treated as a part of a plane. Using E43), we can derive
from Eq. (A4) that the squares of the ellipse semiaxes are

Here and further all calculations are performed in the first
order approximation ilM<1. To derive the dependence of
I, on the ray coordinate (which practically coincides witla

in the paraxial approximation we should substitute the equal to
equation for the ray trajectory(z) into Eq. (Al). For the 12 r2 12 12 12 2Al12
parabolic profile29), the ray trajectory can be obtained ana- a®=1-—%-2A=~1-—=, b?=1-—2-2A—2 ~ —%.
lytically from Eqs.(17). Its projection onto a circular cross Mo "o Mo Mo o No—l1
section of the waveguide represents an elligsg. 1) and is (A5)
given by equatiorj14]
5 2 2 o 12 = — The area of the ellipse is

r:|:rl+r2_rl_r2 cos(i)} :\J’ZZFODZ%V'ero o -

2 2 Z VANng VA S= rab~ V2Al, _ V2Arp 3 (A6)

(A2) No Nol'o

Herez, is the period of the ray trajectory, whitg andr, are  Expression(A6) is obtained with the sign of the oriented
the major and minor ellipse semiaxes, which are equal to area in mind: this sign will change with the sign of.
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