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We have formulated a dielectric response function for strongly coupled two-dimensional Coulomb liquids in
the T=0 quantum domain. The formulation is based on the classical quasilocalized charge approXi&ation
Kalman and K. I. Golden, Phys. Rev. A1, 5516(1990); K. I. Golden and G. Kalman, Phys. Plasm&sl4
(2000] and extends the QLCA formalism into the quantum domain. We calculate the dispersion of the
longitudinal plasmon mode farg=10, 20, 40 and the resulting dispersion curves are compared with recent
experimental results. We also conjecture the possible existence of a new high-wave-number collective excita-
tion in close proximity to the right boundary of the pair continuum.
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I. INTRODUCTION an approximation scheme that combines the quadratic

This paper addresses the problem of longitudinal <:o|IecflUCtu‘f"t'On'd'Ss'p.atlon theofem W'th. linearized moment
tive mode dispersion in strongly coupled two-dimensiona/€auations featuring three-point dynamical structure functions

o [5], [CL(iv)] by adapting the quasilocalized charge approxi-
I(|2|3|) dcic;mr?]rggel;23'das‘sagzizoefignrﬁeg?g:? Tlgi 2D COE’rllombmation (QLCA) approach[11,19 to the 2D OCP[7], and
qu . . mponent plas (@CB . [CL(v)] by adapting the velocity-average-approximation
Whlch charged particle m_ot|0ns in a uniform r|_g|d neutrah_z- (VAA ) approact20] to the 2D OCP in the weakly degener-
ing background are restricted to a plane having zero thickz; quantum domaif.2]. Computer-generated data pertain-
ness and large but bounded argaThe N(=nA) charges jng tg the dynamical structure function and collective mode
interact via theg,p(r)=€*/esr Coulomb potentialr being  dispersion in the strongly coupled 2D classical OCP liquid
the in-plane separation distance andhe dielectric constant have been available since 1980 thanks to the molecular dy-
of the substratep,(q) =27€?/ (e) is its Fourier transform. namics(MD) simulations of Totsuji and Kakeyg1] and
In the zero-temperature quantum domain, the customargore recently by Kalmaet al. [22].
measure of the coupling strength ig=al/ag, where a In the zero-temperature quanty®@) domain, a variety of
=1/\/mn is the Wigner-Seitz radius armg=c41%/(mé) isthe  approaches have been used as well for the calculation of the
effective Bohr radiuseg= 7n%2/mis the Fermi energy of the 2D dielectric response function and plasmon dispersion:
noninteracting 2D electron gas arg=y27n is the 2D  [Q(i)] At long-wavelengthgq— 0), the plasmon dispersion
Fermi wave number. has been inferred by supposing that it is sufficient to replace

The important question of the dynamics of strong Cou-£(q,®) by its high-frequency sum rule expansif4]. More

lomb interactions and how they affect the dispersion of col-€laborate approaches have built on the concept of the local
lective modes in strongly coupled 2D Coulomb liquids is onefield factor G(q, w). For finiteq values,[Q(ii)] an early ap-
that has received a great deal of attention primarily fromproximation for the stati€s(q), due to Hubbard and Jonson
theorists[1-13 over the past three decades. Interest in this[l], was GH(q)=q/(2\r’qZTk§). A more sophisticated static
problem is further intensified by recent inelastic light scatter{,.4; field correction has been formulatggiii )] by adapt-

ing experiment$16,17 that, for. thg first time, provide Mea- ing the classical STLS approadh8] to the 2D quantum
surements of plasmon dispersion in ultralow density 2D elecg|actron liquid[1,8,9. Dynamical local field factors have

tron systems in GaAs quantum wells at finite temperaturesyaan, formulatedQ(iv)] via a 2D quantum kinetic equation
In the high-temperature classid&lL) domain, theoretical  yeatment using a Mori memory function formalism that
calculations of the dielectric functior;(q, ), and disper-  {axes account of the dynamics of the exchange-correlation
sion and damping of the collective modes have been carriegg|e surrounding each electr@], and[Q(v)] by adapting a
out [CL(i)] by following a microscopic hydrodynamic ap- guantum mechanical versidg23] of the STLS theory(the
proach [2], [CL(ii)] by adapting the conventional three- «qgT1 5" to the 2D Coulomb liquid at zero temperature
dimensional(3D) Singwi-Tosi-Land-Sjolande(STLS) [18] 10].
mean-field-theory approach to the 2D O, [CL{iii)] by At finite temperatures, motivated by the recent inelastic
light scattering experiments of Erikssen al. [16] and Hir-
jibehedinet al.[17], Hwang and Das Sarnjad 3] proposed a
*Also at Department of Physics, University of Vermont, Burling- simple theoretical model for the calculation of 2D plasmon
ton, Vermont 05405, USA. Email address: golden@emba.uvm.eduispersion. Based on the premise that finite temperature and
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correlation effects tend to cancel each other, Hwang and Da®sults in the strong coupling regimes <40, it is by no
Sarma suppose that the local field correction can be reasomeans clear that the exchange-correlation part of(tbi
ably well represented by the finite-temperature 2D Hubbargum rule coefficient can be recovered from their formalism
approximation Gy(q, T)=q/(2\/g?+k3(T)), where ky(T) is in the high-frequency limit.
the finite temperature analogy of the 2D Fermi wave vector. The present work addresses the problem of constructing a
Yurtseveret al. [14] go further in that they formulate a dy- dielectric function for the 2D electron liquid based on a
namic local field correctionG(q,w,T), within a qSTLS  physically correct microscopic model that, at the same time,
mean field theory framework inputted with the temperaturecorrectly represents the behavior ofq,®) in the strong
dependent Hartree-Fock structure functisee Ref[24] for coupling regime. To realize this goal, we invoke the quasilo-
the temperature-dependent Lindhard functimmmake their ~calized charge approximatio@QLCA), an approximation
calculation more tractable; the approximation scheme of Refmethod that has proved to be consistently successful in the
[14] is, in effect, a dynamical version of the static Hubbarddescription of collective mode dispersion in strongly coupled
approximation to the local field correction. The 2D plasmonclassical Coulomb liquids as evidenced by comparison with
dispersion curves that result from the latter two theoreticah series of MD simulationgl1,21,22,27,25 we contend that
approaches are in very good agreement with the experimeitie QLCA can be extended in a way that makes it suitable
tal data[16,17). for the description of collective mode dispersion in the quan-
Turning now to the strong coupling regime, it has beentum domain.
known [5,7] for quite some time that the long-wavelength ~ The QLCA was formulated by two of the authors some
(q—0) plasmon dispersion in strongly coupledl’ time ago[11,19 for the purpose of describing collective
=7%e?/(ecakgT) > 1] 2D classical electron liquids is entirely mode dispersion in a variety of classical Coulomb liquid
controlled by the potential energy part of the third- configurationg11,19,29-31in the strong coupling regime.
frequency-moment(w3)) sum rule coefficienfsee Eqs(7) The _bas_|s of the formal develop.ment of the QLCA is that the
and (12) belowj [4], which requires that, in thE — limit, dominating feature of the physical state of the plasma with
the plasmon dispersion approach the 2D hexagonal latticE>1 is the quasilocalization of the charges. This physical

[25] phonon frequency. picture suggests a microscopic equation-of-motion model
CRY;TAL where the particles are trapped in local potential fluctuations.
wp(q— 0)[75o = wop(q)[1 - 0.173a]; (1) The particles occupy randomly locatéulit certainly not un-

correlated sites and undergo oscillations around them. At the
same time, however, the site positions also change and a
"Lontinuous rearrangement of the underlying quasiequilibrium
configuration takes place. Inherent in the QLC model is the
assumption that the two time scales are well separated and
that for the description of the rapid oscillating motion, the
time averagégconverted into ensemble averagé the drift-
ing quasiequilibrium configuration is sufficient. For this con-
dition to be satisfied, it is necessary that the amplitude of the
wp(q— 0)|; - = wyp(Q)[1 — 0.1694a], (2) excursion of the oscillations be much smaller than the
s Wigner-Seitz radius; in Ref19] this is indeed shown to be
which is in near agreement with the phonon dispersion forthe case provided that>1.
mula above. As to the STLS approximation schei@éii)], In the application of the QLCA to a strongly coupled
the plasmon frequency charged-particle system in the quantum domain, the main
STLS _ _ physical difference one should consider between the classical
wp(q — O)f 7= wop(@)[1 - 0.2711a] and quantum behaviors is that in the latter the correlation-
does not even come C|Ose to reproducing the correct |Ondnduced |Oca|i2ati0n iS hampered by the inCI’ease in kinetic
wavelength 2D Wigner crystal dispersioh) in the re— o energy that acts counter to the localization. Neverthe_less, as
limit. The Hubbard approximatiofQ(ii)] [1] underlying the it will be shown bglow, the QLCA meets the stated ob_Ject|ve
Ref.[13] calculation, in fact, does with a coefficient 0.177 in t0 the extent that it reproduces the exchange-correlation con-
Eq. (2). However, we believe this is coincidental. Moreover, tribution to the(w®) sum rule coefficient, thereby guarantee-
the Hubbard approximation, because itrisindependent, ing recovery of the correct oscillation frequency for arbitrary
leads to the obviously false conclusion that the non-RPAJ values in therg— oo limit. What the QLCA fails to repro-
correction is always the same for any duce is the correlational increase of the kinetic energy dis-
While the qSTLS treatment of Moudggt al. [10] fails to ~ cussed above. This is a problem, however, only for interme-
reproduce the exchange-correlation part of the thirddiate rg values: asrg—, both the free-particle and
frequency-moment sum rule in the high-frequency limit, thecorrelation contributions to the kinetic energy pgsee Egs.
inaccuracies that accrue in their description of the plasmofil0) and (11) below] drop off like 1/ and 143 respec-
dispersion may be somewhat mitigated by the fact that thesévely, while the dominanO(1/ry) correlation and Hartree-
calculations address the weak coupling reginre 3. As to  Fock exchange energy contributions to the interaction energy
the more involved iterative quantum kinetic theory treatmenipart[see Eqs(6), (10), and(12) below] of the (%) sum rule
of Neilsonet al. [6], which does provide plasmon dispersion coefficient add to give the Madelung energy@@./ry).

wop(Q) =V27ne?q/mis the 2D plasma frequency. The same
should hold for the zero-temperature 2D quantum electro
liquid in therg— o limit. Out of the approximation schemes
listed above, only the Ref4] high-frequency sum rule ex-
pansion[Q(i)] satisfies this criterion. The resulting plasmon
(P) frequency can be calculated with the aid of the R26]
fitted Monte Carlo(MC) formula (14) for the correlation
energy. One obtains
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It is interesting to note that what one finds at zero tem- 1
perature, namely that the softening of the plasmon dispersion V)= 52 bop(A[Sa) - 1] (7
by exchange correlation is partially offset by the average d
kinetic energy, is not dissimilar to the cancellation at f|n|te|s the potentia| energy per partide_ The derivation of B)
temperatures between the temperature enhanced kinetic &8- predicated on the assumption that thermal motions are
ergy and correlation effecfd3,17. In the present work, we npegligible: this is a reasonable assumption for a classical
will, with reference to relevant experimental d4i&], dem-  charged-particle system in the strong coupling regime where
onstrate that, in the strong coupling regime, it is the thirdthe potential energy dominates. In contrast, for a degenerate
frequency-moment(w®) sum rule coefficient containing system, this certainly is not the case and one should therefore
these two competing effects that plays the central role in théake account of the equilibrium momenta of the particles. In
2D plasmon dispersion at finiggvalues. Eq. (3), thend?/ (mw?) factor is readily identified as the Vla-

The paper is organized in four sections. In Sec. Il, wesoy density response function for momentum distribution
develop the dielectric response functiefq, ), for strongly  functionf(p) ~n&(p). One may therefore assume that for a
coupled 2D Coulomb liquids in the zero-temperature quanfermi distribution of momenta, the appropriate replacement
tum domain. In Sec. lll, we calculate the finiieplasmon  for ng?/(mw?) is the Lindhard function
dispersion from the zeros efq, w) using available quantum
MC data for the pair distribution functiof26]. We will then _ 2 o f(lp+(1/2)q)) - f(|p - (1/2)q])
compare the resulting finitg-theoretical plasmon dispersion Xo(0, ) = ﬁz w+GImp-q+in
curves with relevant Ref17] experimental data, and we will
analyze the role the correlational part of the kinetic energyand the resulting dielectric response function takes the famil-
plays in the dispersion via théw®) sum rule coefficient. iar form
Conclusions are drawn in Sec. IV.

8

p

e(q,w)=1- $20(d) x0(q, ®) .
II. DIELECTRIC RESPONSE FUNCTION , et |

_ In this section, we formulate the dielectric response funcrhe |ocal field factor in Eq(9) is formally identical to the
tion for the description of collective mode dispersion in G(g)in Eq. (4), but it should be borne in mind thakr) is
strongly coupled 2D Coulomb liquids at zero-temperature in g,y the pair distribution function appropriate for the 2D
the normal fluid phase. The starting point for the deveIOp'zero-temperature electron liquid in the normal fluid phase

ment is the classicatl) dielectric function that results from  yatarmined e.g., by Tanatar and Cepef§]) and as such

the QLCA, it embodies all the exchange-correlation effects. Conse-
bon(DINF/Mw?] quently, thes(q, w) of Eq. (9) now satisfies, to leading order
e(q,0)|g=1- 1+ don(QNPIMeIGorea(d) (3 in rg the third-frequency-moment sum rule with coefficient
Equation (3) is derived from the microscopic equation of 1 p
motion for the collective coordinate, defined through the (03(q) = f do ®Im
Fourier representatior;(t)=(1/VNm)Xq&,(Hexpiq-x;) re- 77(1’20((1)_oo &(q,w)
lating & to theith-particle displacemer; see Refs[11,19 5 )12
for the details. —_ ﬂz 2 ( )[1 _G( )] + 3i<E . >+ h_q
The QLCA static local field correction in E¢3), m | 20\ DIy Sl T om | |
(10

19 @-9)’ : ,
G(@)=- 3 " S(g-q')-S@)] (42 | . o
o d (Exin) =€%ein/ (2ag) is the expectation value of the kinetic
energy per particle for thmteractingsystem consisting of a
noninteracting0) part and a correlationgt) part,

_ 1 1 Ji(qr)
_1_2_(]f drﬁg(r)|:1 _4J0(qr) " 67 ’ Skin:&‘(lzin"'a‘ﬁin,
0
(4b) 1 d
i ; . . 8(k)in =2 8Ein =" a_(rsac)v (11
is expressed in terms of static structure functi&g), or, Is I's

equivalently, in terms of the pair distribution function e and e, are the kinetic and the correlation energies per

1 particle in Rydberg units. Note that the leading contribution
gn=1 —qu [1-S(a)]expliq -r). (5 to & drops off like 1f,, whereass$,, drops off like 1432,
We also note thatV)=¢€s;,/(2ag) of Eq. (7), now repre-
At long wavelengths(4) simplifies to sents the total interaction energy consisting of the Hartree-
5 (V)| Fock exchange and potential energy contributions,
Ca—0 16(62/3.) & ©® €int = ext €poty
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_ 8\5

Cex=" T, Epot
ex 3T po

1
:—%(risc) (Ryd).

o (12)

As a reminder, the ground-state energy per partiglg,, can
be written as

(13

Going beyond the leading order ig the dielectric func-
tion (9) cannot reproduce the correlational pas,,, of the
kinetic energy contributiori11) to the sum rule coefficient

- .0 -
Etotal = Ekin T €ext €c = Ekin T Eint-

(10) (in contrast to the classical regime where the kinetic

energy is unaffected by particle correlations, i.€5,)
=kgT).
Finally, we note that Eq(4) is consistent with the— o«
limit of the Kimball identity [32],
lim[1-G(q)]=9g(r=0),

q%oc

(14)

valid for any static local field correctio®(q) that one may
use to approximate the exa@{q, ») for all values ofw.

IIl. COLLECTIVE MODE DISPERSION

We turn now to the calculation of collective mode disper-
sion in the 2D degenerate electron liquid in the strong cou
pling regime. For the zero-temperatugg(q,w) in (9), we
use the results of Sterf83] and Isihara[34]. The mode

dielectric response functio9) with xo(q,w) given by
(33,34

m 1 ———
Xo(Q,w) =— W{l +ﬁ[\s’(w—az)2_ 452

[— =2 =2
- v(w+ﬁ2)2—4ﬁz]}- (15)
At long wavelengths, we obtain
wp(q — 0) 3rg ¢ 5rg
———=1+—¢; . ga+ —epga. 16
©,5(0) 8 gkinda 643|ntqa (16)
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FIG. 1. Static local field correctiorz(q), as a function ofja for
r«=10,20,40;a=1/Jmn. G(q) is calculated from Eq(4b) inputted
with the Ref.[26] quantum Monte Carlo data for the pair distribu-
tion functiong(r).

g=q/ke and w=w/wg, where ke=\27mn is the 2D Fermi
wave number an@dwg=¢g. As is always the case whenever
the random-phase approximatigRPA) is modified by a
static local field correction, the dielectric functi@f) does
not take account of collisiong@multipair excitationy damp-
ing, leaving Landau damping as the sole mechanism respon-
sible for the decay of the collective excitations in the present
study. At zero temperature, the Landau damping is confined
fo the pair continuum region of thg w plane. Forw=0, the
equations for the left and right boundaries of the continuum
region are given by=2q+q? and w=-2q+0?, respectively.

For a fixed value ofg, G(q) is calculated from Eq(4b)

Swith the input of the Ref[26] quantum MC data fog(r) of

the 2D electron gas in the normal fluid phase; the resulting
curves, displayed in Fig. 1 fa,=10, 20, 40, shov(q) to

be a monotonically increasing function ranging from zero to
unity. To further check the accuracy of Fig. 1, independent
calculations ofG(q—0) from Egs.(6) and (12) using the
Ref. [26] fitted MC formula(14) for the correlation energy
show excellent agreement with Fig. 1 upda~1.

The subsequent straightforward calculation of the plas-
mon oscillation frequency in the regian=2q+g? q=0 is
then carried out by substituting the Lindhard density re-
sponse functior15) into (9) and settings(q, w)=0. The re-
sulting dispersion curves are displayed in Fig. 2 along with

The third right-hand-side member is the part originatingtheir RPA counterparts far=10, 20, and 40. Also shown in

from G(q—0) given by Egs.(6) and (12). As has been

Fig. 2 are the most relevant experimental dispersion data

pointed out above, the correlational part of the kinetic energypvailable from Ref[17] for r;=15.2, T=0.5393 K, andT
[represented by the second right-hand-side member of EcT.O-25 K. To make a meaningful comparison with the zero-

(11)] is missing fromG(q); the same defect shows up in Eq.
(16). Since this last contribution would act tocreasethe
kinetic energy, Eq(16) evidently overestimates the depres-
sion (softening of the dispersion curve that arises from the
effect of exchange and correlations. In the-0 domain,
with the aid of the Ref[26] MC fitted formula(14) for the

temperature dispersion curves possible, we introduce the ef-
fective coupling parametet=rJ1-exg~Tg/T)]. The justi-
fication for this choice follows from the fact that the
compressibility sum rule for the 2D electron liquid is ex-
pressible in terms of; for any temperatur¢35]. With this
replacement, we assign the calculatgd 13.44 value to the

correlation energy, we calculate this overestimate to be apFig- 2 data points. As a result, we find a fair, but by no means

proximately 30% at¢=20, decreasing to 23% at=40. In
the r¢— oo limit, where the total kinetic energy ceases to
contribute to the smalit dispersion, one recovers ER)
from the oscillation frequencyl6).

For the analysis of the plasmon dispersion at fijteal-

exact, agreement between theory and experiment with the
data points lying close to the=20 curve.

In order to try to understand the origin of this discrepancy,
we re-calculate the plasmon dispersion per the prescription
of Ref. [4] with the local field factoiG(q) in Eq. (9) replaced

ues, it is convenient to introduce the dimensionless quantitieby a tentative local field factoé(q), that accounts for the
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FIG. 2. Plasmon dispersion curves fi=10,20,40 in the re- FIG. 3. Plasmon dispersion curves fq=10,20,40 in the re-
gion = 2q+¢? above the left boundary of the RPA pair continuum gion @=2q+¢? above the left boundary of the RPA pair continuum
region (hachurest q=q/kr, w=w/wg;, ke=\2mn, hop=scf region(hacNhureai The solid curves are calculated from E(®.and
=anh2/m. The solid curves are calculated from E¢@) and (15), (15), with G(q) calculated from(17) and (4b) using the Ref[26]
with G(q) calculated from(4b) using the Ref[26] quantum Monte  QMC data forg(r) in the normal fluid phase and the R§26] MC
Carlo(MC) data for the pair distribution functiomyr), of the elec-  fitted formula (14) for the correlation energy per particl&§(q)
tron gas in the normal fluid phase. The dashed RPA curves argsplacesG(q) in (9). The dashed RPAG(q)=0] curves are calcu-
calculated from Eq(9) with G(q) set equal to zero. The Refl7]  |ated from Eq.(9) with G(q) set equal to zero. The Refl7] ex-
experimental data pointsolid circleg correspond to an effective perimental data pointgsolid circleg correspond to an effectivie,

ry=13.44. =13.44.
missing correlational part of the kinetic energy, in full com- wp(q — 0) 3r 5r
pliance with the third-frequency-moment sum rule: ———— =1+ g qat —enda, (18
3 wop(d) 8 64
e — _s ¢ =
Gl =Gl 2\;’58””0" ST agreement with the plasmon frequency calculated by Iwa-

) moto et al. [4] from the high-frequency sum rule expansion.
It should be noted that Eq17) in fact represent$53(q,@  Note the difference between the kinetic energy terms in Egs.
— ) since it is derived from the high-frequency sum rule (18) and (16). Substituting the Ref[26] fitted MC formula
and, as such, should provide a correct representation @fi4) for the correlation energy into E¢18), our calculations
&(d,») and the plasmon dispersion relation in that limit. In indicate that(i) atr,=10, the kinetic energy overwhelms the
contrast, other representations of the local field factor withsoftening effect of the potential energy,,, on the plasmon
the inclusion of the correlational part of the kinetic energydispersion;(ii) at r,=20, the kinetic energy and potential
term[36,37, where this latter term appears with the oppositeenergy contributions cancel each other leaving only the ex-
sign and a different numerical coefficient, correspond tochange to soften the plasmon dispersi@ii) however, at
G(q,w=0) appropriate only for the analysis of static proper-r =40, only a portion of the potential energy is cancelled by
ties. For a comprehensive discussion of this issue, see Rehe kinetic energy. Note that tlre=40 dispersion curve that
[37]. has been included in Figs. 2 and 3, mostly for illustrative

Should we consider the behavior 'é(q) for g—o, the ~ PUrposes, represents in away an ungtablg liquid phase since
linear structure of the correction term (@7) would have to the transition to a 2D Wigner crystal is believed to occur at
break down in order to ensure compliance with thels=37. o o
Rajagopal-Kimball identity14), with the correlational part !N & strongly coupled Coulomb liquid, for sufficiently
of the kinetic energy appearing in a different guise in thehigh coupling, the isothermal compressibility becomes nega-
local field factor. We may, however, assume that the reprelive. As a result, the static dielectric response function,
sentation(17) reasonably well approximates the static local€(d,0), also becomes negative somewhere in the interval
field factor up toq=1.5. Then calculating:, and its first 0<0<do, Whereq is in the vicinity of or greater than the
derivative with respect tag from the Ref.[26] fitted MC  reciprocal lattice vector of the incipient Wigner lattice and
formula (14), we can generate amended dispersion curve&(d,0) develops poles both a0 and atg=go. (For a clas-
from Eq. (17). These are displayed in Fig. 3. Now, we ob- sical 2D OCP, see Ref38] and for the 3D electron gas, see
serve that the same,=13.44 experimental data points lie Ref.[39].) This latter pole is expected to survive fefq, w)
between thers=10, 20 theory curves. This supports our dynamical. Now, it is known that the appearance of a pole in
claim that in the strong couplinfow density regime, the (q,®) is the indicator of a resonance in the single-particle
plasmon dispersion is entirely controlled by the competingdynamical spectrum and, as such, can have a profound effect
exchange-correlation and kinetic energy effects in the thirdon the collective mode dispersigas borne out, for example,
frequency-moment sum rule coefficient. At long wave-by the well-known cyclotron resonance in magnetized plas-
lengths, the combination of Eq&5) and (17) with (9) and mas. In order to identify this pole in the case of the 2D
(15) necessarily provides zero-temperature Coulomb liquid, we analy#e, ») in the
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of the vertical asymptote along the boundary gisicreases from 10 3 20 |\ :
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From (19), we observe thaty,(q,w=-29+0°) is always '3 20 I\ N
negative on the right boundary of the pair continuum. Then 'g 0 < REUN
according ta9), £(q,-2q+q?) has a discontinuity at sontg o | | _
say Q-(r9, where its denominator 1dnp(0)xo(d,-2q & -20 | w=10
+0?)G(q) is zero. The location of the vertical asymptote of 40 f —Tw=20
the discontinuity at.(ry), is shown in Fig. 4. Its continuation ] j T w=30
as first-order poles into the<Qw<-2q+q% g=2 domain 4 5 6 7 8
q

(portrayed by Fig. b is a consequence of the fact that
xo(g,w) remains negative throughout that entire domain. For
a givenrg, the locusw(q) of all such poles fromw.=0 up to
the right boundaryw.=-2qg. +gZ then forms the family of
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FIG. 5. In the region &w<-20+0% q=2: Ree(q,m) as a
function of g for the three indicated values afin each of the three
graphs. Note the rightward progression of the vertical asymptote

curves shown in Fig. 6. Evidently, the total charge densitywith increasingw. (a) rs=10, (b) rs=20, (c) rs=40.

perturbation is perfectly screened for theg@ values. Fur-
ther analysis shows that the poles persistrforalues all the

pares favorably with the Hartree-Fock=7/\2=2.22 pre-
diction [40,41], and with the MCrg~2.03 value[26] and
experimentally observed valug=1.71[41] for the onset of
negative compressibility. Note that while the location of the
poles is contingent upon the structure of the chosen local
field G(g), their very existence is not particularly sensitive to
this choice: any positivé(q) will lead to the same kind of
discontinuity in the dielectric response function.

We may now conjecture that the existence of the reso-

nance leads to the emergence of a new collective excitation,

to be referred to in the sequel as the higmode. The anal-
ogy with the cyclotron resonance again can be usefully in-
voked: there, the resonance at the C\#clotron frequancy
leads to the upper hybrid frequen%:V'wgD(q)+w§, a col-

gl the fact that the existence of the poledfq,0) at q=q is
way down to2/G(q=2)~1.96. This critical value com- indicative of the system’s propensity to develop a charge-
density wave(CDW) with a wave number in the vicinity of
Jo- While a CDW does not develop for an OCP in the static

40
30
'3 29

10

Qr

lective excitation generated by the coupling f to the FIG. 6. In the region & w=<-2q+072 q=2: Loci of first-order
plasma frequency,p(Q). poles of the dielectric response functiertq, »), for rg=10, 20,40

To clarify the physical origin of the conjectured excita- calculated from Eqgs(9), (4b), and(19) and inferred from Figs. 4
tion, we suggest that the governing mechanism is related tand 5.
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limit, it can be brought into existence by the introduction of coefficient. The dispersion relation derived freify , w) is in

a second species @iveakly correlateflcharges which can fair qualitative agreement with recent experimental results
provide an additional static screening. A similar situation[17]. The agreement is improved by ad hocaddition of the
seems to arise once dynamical behavior is considered. Whaorrelational part of the kinetic energy @{q). In evaluating

a traveling periodic potential develops at this wave numberthe local field factor, we have used the pair distribution func-
then it is the motion of the particles in the troughs of thistion and correlation energy quantum Monte Carlo data from
potential that is responsible for the appearance of the singldRef. [26]. The numerical results for the improved dispersion
particle frequencyws(q:ry), the generator of the high- curves are in very good agreement with the inelastic light-
mode. While it is unclear that this excitation would developScattering data of Ref17].

in an OCP, our preliminary analysis indicates that, in the VVhile other theorie§13,14 have recently been put for-
presence of a second component, an undampedchégtei- ward to provide the theoretical underpinnings of the Refs.

tation would develop in close proximity to the right bound- [14:18 experimental results, the present work is the only
approach to collective mode dispersion having both a micro-

ary of the pair continuum. It should be noted that the pro- copic basis and a rigorous compliance with the two high-
posed scenario is appropriate only in the liquid phase: boﬂ?requency sum rules in the oo limit

strong coupling(absent in the gaseous phpsd particle An unexpected result emerging from our analysis is the
mobility (absent in the solid phapare needed to support the ssiple existence of a new highlongitudinal collective
underlying dynamics. excitation in close proximity to the right boundary of the pair
continuum. The physical origin of this excitation seems to
IV. CONCLUSIONS originate from the negative compressibilty and the associated

. I . dynamical charge-density wave that develops in strongly
In this paper, we have analyzed the longitudinal collectlvecoup|ed two-component Coulomb liquids for sufficiently
mode dispersion in strongly coupléd;>1) 2D Coulomb high coupling values.

liquids at zero temperature. The analysis is based on an ex-

tension of the classical quasilocalized charge approximation ACKNOWLEDGMENTS
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