
Synthetic turbulence, fractal interpolation, and large-eddy simulation

Sukanta Basu,* Efi Foufoula-Georgiou,† and Fernando Porté-Agel†

St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota 55414, USA
(Received 16 October 2003; revised manuscript received 6 April 2004; published 31 August 2004)

Fractal interpolation has been proposed in the literature as an efficient way to construct closure models for
the numerical solution of coarse-grained Navier-Stokes equations. It is based on synthetically generating a
scale-invariant subgrid-scale field and analytically evaluating its effects on large resolved scales. In this paper,
we propose an extension of previous work by developing a multiaffine fractal interpolation scheme and
demonstrate that it preserves not only the fractal dimension but also the higher-order structure functions and
the non-Gaussian probability density function of the velocity increments. Extensivea priori analyses of
atmospheric boundary layer measurements further reveal that this multiaffine closure model has the potential
for satisfactory performance in large-eddy simulations. The pertinence of this newly proposed methodology in
the case of passive scalars is also discussed.
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I. INTRODUCTION

Generation of turbulence-like fields(also known assyn-
thetic turbulence) has received considerable attention in re-
cent years. Several schemes have been proposed[1–5] with
different degrees of success in reproducing various charac-
teristics of turbulence. Recently, Scotti and Meneveau[6,7]
further broadened the scope of synthetic turbulence research
by demonstrating its potential in computational modeling.
Their innovative turbulence emulation scheme based on the
fractal interpolation technique(FIT) [8,9] was found to be
particularly amenable for a specific type of turbulence mod-
eling, known as large-eddy simulation(LES, at present the
most efficient technique available for high Reynolds number
flow simulations, in which the larger scales of motion are
resolved explicitly and the smaller ones are modeled). The
underlying idea was to explicitly reconstruct the subgrid(un-
resolved) scales from given resolved scale values(assuming
computation grid-size falls in theinertial range of turbu-
lence) using FIT and subsequently estimate the relevant
subgrid-scale(SGS) tensors necessary for LES. Simplicity,
straightforward extensibility for multidimensional cases, and
low computational complexity(appropriate use offractal
calculus can even eliminate the computationally expensive
explicit reconstruction step, see Sec. IV for details), makes
this FIT-based approach an attractive candidate for SGS
modeling in LES.

Although the approach of[6,7] is better suited for LES
than any other similar scheme(e.g., [1–5]), it falls short in
preserving the essential small-scale properties of turbulence,
such as multiaffinity(which will be defined shortly) and non-
Gaussian characteristics of the probability density function
(PDF) of velocity increments. It is the purpose of this
work to extend the approach of[6,7] in terms of realistic
turbulence-like signal generation with all the aforementioned
desirable characteristics and demonstrate its potential for

LES througha priori analysis(an LES-SGS model evalua-
tion framework). We will also demonstrate the competence
of our scheme in the emulation of passive-scalar fields for
which the non-Gaussian PDF and multiaffinity are signifi-
cantly pronounced and cannot be ignored.

II. BASICS OF FRACTAL INTERPOLATION

The fractal interpolation technique is an iterative affine
mapping procedure to construct a synthetic deterministic
small-scale field(in general fractal provided certain condi-
tions are met, see below) given a few large-scale interpolat-
ing points (anchor points). For an excellent treatise on this
subject, the reader is referred to the book by Barnsley[9]. In
this paper, we will limit our discussion(without loss of gen-
erality) only to the case of three interpolating data points:
hsxi ,ũid , i =0,1,2j. For this case, the fractal interpolation it-
erative function system(IFS) is of the form hR2;wn,n
=1,2j, where,wn have the following affine transformation
structure:

wnSx

u
D = Fan 0

cn dn
GSx

u
D + Sen

fn
D,n = 1,2. s1d

To ensure continuity, the transformations are constrained by
the given data points as follows:wns x0

ũ0
d=s xn−1

ũn−1
d and wns x2

ũ2
d

=s xn

ũn
d, for n=1,2. Theparametersan,cn,en,and fn can be

easily determined in terms ofdn (known as the vertical
stretching factors) and the given anchor pointssxi ,ũid by
solving a linear system of equations. The attractor of the
above IFS, G, is the graph of a continuous function
u: fx0,x2g→R, which interpolates the data pointssxi ,ũid, pro-
vided the vertical stretching factorsdn obey 0ø udnu,1. In
other words,

G = hsx,usxdd:x P fx0,x2gj, s2d

where,
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usxid = ũi,i = 0,1,2.

Moreover, if ud1u+ ud2u.1 andsxi ,ũid are not collinear, then
the fractal(box-counting) dimension ofG is the unique real
solution D of ud1ua1

D−1+ ud2ua2
D−1=1 (for rigorous proof see

[8]). In the special case of three equally spaced points cov-
ering the unit interval[0,1], i.e.,x0=0,x1=0.5 andx2=1, the
parameters of the affine transformation kernel becomean
=0.5;cn=sũn− ũn−1d−dnsũ2− ũ0d ;en=xn−1; fn= ũn−1−dnũ0;n
=1,2. Inthis case, the solution for the fractal dimensionsDd
becomes

D = 1 + log2sud1u + ud2ud. s3d

Notice that the scalingsd1 and d2 are free parameters and
cannot be determined using only Eq.(3); at least one more
constraint is necessary. For example,[6,7] chose to use the
additional conditionud1u= ud2u.

III. SYNTHETIC TURBULENCE GENERATION

Not long ago, it was found that turbulent velocity signals
at high Reynolds numbers have a fractal dimension ofD
.1.7±0.05, very close to the value ofD=5/3 expected for
Gaussian processes with a −5/3 spectral slope[10]. For D
=5/3, theassumption ofud1u= ud2u along with Eq.(3) yields
ud1u= ud2u=2−1/3 [6,7]. One contribution of this paper is a ro-
bust way of estimating the stretching parameters without any
ad hoc prescription; the resulting synthetic field will not only
preserve the fractal dimensionsDd but also other fundamen-
tal properties of real turbulence.

As an exploratory example, using the fractal interpolation
IFS [Eq. (1)], we construct a 217 points long synthetic fractal
series, usxd, with given coarse-grained points
s0.0,1.2d ,s0.5,−0.3d ,ands1.0,0.7d and the stretching pa-
rameters used in[6,7]: d1=−2−1/3,d2=2−1/3. Clearly, Fig.
1(a) depicts that the synthetic series has fluctuations at all
scales and it passes through all three interpolating points.

Next, from this synthetic series we compute higher-order
structure functions[see Fig. 1(b) for orders 2, 4, and 6],
where theqth-order structure function,Sqsrd, is defined as
follows:

Sqsrd = kuusx + rd − usxduql , rzq, s4d

where the angular bracket denotes spatial averaging andr is
a separation distance that varies in an appropriate scaling
region (known as the inertial range in turbulence). If the
scaling exponentzq is a nonlinear function ofq, then follow-
ing the convention of[1–5], the field is calledmultiaffine,
otherwise it is termed asmonoaffine. In this context, we
would like to mention that Kolmogorov’s celebrated 1941
hypothesis(K41) based on the assumption of global scale
invariance in the inertial range predicts that the structure
functions of orderq scale with an exponentq/3 over inertial
range separations[11,12]. Deviations fromzq=q/3 would
suggest inertial range intermittency and invalidate the K41
hypothesis. Inertial range intermittency is still an unresolved
issue, although experimental evidence for its existence is
overwhelming[11,13]. To interpret the curvilinear behavior

FIG. 1. (a) A synthetic turbulence series of fractal dimension
D=5/3. Theblack dots denote initial interpolating points.(b) Struc-
ture functions of order 2, 4, and 6(as labeled) computed from the
series in Fig. 1(a). The slopesszqd corresponding to this particular
realization are 0.62, 1.25, and 1.89, respectively.(c) PDFs of the
normalized increments of the series in(a). The plus signs corre-
spond tor =2−14, while the circles refer to a distancer =2−6. The
solid curve designates the Gaussian distribution for reference.

BASU, FOUFOULA-GEORGIOU, AND PORTÉ-AGEL PHYSICAL REVIEW E70, 026310(2004)

026310-2



of the zq function observed in experimental measurements
(e.g.,[13]), Parisi and Frisch[12,14] proposed themultifrac-
tal model, by replacing the global scale invariance with the
assumption of local scale invariance. They conjectured that
at very high Reynolds number, turbulent flows have singu-
larities (almost) everywhere and showed that the singularity
spectrum is related to the structure function-based scaling
exponents,zq, by the Legendre transformation.

Our numerical experiment with the stretching parameters
of [6,7], i.e., ud1u= ud2u=2−1/3, revealed that the scaling expo-
nents follow the K41 predictions(after ensemble averaging
over 100 realizations corresponding to different initial inter-
polating points), i.e.,zq=q/3 (not shown here), a signature of
monoaffine fields. Later on, we will give analytical proof that
indeed this is the case forud1u= ud2u=2−1/3. Also, in this case,
the PDFs of the velocity increments,dursxd=usx+rd−usxd,
always portray near-Gaussian(slightly platykurtic) behavior
irrespective ofr [see Fig. 1(c)]. This is contrary to the ob-
servations[11,13], where typically the PDFs of increments
are found to ber-dependent and become more and more
non-Gaussian asr decreases. Theoretically, non-Gaussian
characteristics of PDFs correspond to the presence of inter-
mittency in the velocity increments and gradients(hence in
the energy dissipation) [2,5,11,12].

In Fig. 2, we plot the wavelet spectrum of this synthetic
series. Due to the dyadic nature of the fractal interpolation
technique, the Fourier spectrum will exhibit periodic modu-
lation (see Figs. 7 and 8 of[7]). To circumvent this issue we
make use of the(dyadic) discrete Haar wavelet transform.
Following [15], the wavelet power spectral density function
EsKmd is defined as

EsKmd =
kfWsmdsidg2ldx

2p lns2d
, s5d

where wave numberKm(=2p / s2mdxd) corresponds to scale
Rms=2mdxd. The scale indexm runs from 1(finest scale) to
log2sNd (coarsest scale). Wsmdsid, dx, andN denote the Haar

wavelet coefficient at scalem and location i, spacing in
physical space and length of the spatial series, respectively.
The power spectrum displays the inertial range slope of
−5/3, as anticipated.

At this point, we would like to invoke an interesting
mathematical result regarding the scaling exponent spectrum,
zq, of the fractal interpolation IFS[16],

zq = 1 − logNo
n=1

N

udnuq, s6d

whereN is the number of anchor points −1(in our caseN
=2). The original formulation of[16] was in terms of a more
general scaling exponent spectrum,tsqd, rather than the
structure-function-based spectrumzq. The tsqd spectrum is
an exact Legendre tranform of the singularity spectrum in the
sense that it is valid for any order of moments(including
negative) and any singularities[17,18]. tsqd can be reliably
estimated from data by the wavelet-transform modulus-
maxima method[17,18]. To derive Eq.(6) from the original
formulation, we made use of the equalitytsqd=zq−1, which
holds for positiveq and for positive singularities of Hölder
exponents less than unity[17,18]. In turbulence, the most
probable Hölder exponent is 0.33(corresponding to the K41
value) and for all practical purposes the values of Hölder
exponents lie between 0 and 1(see[19,20]). Hence the use
of the above equality is well justified.

Equation(6) could be used to validate our previous claim
that the parameters of[6,7] give rise to a monoaffine field
(i.e., zq is a linear function ofq). If we considerud1u= ud2u
=d=2−1/3, then zq=1−log2sud1uq+ ud2uqd=1−log2s2dqd
=−q log2sdd=−q log2s2−1/3d=q/3 (QED). Equation (6)
could also be used to derive the classic result of Barnsley
regarding the fractal dimension of IFS. It is well known
[21,22] that the graph dimension(or box-counting dimen-
sion) is related toz1 as follows:D=2−z1. Now, using Eq.(6)
we getD=2−z1=1+logN on=1

N udnu. For N=2, we recover Eq.
(3).

Intuitively, by prescribing several scaling exponents,zq
(which are knowna priori from observational data), it is
possible to solve fordn from the overdetermined system of
equations[Eq. (6)]. These solved parameters,dn, along with
other easily derivable(from the given anchor points anddn)
parameters(an,cn,en, andfn) in turn can be used to construct
multiaffine signals. For example, solving for the values
quoted by Frisch [12]—z2=0.70,z3=1,z4=1.28,z5
=1.53,z6=1.77,z7=2.01, andz8=2.23, along withz1=0.33
(corresponding toD=5/3)—yields the stretching factors
udnu=0.887,0.676. There are altogether eight possible sign
combinations for the above stretching parameter magnitudes
and all of them can potentially produce multiaffine fields
with the aforementioned scaling exponents. However, all of
them might not be the “right” candidate from the LES-
performance perspective. Rigorousa priori anda posteriori
testing of these multiaffine SGS models is needed to eluci-
date this issue(see Sec. V).

We repeated our previous numerical experiment with the
stretching parametersd1=−0.887 andd2=0.676. Figure 3(a)
shows the measured values(ensemble averaged over 100 re-

FIG. 2. Wavelet power spectrum(cirlces) of the series in Fig.
1(a). The −5/3 power law is also shown for comparison.
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alizations) of the scaling exponentszq up to 12th order. For
comparison we have also shown the theoretical values com-
puted directly from Eq.(6) (dashed line). A model proposed
by She and Lévêque[23] based on a hierarchy of fluctuation
structures associated with the vortex filaments is also shown
for comparison(dotted line). We chose this particular model
because of its remarkable agreement with experimental data.
The She and Lévêque model predictszq=q/9+2−2s 2

3
dq/3.

Figure 3(b) shows the PDFs of the increments, which are
quite similar to what is observed in real turbulence—for
large r the PDF is near Gaussian while for smallerr it be-
comes more and more peaked at the core with high tails[see
also Fig. 7(b) for the variation of flatness factors of the PDFs
of increments with distancer].

IV. FRACTAL CALCULUS AND SUBGRID-SCALE
MODELING

In the case of an incompressible fluid, the spatially filtered
Navier-Stokes equations are

] ũm

] xm
= 0, s7ad

] ũm

] t
+ ũn

] ũm

] xn
= −

]

] xn
F p̃

r
dmn+ tmnG + n¹2ũm, s7bd

m,n = 1,2,3,

wheret is time,xn is the spatial coordinate in then direction,
un is the velocity component in then direction, p is the
dynamic pressure,r is the density, andn is the molecular
viscosity of the fluid. The tilde denotes the filtering opera-
tion, using a filter of characteristic widthD [24]. These fil-
tered equations are now amenable to numerical solution
(LES) on a grid with mesh size of orderD, considerably
larger than the smallest scale of motion(the Kolmogorov
scale). However, the SGS stress tensortmn in Eq. (7b), de-
fined as

tmn= umuñ − ũmũn, s8d

is not known. It essentially represents the contribution of
unresolved scales(smaller thanD) to the total momentum
transport and must be parametrized(via a SGS model) as a
function of the resolved velocity field. Due to the strong
influence of the SGS parametrizations on the dynamics of the
resolved turbulence, considerable research efforts have been
made during the past decades and several SGS models have
been proposed(see[26,27] for reviews). The eddy-viscosity
model[28] and its variants(e.g., the dynamic model[29] and
the scale-dependent dynamic model[30]) are perhaps the
most widely used SGS models. They parametrize the SGS
stresses as being proportional to the resolved velocity gradi-
ents. These SGS models and other standard models(e.g.,
similarity, nonlinear, mixed models) postulate the form of the
SGS stress tensors rather than the structure of the SGS fields
([31]). Philosophically a very different approach would be to
explicitly reconstruct the subgrid scales from given resolved
scale values(by exploiting the statistical structures of the
unresolved turbulent fields) using a specific mathematical
tool (e.g., the fractal interpolation technique) and subse-
quently estimate the relevant SGS tensors necessary for LES.
The fractal model of[6,7] and our proposed multiaffine
model basically represent this new class of SGS modeling,
also known as the “direct modeling of SGS turbulence”
[26,27,32].

In Sec. III, we have demonstrated that FIT could be ef-
fectively used to generate synthetic turbulence fields with
desirable statistical properties. In addition, Barnsley’s rigor-
ous fractal calculus offers the ability to analytically evaluate
any statistical moment of these synthetically generated fields,
which in turn could be used for SGS modeling. Detailed
discussion of the fractal calculus is beyond the scope of this

FIG. 3. (a) The scaling exponent functionzq. The continuous,
dashed, and dotted lines denote the K41, Eq.(6), and the She-
Lévêque model predictions, respectively. The circles with error bars
(one standard deviation) are estimated values over 100 realizations
usingd1=−0.887 andd2=0.676. Experimental data of Anselmetet
al.’s [5] is also shown for reference(star signs). (b) PDFs of the
normalized increments of the multiaffine series. The plus signs de-
note r =2−14, while the circles refer to a distancer =2−6. The solid
curve designates the Gaussian distribution for reference.
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paper. Below, we briefly summarize the equations most rel-
evant to the present work. Let us first consider the moment
integral: Ul,m=e0

1xmfusxdgldx. In the present contextsx0

=0,x1=0.5,andx2=1d, this moment integral could be
viewed as 2D filtering sD=0.5d with the top-hat filter
fi .e . ,FDsxd=1/D if uxu,D /2 ,andFDsxd=0 otherwiseg. For
instance, the 1D component of the SGS stress tensor reads

t = uũ− ũũ s9ad

=U2,0− U1,0U1,0. s9bd

Barnsley[8] proved that for the fractal interpolation IFS
[Eq. (1)], the moment integral becomes

Ul,m =

Fo
j=0

m−1

Ul,jSm

j
Do

n=1

2

an
j+1dnen

m−j + o
p=0

l−1

o
j=0

l+m−p

Ksl,m,p, jdUp,jG
S1 − o

n=1

2

an
m+1dn

l D , s10ad

where

o
n=1

2 S l

p
Danscnx + fndl−pdn

psanx + endm = o
j=0

l+m−p

Ksl,m,p, jdxj .

s10bd

After some algebraic manipulations, the SGS stress equation
at nodexi becomes

ti = a0ũi−1
2 + a1ũi

2 + a2ũi+1
2 + a3ũi−1ũi + a4ũiũi+1 + a5ũi+1ũi−1.

s11d

We would like to point out that the coefficientsak are sole
functions of the stretching factorsdn. In other words, if one
can specify the values ofdn in advance, the SGS stressstd
could be explicitly written in terms of the coarse-grained
(resolved) velocity field (ũi) weighted according to weights
ak uniquely determined bydn. In Table I, we have listed the
ak values corresponding to eight stretching factor combina-
tions, udnu=0.887,0.676. It is evident that any two combina-
tions (d1,d2) and(d2,d1) are simply “mirror” images of each
other in terms ofak. Thus, only four distinct multiaffine SGS
models(M1, M2, M3, and M4) could be formed from the
aforementioned eightudnu combinations and in each case the
orderings could be chosen at random with equal probabili-
ties. In this table, we have also included the fractal model of
[6,7] and the similarity model of[33] in expanded form simi-
lar to the multiaffine models(see the Appendix for more
information on standard SGS models). The multiaffine mod-
els and the fractal model differ slightly in terms of filtering
operation. Scotti and Meneveau[6,7] performed filtering at a
scaleD [see Eq.(A4a)], whereas in the case of the similarity
model, Liu et al. [34] found that it is more appropriate to
filter at 2D. For the multiaffine models, we also chose to
employ the 2D filtering scale.

One noticable feature in Table I is that some combinations
of dn result in strongly asymmetric weightsak. As an ex-
ample, in the case of M4 withd1= +0.676 andd2= +0.887,

ua0u @ ua2u and ua3u @ ua4u. This means that the SGS stress at
any nodexi would have more weight from the resolved ve-
locity at nodexi−1 than nodexi+1. One would expect that
such an asymmetry could have serious implication in terms
of SGS model performance.

In the following section, we will attempt to address this
issue among others by evaluating several SGS models via the
a priori analysis approach.

V. EVALUATION OF SGS MODELS:
A PRIORI ANALYSIS APPROACH

The SGS models and their underlying hypotheses can be
evaluated by two approaches:a priori testing anda poste-
riori testing (terms coined by[35]). In a posteriori testing,
LES computations are actually performed with proposed
SGS models and validated against reference solutions(in
terms of mean velocity, scalar and stress distributions, spec-
tra, etc.). However, owing to the multitude of factors in-
volved in any numerical simulation(e.g., numerical discreti-
zations, time integrations, averaging, and filtering), a
posteriori tests in general do not provide much insight about
the detailed physics of the newly implemented SGS models
[26,27]. A complementary and perhaps more fundamental
approach[26] would be to use high-resolution model[direct
numerical simulation(DNS)], experimental or field observa-
tional data to compute the “real” and modeled SGS tensors
directly from their definitions and compare them subse-
quently. This approach, widely known as thea priori analy-
sis, does not require any actual LES modeling and is theo-
retically more tractable. In this work we focused on
comparing the performance of SGS models via thea priori
analysis. We strictly followed the 1Da priori analysis ap-
proach of[36–38]. To highlight the caveats of the proposed
and several existing SGS models, we performed an extensive
intermodel comparison study. This exercise also helped to
select the “right” combination of stretching factors for the
multiaffine SGS models.
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In general, the correlation between realstreald and mod-
eledstmodeld SGS stresses is considered to be a good indica-
tor of the expected performance of a proposed SGS model.
Another crucial indicator is the so-called SGS energy dissi-
pation ratesPd,

P = − ti j S̃i j<−
15

2
t
] ũ

] x
s1D approximationd. s12d

In the inertial range, the SGS energy dissipation rate is the
most influential factor affecting the dynamical evolution of
the resolved kinetic energy[26]. On average,P is positive,
representing a net drain of resolved kinetic energy into unre-
solved motion. Intermittent negative values ofP, known as
“backscatter,” imply energy transfer from SGS to resolved
scales. Unfortunately, a high correlation between real and
modeled SGS stress(or SGS energy dissipation rate) is not a
sufficient condition for the success of a proposed LES SGS
model, although it is a highly desirable feature[27,34,36].

We primarily made use of an extensive atmospheric
boundary layer(ABL ) turbulence dataset(comprised of fast-
response sonic anemometer data) collected by various re-
searchers from the Johns Hopkins University, the University
of California–Davis, and the University of Iowa during
Davis 1994, 1995, 1996, 1999, and Iowa 1998 field studies.
Comprehensive description of these field experiments(e.g.,
surface cover, fetch, instrumentation, and sampling fre-
quency) can be found in[39]. We further augmented this
dataset with nocturnal ABL turbulence data from CASES-99
(Cooperative Atmosphere-Surface Exchange Study 1999), a
cooperative field campaign conducted near Leon, Kansas
during October 1999[40]. For our analyses, four levels(1.5,
5, 10, and 20 m) of sonic anemometer data from the 60 m
tower and the adjacent minitower collected during two inten-
sive observational periods(on the nights of October 17th and
19th) were considered(the sonic anemometer at 1.5 m was
moved to the 0.5 m level on October 19th). Briefly, the col-
lective attributes of the field dataset explored in this study
are as follows:(i) surface cover: bare soil, grass and beans;
(ii ) sampling frequency: 18–60 Hz;(iii ) sampling period:

20–30 min;(iv) sensor heightszd: 0.5–20 m; and(v) atmo-
spheric stability(z/L, L is the local Obukhov length): 0 (neu-
tral) to 10 (very stable).

ABL field measurements are seldom free from mesoscale
disturbances, wave activities, nonstationarities, etc. The situ-
ation could be further aggravated by several kinds of sensor
errors(e.g., random spikes, amplitude resolution error, drop
outs, discontinuities, etc.). Thus, stringent quality control and
preprocessing of field data is of the utmost importance for
any rigorous statistical analysis. Our quality control and pre-
processing strategies are qualitatively similar to the sugges-
tions of [41]. Specifically, we follow these steps.

(i) Visual inspection of individual data series for detec-
tion of spikes, amplitude resolution error, drop outs, and dis-
continuities. Discard suspected data series from further
analyses.

(ii ) Adjust for changes in wind direction by aligning
sonic anemometer data using 60 s local averages of the lon-
gitudinal and transverse component of velocity.

(iii ) Partitioning of turbulent-mesoscale motion using dis-
crete wavelet transform(Symmlet-8 wavelet) with a gap
scale[42] of 100 s.

(iv) Finally, to check for nonstationarities of the parti-
tioned series, we performed the following step: we subdi-
vided each series in six equal intervals and computed the
standard deviation of each subseriesssi , i =1:6d. If
maxssid /minssid.2, the series was discarded.

After all these quality control and preprocessing steps, we
were left with only 358 “reliable” series fora priori analy-
ses. These streamwise velocity series were filtered with a
top-hat filter(D= 1, 2, 4, or 8 m) and downsampled on the
scale of the LES gridsDd to obtain the resolved velocity field
ũi [43]. In a similar way, the streamwise SGS stress,treal,
was computed from its definition[Eq. (9a)]. Filtering opera-
tions were always performed in time and interpreted as 1D
spatial filtering in the streamwise direction by means of Tay-
lor’s frozen flow hypothesis. The spatial derivatives were
also computed from the time derivatives by invoking Tay-
lor’s hypothesis:] /]x=−1/kuls] /]td, wherekul is the mean
streamwise velocity.

TABLE I. The multiaffine, fractal, and similarity SGS models in expanded form and their corresponding
coefficients for the computation of SGS stresses according Eq.(11).

Model sd1,d2d Filter width a0 a1 a2 a3 a4 a5

Multiaffine (M1) s−0.887, +0.676d 2D 0.218 0.204 0.050 −0.372 −0.036 −0.065

s+0.676,−0.887d 2D 0.050 0.204 0.218 −0.036 −0.372 −0.065

Multiaffine (M2) s+0.887,−0.676d 2D 0.030 0.248 0.261 −0.018 −0.479 −0.043

s−0.676, +0.887d 2D 0.261 0.248 0.030 −0.479 −0.018 −0.043

Multiaffine (M3) s−0.887,−0.676d 2D 0.144 0.220 0.133 −0.230 −0.209 −0.057

s−0.676,−0.887d 2D 0.133 0.220 0.144 −0.209 −0.230 −0.057

Multiaffine (M4) s+0.887, +0.676d 2D 0.064 0.319 0.262 −0.121 −0.517 −0.007

s+0.676, +0.887d 2D 0.262 0.319 0.064 −0.517 −0.121 −0.007

Fractal s−0.794, +0.794d D 0.127 0.221 0.026 −0.322 −0.120 +0.069

s+0.794,−0.794d D 0.026 0.221 0.127 −0.120 −0.322 +0.069

Similarity NA 2D 0.188 0.250 0.188 −0.250 −0.250 −0.125
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In Fig. 4, representative realizations of the real and sev-
eral modeled SGS stresses are presented. The modeled SGS
stresses,tmodel, were computed from the definitions given in
the Appendix. Along the same lines, the real and modeled
SGS energy dissipation rates(Fig. 5) were calculated accord-
ing to Preal=−15/2treals]ũ/]xd and Pmodel=
−15/2tmodels]ũ/]xd, respectively. The SGS model constants
like CS of the Smagorinsky model orCL of the similarity
model (see the Appendix) were obtained by matching the
mean real and modeled SGS energy dissipation rates
[36–38]. For consistency, the same procedure was followed
for the SGS-kinetic-energy-based model, fractal model, and

multiaffine models. In other words, we always ensured that
k−15

2 treals]ũ/]xdl=k−15
2 tmodels]ũ/]xdl. Note that this proce-

dure has no effect on the correlation results presented below.
In actual simulations, these model coefficients could be ob-
tained dynamically following the approach of[29,44].

From Fig. 4 and 5 it is visually evident that both similarity
and multiaffine models capture the variability of the SGS
stress and energy dissipation rates reasonably well. On the
other hand, the performances of the Smagorinsky and SGS-
kinetic-energy-based models are very poor. Note that the
Smagorinsky model assumes that the trace of the SGS tensor
is subtracted from the tensor, which is not feasible in 1Da
priori analysis[36]. Thus, direct magnitude-wise comparison
between the real-and the Smagorinsky-model-based SGS
stress or dissipation energy is not possible. However, this
does not prevent us from quantifying the performance by the
correlation coefficient. Moreover, the Smagorinsky model is
by construction fully dissipative. Hence, this model is unable
to reproduce the backscatter effects[see Fig. 5(b)], which do
occur in the real SGS dissipation series[Fig. 5(a)].

In Table II, for D=1 m, we show the correlation between
the real and modeled SGS stress and energy dissipation rates.
The standard deviations are given in parentheses. The model
M3 is significantly better than any other multiaffine model
and this could only be attributed to its near-symmetric stencil
structure(see Table I). This resolves our previous dilemma
regarding the selection of one multiaffine SGS model from a
class of four. From here on, we will only report results for
M3 and will identify it as the multiaffine model.

Next, in Fig. 6, we plot the mean correlation between real
and modeled SGS stress and energy dissipation rates forD
=1,2,4, and 8 m. Asanticipated, for all the models, the
correlation decreases with increasing filtering scale. Also, the
correlation of real versus model SGS energy dissipation rates
is usually higher compared to the SGS stress scenario, as
noticed by other researchers.

It is expected that in the ABL the scaling exponent values
szqd would deviate from the values reported in[12] due to
the near-wall effect. This means that the stretching factorsdn
based on thezq values we used in this work are possibly in
error. Nevertheless, the overall performance of the multi-

TABLE II. Average correlation between observed and modeled
SGS stresses and energy dissipation ratessD=1 md. The results are
based on 358 ABL turbulent velocity series measured during several
field campaigns. The quantities in the parentheses represent stan-
dard deviation.

Corrstreal,tmodeld Corr sPreal,Pmodeld

Smagorinsky 0.25s0.09d 0.41s0.17d
Similarity 0.49s0.10d 0.76s0.15d
SGS-KE 0.23s0.08d 0.42s0.17d
Fractal 0.33s0.05d 0.61s0.06d
Multiaffine (M1) 0.44s0.05d 0.71s0.05d
Multiaffine (M2) 0.40s0.05d 0.68s0.06d
Multiaffine (M3) 0.49s0.05d 0.77s0.05d
Multiaffine (M4) 0.42s0.05d 0.70s0.05d

FIG. 4. A comparison of the real and modeled SGS stresses,
computed from atmospheric boundary layer measurements, using
1D filtering and Taylor’s hypothesis. The filter widthD is 2 m. (a)
Real,(b) Smagorinsky model,(c) similarity model,(d) SGS kinetic-
energy-based model,(e) fractal model, and(f) multiaffine model
(M3).

FIG. 5. A comparison of the real and modeled SGS energy
dissipation rates, computed from atmospheric boundary layer mea-
surements, using 1D filtering and Taylor’s hypothesis. The filter
width D is 2 m. (a) Real, (b) Smagorinsky model,(c) similarity
model,(d) SGS kinetic-energy-based model,(e) fractal model, and
(f) multiaffine model(M3).
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affine model is beyond our expectations. It remains to be
seen how the proposed SGS scheme will perform ina pos-
teriori analysis, and such work is currently in progress.

VI. PASSIVE SCALAR

Our scheme could be easily extended to synthetic passive-
scalar(any diffusive component in a fluid flow that has no
dynamical effect on the fluid motion itself, e.g., a pollutant in
air, temperature in a weakly heated flow, a dye mixed in a
turbulent jet, or moisture mixing in air[45,46]) field genera-
tion. The statistical and dynamical characteristics(aniso-
tropy, intermittency, PDFs, etc.) of passive scalars are sur-
prisingly different from the underlying turbulent velocity
field [45,46]. For example, it is even possible for the passive-
scalar field to exhibit intermittency in a purely Gaussian ve-
locity field [45,46]. Similar to the K41, neglecting intermit-
tency, the Kolmogorov-Obukhov-Corrsin(KOC) hypothesis
predicts that at high Reynolds and Peclet numbers, the
qth-order passive-scalar structure function will behave as

kuusx+rd−usxduql, rq/3 in the inertial range. Experimental
observations reveal that analogous to turbulent velocity, pas-
sive scalars also exhibit anomalous scaling(departure from
the KOC scaling). Observational data also suggest that
passive-scalar fields are much more intermittent than veloc-
ity fields and result in stronger anomaly[45,46].

To generate synthetic passive-scalar fields, we need to de-
termine the stretching parametersd1 andd2 from prescribed
scaling exponents,zq. Unlike the velocity scaling exponents,
the published values(based on experimental observations) of
higher-order passive-scalar scaling exponents display signifi-
cant scatter. Thus for our purpose, we used the predictions of
a newly proposed passive-scalar model[47]: zq=2+s 8

9
d2

−2s 3
4

dq/6− s 8
9

d2s 7
16

dq/2. This model based on the hierarchical
structure theory of[23] shows reasonable agreement with the
observed data. Moreover, unlike other models, this model
manages to predict that the scaling exponentzq is a nonde-
creasing function ofq. Theoretically, this is crucial because,
otherwise, if zq→−` as q→ +`, the passive-scalar field
cannot be bounded[12,47].

Employing Eq.(6) and the scaling exponents(up to eighth
order) predicted by the above model, we get the following
stretching factors:udnu=0.964,0.606. We again repeated the
numerical experiment of Sec. III and selected the stretching
parameter combination:d1=−0.964 andd2=0.606. Like be-
fore, we compared the estimated[using Eq.(4)] scaling ex-
ponents from 100 realizations with the theoretical values
[from Eq. (6)] and the agreement was found to be highly
satisfactory. To check whether a generated passive-scalar
field (d1=−0.964,d2=0.606) possesses more non-Gaussian
characteristics than its velocity counterpart(d1=−0.887,d2
=0.676), we performed a simple numerical experiment. We
generated both the velocity and passive-scalar fields from
identical anchor points and also computed the corresponding
flatness factors,K, as a function of distancer [see Fig. 7(b)].
Comparing Fig. 7(a) with Fig. 3(b) and also from Fig. 7(b),
one could conclude that the passive-scalar field exhibits
stronger non-Gaussian behavior than the velocity field, in
accord with the literature.

VII. CONCLUDING REMARKS

In this paper, we propose a simple yet efficient scheme to
generate synthetic turbulent velocity and passive-scalar
fields. This method is competitive with most of the other
synthetic turbulence emulator schemes(e.g.,[1–5]) in terms
of capturing small-scale properties of turbulence and scalars
(e.g., multiaffinity and non-Gaussian characteristics of the
PDF of velocity and scalar increments). Moreover, extensive
a priori analyses of field measurements unveil the fact that
this scheme could be effectively used as a SGS model in
LES. Potentially, the proposed multiaffine SGS model can
address two of the unresolved issues in LES: it can system-
atically account for the near-wall and atmospheric stability
effects on the SGS dynamics. Of course, this would require
some kind of universal dependence of the scaling exponents
on both wall-normal distance and stability. The quest for this
kind of universality began only recently[48,49].

FIG. 6. (a) Correlation between observed and modeled subgrid-
scale stresses and(b) correlation between observed and modeled
subgrid-scale energy dissipations as a function of filter widthD. The
results are based on 358 ABL turbulent velocity series measured
during several field campaigns.
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APPENDIX

The standard Smagorinsky eddy-viscosity model is of the
form

ti j
Smag= − 2sCSDd2uS̃uS̃ij , sA1ad

where

S̃ij =
1

2
S ] ũi

] xj
+

] ũj

] xi
D

is the resolved strain rate tensor and

uS̃u = s2S̃ij S̃i jd1/2

is the magnitude of the resolved strain rate tensor.CS is the
so-called Smagorinsky coefficient.

For 1D surrogate SGS stress,

S̃11 =
] ũ

] x
.

Further, by assuming that the smallest scales of the resolved
motion are isotropic, the following equality holds[50]:

kS̃ij S̃i jl =
15

2
kS̃11

2 l.

Employing this assumption for the instantaneous fields, we
can write

uS̃u = s2S̃ij S̃i jd1/2 < Î15 U ] ũ

] x
U .

Hence, the Smagorinsky SGS stress equation becomes

tSmag= − 2sCSDd2Î15U ] ũ

] x
US ] ũ

] x
D . sA1bd

The second model we considered is the similarity model
[33,34],

ti j
siml = CLsũiũj − ũi ũjd. sA2ad

The overbar denotes explicit filtering with a filter of width
gD (usuallyg=2). CL is the similarity model coefficient.

The 1D surrogate SGS stress could be simply written as

tsiml = CLsũũ − ũũd. sA2bd

Now, for 2D filtering this equation becomes

tsiml = CLFS ũi−1
2 + 2ũi

2 + ũi+1
2

4
D − S ũi−1 + 2ũi + ũi+1

4
D2G

sA2cd

which on further simplification leads to the expression in
Table I,

tsiml = CLf0.188ũi−1
2 + 0.25ũi

2 + 0.188ũi+1
2 − 0.25ũi−1ũi

− 0.25ũiũi+1 − 0.125ũi+1ũi−1g.

Next, we consider a SGS model based on the SGS kinetic
energysq2d [36,51],

FIG. 7. (a) PDFs of the normalized increments of the passive
scalar multiaffine series. The plus signs refer to distancer =2−14,
while the circles to a distancer =2−6. The solid curve designates the
Gaussian distribution for reference.(b) The flatness factors of the
PDFs of the increments of the velocity(circles) and passive-scalar
field (stars) as a function of distancer. Note that both the fields
approach the Gaussian value of 3 only at large separation distances.
Clearly the passive-scalar field is more non-Gaussian than the ve-
locity field.
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tStke= − 2CK
2DÎuq2u

] ũ

] x
, sA3d

where

q2 = 3su − ũd2.

Here,CK is the SGS model coefficient.
In the case of the fractal model of[6,7], the unknown

subgrid stressstd produced by a synthetic fractal field around
any grid pointxi can be written as

ti
frac =E

1/4

3/4

fusxdg2dx− SE
1/4

3/4

usxddxD2

sA4ad

=
1

12
sdiũd2 +

dis8 − 3di
2d

48
di

2ũdiũ

+
1 + 15di

2 − 24di
4 + 12di

6

192s1 − di
2d

sdi
2ũd2, sA4bd

where diũ=sũi+1− ũi−1d /2 ,di
2ũ= ũi+1−2ũi + ũi−1, and di

= ±2−1/3.
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