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In the selective withdrawal experiment, fluid is withdrawn through a tube with its tip suspended above a
two-fluid interface. At sufficiently high flow rates, the interface undergoes a transition so that the lower fluid is
entrained with the upper one, forming a spout. Previous experiments address the scalings and similarity profiles
characterizing steady states of the system near the transition for one combination of fluids. In the present study,
we show that these scalings and similarity profiles extend to systems with different viscosity ratios. Surpris-
ingly, we find no dependence of the scalings and similarity profiles on the lower fluid viscosity. We use the
results of a low-Reynolds-number flow dimensional analysis to show that for different fluid combinations the
curves denoting the transition straw height as a function of flow rate can be collapsed. Finally, these results are
used to argue that in the low-Reynolds-number regime, the capillary length sets the scale for the final curvature
of the interface before the transition.
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[. INTRODUCTION than the length scales characterizing the boundary conditions
, . (for example the tube diametdd,). Fixing S and looking at
A look at Edgerton’s photographic sequeng of the &he steady-state profiles &sis increased, Cohen and Nagel

breakup of a drop interface as it drips from a faucet shoul . "
instantly convince any skeptic that there is something fascipbserve that, up until the transition, both the hump curvature

nating about a fluid interface changing its topology, whicharld helghht dlsplay SC?"’.‘Q b\‘jvhhf%l" |or.chi':1racter||_st|c ?}f syztems
hints at the richness of the underlying physics. Much atten%ppror?c _mgdaf singularity. Iel simiiar Scﬁ'ngg asl een
tion has been devoted toward classifying these topologicalypOt esized for a system analogous to the 3D selective
transitions in fluid systemg2—8] in the same manner as one
classifies thermodynamic transitions. Cohen and N#ggl
show that this established approach, used by others to stud
drop snap-off dynamic$10-13, extends to the study of
steady-state interface profiles near the topological transitior
associated with selective withdrawal. In this paper, we de-
scribe how a change in the fluid viscosities affects the results
of Cohen and Nagel.

In the selective withdrawal experiment a tube is immersed
in a filled container so that its tip is suspended a heght
above an interface separating two immiscible fluifig. 1).
When fluid is pumped out through the tube at low flow rates,
Q, only the upper fluid is withdrawn. The flows deform the
interface into an axisymmetric steady-state hump with a
stagnation point at the hump t{§ig. 1). The hump grows in
height and curvature &3 increasegor Sdecreasguntil the .
flows undergo a transition where the lower fluid becomes |
entrained in a thin axisymmetric spout along with the upper
fluid. The interface becomes unbounded in the vertical direc- ----
tion, the stagnation point moves from the hump tip into the
interior of the lower fluid, and the upper fluid geometry be- Ly
comes toroidal thus changing the topology of the steady ----
state. Once the spout has formed, an increas® (ior de-
crease inS) causes the spout to thicken.

Near the transition, the steady-state mean radius of curv
ture at the hump tip, ¥, can be orders of magnitude smaller

a

FIG. 1. Diagram of the experimental apparatus and photographs
é)_f the steady-state interface. Fluid is withdrawn from the with-
drawal container and deposited into a waste container. The upper
fluid is then siphoned back into the withdrawal container. Viewed
bottom to top, the photographs show the evolution of the steady-
state interface a® is increased. The top photograph of the interface
*Present address: Harvard University, Cambridge, MA 02138jn the spout state is from Cohe al.[13]. The middle photograph
USA. Electronic address: icohen@deas.harvard.edu of the hump at the transition flow rate is from Cohen and N§gjel
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withdrawal systenj14], this is the first time such scaling has Il. CHARACTERIZATION OF FLUIDS
been observed in the experiments. Cohen and Nagel then use AND EXPERIMENTAL DETAILS
the scaling relations to collapse the hump profiles near the
transition onto a series of similarity curves. In doing so, they,.
show that it is possible to treat the transition as “weakly-
first-order.” In Sec. IV, we show that the scalings and simi-
larity profiles observed by Cohen and Nagel extend to sys
tems with different viscosity ratios.

The manifestation of a true singularity would entail the
divergence or vanishing of some physical quantities or lengt
scals describing e System, Howerer,for he 116 Of Pal gl (LMO), sicone ol (poydmethyisiowane, or
trarily close to the transitions remains finite. In Cohen and FPMS, with an average molecular weight of about 31)000
Nagel[9], a system near the transition with a surface tensiorsalt water, and mixtures of glycerin and water. No surface
of 31 dynes/cm and fluid viscosities of 1.7 and 2.91>  chemistry is observed at the two-fluid interfaces even when
=1 g/(cm 9) for the upper and lower fluids, respectively, is the liquids remain in contact for periods longer than a month.
shown to have a mean radius of curvature at the hump tipiowever, a slight change in the transition flow rate at figed
which is 200um. over a period of days indicates that the surfactant concentra-

|nvestigation of the Viscosity-ratio dependence is C|ear|yti0n at the interface increases with time. When the system is
important for understanding the origin of the curvature cutoffin the spout state, surfactants at the interface are “swept” into
in such systems. For the analogous 2D problem, which corthe straw. Leaving the system in the spout state for long
responds to replacing the tube with a line sink, Jeong an@eriods of time, reduces the surfactant concentration over the
Moffatt [15] show that for an inviscid bottom fluid and vis- entire interface. Once the surface has been cleaned, none of
cous upper fluid, the 2D hump interface increases its curvathe results are significantly affected by the moderate increase
ture continuously with flow rate. Eggefd6] extends this in surfactant concentration, which occurs over a period of
theoretical result to show that when the lower fluid has aone week(see the Appendix for more details
finite viscosity, this increase in curvature is cut off and the The viscosityz is measured using calibrated Cannon Ub-
system undergoes a transition to a different steady state. felohde viscometers immersed in a Cannon constant tem-
this new state, a sheet of the lower fluid is entrained alongperature bath. In this manner the viscosity can be determined
with the upper fluid into the line sink. However, the finite t0 within £5%. Glycerin can be diluted with water so that the
lower fluid viscosity prevents the 2D hump profiles from resultant fluid has 0.0¢ »<14.9 P[26]. The surface ten-
scaling onto a similarity solution. In contrast, Cohen andsion, vy, of the two-fluid interface is determined using the
Nagel[9], in their 3D selective withdrawal experiments, do pendant drop methodsee, for example[27,2§), which
observe scaling behavior and profile collapse onto a similartakes advantage of the competition between the surface ten-
ity solution. Here, we show that performing the selectivesion and buoyant forces acting on a static drop hanging from
withdrawal experiments with a less viscous lower fluid does nozzle. The buoyant forces distort the drop from a spheri-
not get the system closer to the singularity. Furthermore, if@l shape. Measuring the distortion and density mismatch
Sec. V dimensional analysis is used to argue that the capillows a determination of the surface tension. Implementa-
lary length sets the scale for the value of the curvature cutofifion of this technique on water, toluene, and di-
Ky methylformamide shows a capability for measuring the sur-

In the 2D system, the lower fluid viscosity dramatically face tensions to within £10%. The fluid systems studied and
affects the location of the transition to the Eggers solutiortheir properties are listed in Table I.

[17]. In the selective withdrawal problem, nearly all of the In the experiments, a large tank30 cmx 30 cm
experimental studies found in the literature are concerneek 30 cm) capable of holding fluid layers that are each about
with modeling large-scale extraction and use low-viscosityl2 cm in height is used as the withdrawal container. Fluid is
fluids to model the flowgsee, for examplg,18-23). There- pumped out of the withdrawal container and into a waste
fore, the effects of viscous stresses in the experiments hawentainer. When the system is in the spout state, the fluids
remained unexplored. One exception arises in the modelingnter the waste container as an emulsion. This emulsion is
by Blake and Ivey[24] of magma layer mixing during vol- deposited at the bottom of the waste container, which is
canic eruptions. However, the fluids in these experiments arghere the droplets comprised of the lower fluid remain. The
miscible. As pointed out by Listg25], when surface tension upper fluid is siphoned back into the withdrawal container at
is absent, there is always some fraction of the lower fluid tha& rate that matches the withdrawal rate, thereby keeping

is extracted so that these experiments are not tracking theonstant. The recycled fluid is deposited about 18 cm away
actual withdrawal transition. Cohen and Nagel's study takegrom the region under investigation and does not affect the
into account the effects of the surface tension in an experiflows. L, remains constant when the system is in the hump
ment mapping out the transition location for low Reynoldsstate and decreases with time when the system is in the spout
number flow. Here, that study is extended to address thetate. However, even for thick spou®.1 mm in diameter
dependence of the transition location on the fluid viscositiesind for large flow rate610 ml/seg L, decreases at the very
(Sec. V). For the range of parameters explored, only theslow rate of 0.01 mm/min which corresponds to a 0.1%
upper fluid viscosity affects the transition location. change in the straw heighs,

The parameters relevant for this experimésege Fig. 1
e the upper and lower fluid viscosities and densities
T Pa Pp), the interfacial tensioriy), the orifice diameter
(D), the height of the orifice above the interfa@, the flow
rate (Q), the fluid height above the interfa¢k,), the fluid
layer depth below the interfadt,), the container size, and
I’ihe surfactant concentration.

The fluids used are heavy mineral GdMO), light min-
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TABLE I. List of the properties for each fluid system studied. Row 3 lists the symbols used in plotting the experimentally m&asured
curves in Figs. 3, 6, and 7. The last row lists the power-law expoaearged in fitting the curves in these figures.

System 1 System 2 System 3 System 4 System 5 System 6 System 7
Upper Fluid PDMS PDMS PDMS PDMS HMO HMO LMO
Lower Fluid HO0 Salt HO Water/Glycerin Glycerin KO Water/Glycerin HO
S, Symbol o + L] * 0 v A
v (dynes/cm 43 40 29 23 35 31 34
pa (g/ml) 0.97 0.97 0.97 0.97 0.87 0.87 0.85
pp (g/ml) 1.00 111 1.24 1.26 1.00 1.24 1.00
A, (g/ml) 0.03 0.14 0.27 0.29 0.13 0.37 0.15
7, (g/cm 9§ 9.7 9.7 9.7 9.7 1.7 1.7 0.48
7 (@/cm 9 0.010 0.013 2.9 12.3 0.010 2.9 0.010
7ol 7a 1.0x 1073 1.3x10°3 3.0x101 1.26 5.9x 1073 1.7 2.1x 1072
kusaf1/cm) 12+3 277 22+5 25+5 31+7 48+10 5+1
Kusadc 14+5 14+5 7+3 7+£3 16+5 144 2+1
a 0.44 0.42 0.41 0.40 0.32 0.30 0.30

The fluids are withdrawn using a rigid plastic pipet that isported in this paper are taken from the Gaussian fits.
connected with tygon tubing to a B9000 Zenith metering Using this apparatus, we test the effects of the container
gear pump with a variable speed DC motor. A Dynapar Rowalls and thickness of the upper fluid layer on the transition
topulser encoder is used to read out the withdrawal rate. Thgow rate Q, at constansS. Note that the switch in notation
pump uses gears to displace fluid from the pump intake térom S, versusQ to Q, versusS keeps the subscript with the
the pump outlet. There are small variations in flow rate asvariable that is being tuned when obtaining a given data
sociated with the filling and draining of the gaps between theyoint in the experiment. Figure® shows a plot ofQ, ver-
gear teeth. However, at large flow rates, or equivalently auys the distanck,, from one of the container walls whiis
high rotation frequencies, these variations damp out and thgeld constant. The fluid parameters for this particular experi-
amplitude of the remaining noise corresponds to a very smafhent correspond to those of system 3 in Table I. Egr
percentage of the total flow rate. High rotation rates alsqyreater than 2 cm there is very little variation@,. Figure
average out the fluctuations in the driving motor. Using big-
ger or smaller pump attachments allows for pumping of the 0.20
fluid at the same flow rate, but at a different gear rotation
rate. This allows for the determination of the effects of noise N
in the flow rate on the transition. A further reduction of the 8 0.18]
noise in the experiments is achieved by siphoning the fluids z
into the waste container. However, when siphoning, the
maximum rate of withdrawal is substantially smaller. 0.16.

The apparatus is illuminated from the rear and a CCD
video camera is used to image silhouettes of the steady-state 0.15
hump shapes. The images are transferred onto a PC where an
edge tracing IDL program tracks and records the points
where the derivative of the pixel-intensity profile across the 1.4
hump interface is extremized. The profiles are then superim- ]
posed onto the original images and checked for accuracy. In 12t F
order to determine the mean curvature at the humptip
either a Gaussian function or a parabola is used to fit the tip
of the recorded hump profile. The value ®fis taken to be
the curvature of the fitting function at the hump tip. How-
ever, depending on the width of the region chosen for the fit,
the value of the measured curvature can vary by up to 50%. 0Bl
In order to make the choice of fitting region less arbitrary, 0 2 4 & 8 10 12
first, the entire hump profile is fit with a Gaussian function. (b)
The fitting region is then taken to be one-tenth of the Gauss-
ian decay length. Finally, the hump profile is fit with the  FIG. 2. (a) plots the transition flow rat€, versus the distance
parabola or Gaussian in the fitting region. Using this procebetween the withdrawal tube and the container Wwglfor system 3
dure the values ok obtained from the Gaussian and para-in Table I.(b) plots Q, versus the upper fluid layer thicknelsg for
bolic fits are within 5% of each other. The curvatures re-system 5.

DA A

(ml/sec)
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2(b) shows a plot ofQ, as a function ofL, for constantS.
The fluid parameters correspond to those of system 3.,As
is increasedQ), first increases but eventually saturates and
remains constant fdr, greater than about 3 cm. In all of the
experimentsL,, is typically kept at about 12 cm. Measure-
ments of the transition flow rates show no significant varia-
tions between systems with &g of 12, 10, and 6 cm. Simi-
lar measurements for th@, dependence oh,, L,, andL,

are conducted for all of the different fluid combinations used 102 10 100 10"
in the experiments. For the tube diamet@?s=0.16 cm and (@) Q (miisec)
D=0.79 cm), tube height40.07 cm< S<2.0 cm), and flow
rates(Q<20 ml/se¢ used in the experiments, the container ~ [T7T T
walls are kept sufficiently distant and the fluid layers are kept 10°| N
sufficiently thick so as not to affect the flows. \
—_ %

IIl. TRANSITION STRUCTURE AND HYSTERESIS 53 10" 7\:'%‘-( \"\\

For the entire range of parameters explored thus far, the = . N,
evolution of the steady-state hump profiles is cut off by the -\.\:_:_-_fb;ﬁ_ﬂ}_J
hump to spout transition beforediverges. Cohen and Nagel 102 ‘ %
show that for transitions occurring at 1o, or equivalently 10 107 10° 10'
at smallS,, this cutoff is accompanied by a measurable hys- {b) Q (ml/sec)
teresis in the transition: the straw height at which the spout
decays back into a hump is greater ﬂ%rby a distance\S. FIG. 3. Plots OfSJ (a) and 1/Ku (b) as a function OQ for two

As the system undergoes the transition at higdsrAS de- different tubt_a diameter®. The open sym_bols depict the curves for

creases exponentially and eventually becomes too small @yStem 6 withD=0.79 cm. For comparison, the closed symbols

measure. It is observed that the radius of curvature cutoffeProduce the Cohen and Nagé] data for system 6 witiD

1/x, has the same exponential decay wthas does the ~0-16¢m:

hysteresis before saturating to a constant value,g{ at

high Q. The curvature saturation values for all of the systemssimilarity solution results for system 6 to those of system 5

studied are shown in Table |. where 7, is 300 times smaller. The scaling analysis compari-
When transitions occur at lo or Q, the ratio of the son in the next subsection focuses on hewhanges as the

withdrawal tube diameteD to the straw heigh§is of order  transition is approached. This analysis is, therefore, localized

one. As a result, the straw diameter can set a length scale fé® the hump tip. The hump profiles can be collapsed onto

1/k,. Figure 3 shows the effect of a factor of five increase insimilarity curves as described in Sec. IV B. The similarity

D on theS, and 1/, curves. The solid line in Fig.(8) isa  curve comparison focuses on the shape of the profile beyond

fit to the D=0.16 data and has the for@,« Q%3095 The  the hump tip. In Sec. IV C we describe the connection be-

two S, curves in Fig. 8a) show no significant dependence on tween the treatments.

D. As shown by Cohen and Naggl], for the range of flow

rates exploredAS s at least an order of magnitude smaller

thanS,. Therefore, the variations due to the hysteresis are not A. Scaling analysis of hump curvature reveals the same

expected to have a noticeable effect on Sevalues. The exponents

1/k, curves in Fig. 8) are fit (dash dot with the forms

1/x,=0.02+0.32 ex(-Q/0.032 ~ and  1k,=0.02+2.3 profile grows in heighth,,,, and curvaturex. Figure 4a)
exp(-Q/0.23 for theD=0.16 cm and>=0.79 cm data sets, o5t — versusk for four representative data sets taken at
respectively. The onset of the flat asymptotic dependence fQifrerent S The data suggests that for each curvehas,
1/k, occurs at higheiQ for larger straw diameters. This approaches its asymptote, « diverges. Indeed, it is ob-
evidence indicates that the initial decrease inclresults  gqrved that for all straw height§l.—Noad /Nmac K5, Here,
from the finite width of the withdrawal tube. Consequently, the value ofh, is used as a fitting parameter. Note that the

there is more than one mechanism responsible for the traz;sition cuts off the evolution of the hump states prevent-
S|t|qn cutoff. At large valueg of, these finite size effects ing the system from getting arbitrarily close to the singularity
vanish and the value of 1, is determined by the fluid pa- 55 |imiting the precision with which the exponegtsan be
rameters. The discussion of scaling behavior for the humpygiermined. The power laws for curves corresponding to dif-
profiles is restricted to this regime. ferentS have different prefactors. We, therefore, dividdy
the power-law prefacton in order to collapse the curves
onto a single-scaling curve. The physical interpretation of the
constantsn(S) is given in Sec. IV B. Figure @) plots (h,

In order to determine the effects af, on the transition —hmal/hmax @s a function of the normalized curvatueén.
structure, we compare the Cohen and Nagel scaling an@lhe excellent collapse indicates that all of the divergences

For a given straw height, a® is increased the hump

IV. COMPARISON OF SCALING ANALYSIS AND
SIMILARITY SOLUTIONS
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FIG. 4. Scaling for the hump mean curvatwand heightiay FIG. 5. The scaled hump profiles for system 5 along with a

for fluid sys_tem 5 in Table 1(3) plOt.S Pmax Versus« for data sets comparison of the similarity profiles for systems 5 anda$.shows
corresponding to four representgtlve straw helgﬂlﬁ.plot.s (he eight profiles taken from th&=0.667 data set for system &)
_.hmaX)/hmaX versu_s;cln for th? entire data set corresponding tc_) 20 shows the same profiles after scaling. The solid line corresponds to
different straw heights. The line corresponds to a power law with an, power law of the fornRO-72 (c) compares the similarity curves for
exponent of ~0.86. theS=0.984 cm, 0.921 cm, 0.889 cm, 0.667 cm, and 0.445 cm data
sets. (d) overlays the similarity profiles for system 5 witB
have the form(h=hmad/Nmax=(k/N)# with =-0.86+0.10.  =0.667 (open symbolsand system 6 witt5=0.830(closed sym-
For system 6 Cohen and Nagel obt#ir—-0.85+0.09. bols). (e) shows a plot of the residual quantifyfor the data points
in (d). The region between the vertical dotted lines corresponds to
the similarity regime where the residuals become centered around

B. Similarity solutions show hump profiles are identical zero.

For any givenS, the value ofh. taken from the scaling
relations for the hump height and curvature can be used to : L .
collapse the hump profile shapes near the transition onto %traw heights. The constanisdecrease with increasing

similarity curve. Cohen and Nagel define the scaled variable dicating that the profiles bepome shallower at I_aSgé’he
ecrease is roughly described by the relatioms:11

as follows: exp(-2.55 and n=10 exg—2.55) for systems 5 and 6, re-
_he=h(r) Ik spectively. The origin of this dependence is not understood.
HR) = — and R=—-. (1) The points of deviation for th&=0.445 cm profilg(crossed
hC hmax n

box symboj, mark the transition from the similarity regime

Hereh(r) is the hump profile and is the radial coordinate. to the matching regime beyond which the profiles become
This transformation shifts and scales the profiles so that thasymptotically flat. At large enough radii all of the scaled
cusp of the singular solutions is positioned at the origin androfiles display these deviations.
the maximum hump heights are locatedHt 1 andR=0. As a final check, Fig. @) shows a comparison of the the
Figure Fa) overlays eight hump profiles for the&s  system 6 similarity profile fo6=0.831 cm and the system 5
=0.667 cm data set. Figurgtl shows the same profiles af- similarity profile for S=0.667 cm. Figure &) plots the re-
ter scaling. Excellent collapse of the hump profiles is ob-siduals &, which correspond to the minimum distance be-
served. A power-law fit to the scaled profiles in the regiontween each point on the system 6 curve and the value of a
beyond the parabolic hump tipsolid line in Fig. §b)]  local linear fit to the system 5 curve at the saRealue. An
shows thatH(R)=(x/n)* with x=0.72+0.10. For system 6 error analysis calculation for the data points located between
Cohen and Nagel observe that0.72+0.08. -5<R<5 (where § are centered around zérshows that

Figure §c) shows a comparison of the similarity solutions y?~1.6 [36]. This x? value indicates that the differences
for five different tube heights. These profiles all display thebetween the two similarity curves are on the same order as
same power-law dependence. Hardtaken from Fig. 4b)] the experimental uncertainty, which is taken to be a quarter
is used to scale the radial components of these profiles anaf a scaled pixel. This error analysis, in conjunction with the
obtain good collapse for curves corresponding to differentlose agreement between the power-law exponeatsd the
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prefactorsn indicates that the similarity solutions describing
the profiles of systems 5 and 6 are nearly identical. ,
10%}
C. The localized scaling relations predict the form

of the similarity solutions

S (cm)

u

The scaling relation in Fig.(#) can be used to predict the
exponenix in the power-law fits to the similarity solutions in 1010
Figs. 5b)-5(d). Inserting the observed scaling dependence - - -
for the hump tip(hy—hma / Nmax=(x/N)? into the observed 102 107 10° 10" 102
form of the similarity profileH(R)=RX, the following rela- Q (ml/sec)
tion is obtained:

SLOPE =0.30 |

FIG. 6. Plots of the transition tube heig8f as a function olQ
h.—h(r) ( _B_ o ©\* for the seven systems listed in Table |. For each system, it is ob-
nl TG @ served tha,« Q® with « ranging between 0.30 and 0.45. THg
curves cluster into three groups corresponding to the different upper
Since, for a givenr, the functions[h.—h(r)]/hpna and 1 fluids used in the experiments. Each cluster is labeled with the
have constant valueg,must equal 8. More intuitively, for  corresponding upper fluid.
a givenS, asQ is increased, the parabolic-tip regions de-
crease their radial length scale at a rate tracked by the terfghite |ower fluid viscosity dramatically affects the nature of
n/x and are simultaneously pulled toward the singularity iny,q singularity.
the axial direction at a rate tracked by the tertin.
—hima/hmax l€aving behind power-law profiles with expo-
nents that reflect the scaling observed in Fidn)4 V. MAPPING OUT THE TRANSITION LOCATION
Recall that the fits to the similarity profiles gave the ex-
ponentsx=0.72+0.10. anck=0.72+0.08 for systems 5 and Having shown that the viscosity ratio does not affect the
6, respective]y_ Both of these exponents are within qrabr Scaling relations and S|m||ar|ty prOﬁIeS, we turn to the ques-
though slightly smaller of the exponents observed in the tion of whether§, is affected by such a change in the param-
scaling relations which gave the exponeni8=0.86+0.10 €ters. In Fhis section we compare the transitiqn location for
and -3=0.85+0.09 for systems 5 and 6, respectively. Theseven fluid systems. The data from the experiments are pre-
slight differences between the values of the exponeyss —sented in the next subsection. In Sec. V B, dimensional
andx in both systems imply that the similarity profile may be analysis is used to deduce which dimensionless combinations
influenced by the matching region, which connects the locaPf the experiment parameters collapse the data for the tran-
similarity solutions with the flat interface at—c. Such ef- sition curves. We then use the results of this dimensional
fects are known to manifest themselves in the coating of thitnalysis to try and address which parameters set the length
threads[29]. There, threads pulled through a fluid medium scale for the cutoff curvatures,s,in Sec. V C. Finally, in
are coated with a thin film whose thickness, under the righec. V D we present a crude but suggestive comparison of
conditions, is determined by the matching of the local soluthese results with Lister§25] simulations of selective with-
tion to the static nonlocal meniscus rat . drawal for zero-Reynolds-number flow.
What sets the value of the expone@andx? Typically,
the observed scaling dependencies in these types of problems - .
result from the balance of the relevant stresses in the regiorf": D2t& show that the transition location is unaffected by,
where the curves collapse onto similarity solutions. For ex- Figure 6 shows a plot 0§, versusQ for seven pairs of
ample, a scaling analysis where the viscous stresses of tliliids. There are a few obvious trends. The three distinct
upper and lower fluids balance the stress arising from thelusters of curves in Fig. 6 correspond to different values of
interfacial curvature predicts linear scaling dependencies ang,. For a given value o, a sixfold increase imy,, increases
conical profile shapefll]. The nonlinearity of the observed S, by about a factor of two. Second, for a given value®f
dependencies and the lack of dependence of the similaritgven a 1000-fold increase i, does not significantly affect
solution on 7, indicate that a different stress balance mayS,. These observations indicate that for the range of param-
govern the flowge.g., viscous stress due to upper fluid bal-eters studied, it isy, rather than the viscosity ratio that af-
ances the stress due to the interface curvature fects the transition location within th® versusQ parameter
The comparisons described in this section have showspace. Finally, all of the data sets show tBat Q* where«
that the only difference between the scaling dependenciesmnges between 0.30 and 0.45. The value& afe listed in
and similarity solutions is a 10% increase in the value of theTable I.
power law prefactors|(S) for system 5. With the exception The remaining trends due to changesAp and y are
of this slight difference, the comparison demonstrates thatveak. Furthermore, surfactants can shift §eurves by an
for this range of viscosity ratiosy, does not affect the scal- amount comparable to the shifts seen in the curves forming
ing relations and similarity profiles near the selective with-the uppermost cluster in Fig. 6. Therefore, either simulations
drawal transition. Thus, the 3D problem is fundamentallyor more careful measurements §f will be necessary to
different from the analogous 2D problem, where a small butresolve the roles of these parameters.

hmax
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102[ curves for the systems wit,=9.7 P, n,=1.7 P, andz,
=0.48 P corresponding to systems 4, 6, and 7 in Table I. For
. clarity, we only show one curve from each of the clusters in
.10 Fig. 6. The curves for all the other systems fall between the
e curves for systems 6 and 7. The data in Figs. 6 and 7 indicate
10°] that the functionf has the form of a power law with an
exponenta which varies between 0.30 and 0.45. It is note-
A worthy that under this scaling, the_experiment data sets pol—
10% 10" 10" 10° 10° 107 lapse ontzo each other to within a factor of two in
anr12 (Q7a)/ (7£0).
FIG. 7. Plot of the experimentally measure}/{, versus C. Dimensional analysis predicts that the capillary length
(Qma)/ (v€2) curves along with the curve predicted by the simula- determines wysat

tions of Lister[25]. The closed symbols depict the experimental |4 the 2D problem,s, plays a fundamental role in deter-
measurements for systems 4, 6, and 7 in Table I, while the OpeH’Iining the curvature cutof{17]. Table | shows that the
symbols depict the range 6Q7)/(y(¢) over which the simula- ;oo htotic value of, for system 6 is 1.5 times larger than
tions are performed. The solid line represents a power-law fit to th?he value ofx ... for ;ystem 5. This weak trend is opposite
simulation results and has a slope of 0.30. usat : .
the one found in the 2D analog, and shows that changijng
B. Dimensional analysis leads to scaling of transition curves by over two orders of magnitude has virtually no effect on
In general, S, is a function of the parameters: the value ofx,s5 Sincex, is independent of the flow rate at

Q, 7, T, ParPoy Apg, ¥, D. However, in these experiments large S a2n increase in the capillary number
neitherD nor 7, affect the value of,. Therefore, the depen- 7-Q/[7(D/2)%yp,] can also be ruled out as a method of
dence on these parameters, the viscosity ratio, and the va@etting the system closer to the singularity.
ous aspect ratios containirig can be eliminated. According ~ The dimensional analysis presented in the previous sec-
to Buckingham’s Pi theorem, the remaining seven variableson can help determine which parameters set the value of
must be functions of four dimensionless variables. Without ax,s.: In the low-Reynolds-regimeg,s,; must have the form:
theory it is difficult to determine which dimensionless com-
bination describes the flows. However, the fact thaplays 1 - <Q77a> (4)
a fundamental role in determining the transition location sug- Kysafc y€§

ests that the flows may be in the low Reynolds number . . . .
?egime. Note that an asB;umption of Iow-Re);/noIds-numbe}’."he"ap ISa fF‘”‘?“O” to be determined. Using the observ_a-
flow would eliminate the variables, and p, and reduce the tion fchat Kuysat 1S mdepende_nt of th? flow rate, th_|s an_aly5|s
number of dimensionless variables to two. predicts thgt lkysar™ € This result is surprising singavith

To check the validity of such an assumption the Reynold§he exception .Of the system 7 dpig is typically over an

number characterizing the different systems must be deteP—rder of magnitude larger than &/s, Nevertheless, a com-

mined. There are a variety of ways in which the Reynoldsparison Ofkysafl Values for systems 1-@ee Table) indi-_ .
number for the flows in the hump state can be defif&i cates that the values are within about one standard deviation

Here, the balance between the capillary stress, which acts the ave_ragle.cusatec value for these six systems. Sygtem ’
ows a significantly smaller value @&f,s,f.. A comparison

smooth the interface, and the viscous stress, which defor -
the interface, is used to make the estinae] of systems 7 and 5 shows that whilgis held constant, the

At the hump tip the fluid velocity vanishes. The fluid ve- value Of kusqr changes by a factor of six. Shallow hump pro-
locity in the absence of the interfac@/{2a[S—h(0) ]2}, is files are also observed for nearly inviscid systems, which use

used to estimate the fluid velocity away from the hump tipﬁ'orwasr;tges :?Fﬁ;igﬁ"(d ar}(cj)rwsz;t;;gf ;h:sl?%vg)et:):c:augéj(l) rthe
Upul. The lengthd over which the velocity decreases 10 zero o oo e it i possitlilsgtthat the value i, for system 7 is
can be estimated from the stress balapge v, /d. The ' sat

dimensionless combinationunydl/ 7y is then used to est- el B, SR BT 00 M evnold.
mate the Reynolds numb&e For the data in Fig. 6, Re y P : y

=1 10" for the top cluster of curvee=3x 102 for the 1 BB% BRSO, I B B e e of
middle cluster of curves, ande<4 for the lowest curve. ’ y

g valdated e sssumpion of lowReynld: (" The Cependerce aleyon (c siomean e |
number flow for the majority of the data, we eliminate the 9 y

variablesp,, and p,. Dimensional analysis of the remaining tions are varieq30].

variables in this problem indicates that
o ) D. Comparison with results of zero-Reynolds-number
a

S/tc= f( 02 3 simulations

c

For completeness, we compare these experiment results
wheref is a function to be determined arig=\y/Apg. The  with Lister’'s simulations of selective withdrawal for zero-
solid symbols in Fig. 7 depict thg,/ ¢, versus(Q,)/(y(2) Reynolds-number flow25]. These are the only currently
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available simulations where the viscous effects of the uppesmall population of high molecular weight PDMS chains
fluid are taken into account. However, many aspects of thi$31] in the upper fluid batfi32]. Since increasingy, causes
comparison remain crude: an upward shift in the§, versusQ curves, a viscosity that

(i) The simulations are designed to model a system with @ncreases withQ would result in a higher power law expo-
point sink that is located many capillary lengthg, away  nenta. Unfortunately, current state-of-the-art techniques are
from the interface. While§, shows no dependence on the not sensitive enough to measure such weak viscosity depen-
tube diameteD, [see Fig. 8], it is still comparable to the gencies in these relatively low viscosity fluids. Therefore, to
capillary length. Thus, the experiments are performed af,estigate such effects, it may be useful to measure how

much smaller values d ands$, than the simulations mak- cpanges when a high molecular weight polymer is intro-
ing it impossible to compare the results quantitatively. NeV-qced into the upper fluid bath

ertheless, since it is expected tigtis a smooth function of
Q, one can check that the simulation and experiment data

sets are consistent with this expectation. VI. CONCLUSIONS
(i) Lister's simulations are performed for equal viscosity ) ) .
fluids. However, the fact that in these experimengsdoes In this paper, it has been shown that the transition straw

not affect the transition location can be used to compare thBeight for a given flow rate5, changes a§,=Q®, wherea
simulations with the experiments for which the fluid viscosi- 'anges between about 0.45 and 0.30. Experiments comparing
ties are unequal. S, for different systems of immiscible fluids with flows
(i) In the simulation, a point sink is used to withdraw reaching into the low-Reynolds-number regime have been
the fluids. However, in the experiments, the tube can onlyperformed. The data indicate that for viscosity ratios less
withdraw fluid from below the tube orifice. Therefore, the than one, the upper fluid viscosity rather than the viscosity
simulation results will overestimate the flow rate at whichratio determines the value &, The scaling of the data
the transition occurs. suggested by dimensional analysis in the low-Reynolds-
Clearly, more detailed simulations which address thes@umber regime shows that to within a factor of two in
concerns would allow for a better comparison. With these(Q7.)/(€2), the transition data can be collapsed onto a uni-
caveats in mind, we proceed with the comparison to Lister’srersal curveFig. 7). This curve is slightly shifted from the
zero-Reynolds-number simulation results. curve predicted by the simulations of Lister for zero-
Figure 7 overlays the simulation results onto the rescaledReynolds-number flows with a point sink. However, a factor
transition data. The open symbols depict the range o6ftwo reduction in the simulation flow rate seems to account
(Qy;a)/(y{ig) over which the simulations are performed. Thefor this shift. While this comparison is not conclusive, it is
simulations are conducted using dimensionless variables s#/ggestive and indicates that a theory tailored to address the
that the resulting prediction is independent of the particulaconcerns outlined in Sec. VD may be able to more accu-
fluid parameters describing the different experimental sysrately account for the observed dependencies.
tems. The solid line represents a power-law fit to the simu- For low flow rates, where the withdrawal tube is suffi-
lation results. This fit is projected into the regime where theciently close to the interface, the transition is hysteretic. Co-
measurements are taken in the experiments. As expected, then and Nagel have correlated the decrease in the hysteresis
fit to the simulation data overestimates the transition flowfor transitions taking place at high&with the decrease in
rate. Note that a factor of two reduction in the simulationthe final mean radius of curvature &,/ Here, it has been
flow rate is sufficient to shift the simulation prediction onto shown that the tube diameter, at I@&vsets a length scale for
the experiment results. However, it is not clear if a simplel/«,. As Sis increased, 14, decreases and eventually satu-
reduction in the flow rate can fully account for the different rates to 1k, implying that the residual discontinuity in the
withdrawal geometries. Nevertheless, it is suggestive that thisansition depends on the fluid parameters rather than the
curve predicted by the simulation has a valueasf0.30, experiment geometry. As Table | shows, the valuexgf
which agrees with the values of for systems 5-7. does not depend om, for the range of viscosities investi-
Finally, even though under scaling, the data for the gated. Itis in the asymptotic regime wherex} has reached
=9.7 P system rests in between the scaled curves for systeriis asymptote 1#s, that the scaling behavior and similarity
6 and 7, a discrepancy remains between the power-law exprofiles are investigated.
ponent describing this syste(d.45 and the numerical pre- ~ We have performed a detailed comparison of the scaling
diction (0.30). It is unlikely that the effects of fluid inertia relations for systems 5 and 6 that have the same upper fluid
can account for this variation. First, the fluids with the lower Viscosity but have a lower fluid viscosity, which is different
viscosities follow the zero-Reynolds number prediction moreby a factor of 300. It is observed that up until the cutoff, the
closely. If inertial stresses were playing a role, one wouldhump profiles behave as though they are approaching a sin-
expect thar values for the lower viscosity systems to deviategular solution where, at a critical flow rate, the hump height
from the prediction. Second, since a large changBétan would be equal tch; and the mean curvature would di-
also occur along th&, versusQ curves, one would expect verge. The quantityh.—hy,,)/ hmax has been shown to scale
the effects of inertia to manifest as variations in the slopeas(«x/n)? where3=-0.85+0.09 ang3=-0.86+0.10 for the
Such variations are not observed. high and low 7, systems, respectively. These scaling rela-
An alternative scenario, is that the high-extensional strairtions are used to collapse the hump profiles for different flow
rate causes up to a threefold increase in the upper fluid vigates and straw heights near the transition onto a series of
cosity asQ is increased. Such an effect could result from asimilarity curves. The region of the similarity profiles located
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0.254 - 80 Finally, the robustness of the similarity solution shows
. 02500 170 that singularities can be used to organize the study and clas-
g - t g0 2 sification of the steady-state hump profiles near the selective
=, 0246 . 5 withdrawal transition. In particular, the discontinuous nature
£ o R of the transition, marked by the cutoff curvatutg coupled
= 0242 1 a0 T with the display of scaling behavi ts a transit
BTN play of scaling behavior suggests a transition
0.238L i 130 structure that is remarkably similar to that of weakly first-
0 10 20 30 490 order thermodynamic transitions. Whether this analogy hints
@) 1, (sec) at some deeper relationship between the classification
schemes for weakly first-order thermodynamic transitions
0.245 140 and the classification schemes for these types of topological
= 190 = transitions remains to be shown.
o 130 =
T 0.230 TS
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beyond the parabolic tip can be fit with a power law that has
an exponenk=0.72+0.10 ank=0.72+0.08 for the curves
in sys{)ems 5 and 6, respectively. The results show that for the APPENDIX: SURFACTANT EFFECTS
range of viscosities investigated, both the scaling exponents gyrfactants can significantly affect interfacial tension and
and the shape of the similarity solution are independemk,of ~srface flows. In the present studies there are two effects that
and the viscosity ratio. In fact, a direct comparison of theregyit from the presence of surfactants. First, measurements
similarity solution for both fluid systems indicates that, yoyen after the surfactant concentration at the interface is

\(/jwtr:nn (farrrotrr,] theVCl#rves are :ij/entlca[[.hTh?rTI]?ch?i?J dreaﬁn' allowed to equilibrate for a period of a week show a uniform
ence for thef, versus Q curves,s, the similarity profiles 20% increase ir§,, or, equivalently, a 50% decrease in the

n, and the scaling exponentsand 5 indicates that the selec- transition flow rate. Upon cleaning the interface once again,

tive withdrawal problem is very different from its 2D analog. the S, data points return to their original value. The observed

The similarity treatment for the hump profiles is localized hift i lting f he differi ‘
to the hump tip, which is over an order of magnitude smalleSNift In S“ resulting from the differing surfactant concentra-
on is quite small compared with the shift observed whgn

than €¢.. This separation of length scales between the humﬂ)' ; ;
radius of curvature and the boundary conditions is a typicalS increased by a factor of five. Nevertheless, the fact that the

requirement for a successful similarity treatment.«lf,, ~ transition flow rate can change by nearly 50% depending on
does indeed depend dh, then the matching region, which the surfactant concentration is noteworthy.

connects the profile near the tip of the hump to the flat inter- The second noticeable effect due to surfactants is the os-
face at large radii, may be responsible for setting the lengtlgillations between the hump and spout states occurring near
scale for the cutoff. Such an effect could also explain theghe transition over periods as short as one minute. Note that
slight difference between the observed value of the powerthe time scale for this effect is still much larger than the time
law exponent describing the similarity solutiér) and the  scale for pump-induced noise in the withdrawal rate, which
value predicted by the scaling relatioff®. Control over the can produce similar effects near the transition. While the
cutoff curvature is crucial for obtaining more accurate scalincrease in theS, values is most likely due to a uniform
ings. Moreover, this control could be used to adjust the mini+eduction iny over the entire interface, the dynamic nature
mum spout diameter and advance emerging technologiesf the observed hump to spout oscillations implies that the
such as coating microparticl¢$3], creating monodispersed flows may cause local variations in the surfactant concentra-
microsphere$33], and emulsification through tip streaming tion. In this picture, when the system is in the hump state,
[6,34], which take advantage of a selective withdrawal ge-surfactants are dragged toward the hump tip by the surface
ometry. The importance of identifying which parameters de-flows. If the system is sufficiently close to the transition, this
termine the length scale for the cutoff warrants a more careaccumulation, which lowers the surface tension locally,
ful investigation of thek,s,; dependence ofi. and the local causes the hump to increase its height and curvature and
interfacial boundary conditions. ultimately drives the system into the spout state. Once in the
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spout state, the local surfactant concentration reduces overated with a regime where the local surfactant concentration
time and the system eventually decays back into the humfs too low to affect the shape of the interface. When the
state. This pictu.re is moti_vated by the observations of deystem is near the transition so tHg,—Q)/Q=~0.004, the
Bruijn [35] for tip streaming of drops under shear flow. pateay regime lasts about 15 s and is followed by a regime
While the local boundary conditions for these two problems;, \ hich hoth the height and curvature increase their values
are different, the flow patterns are remarkably similar md"gFig. 8a)]. However, as shown by Fig.(, when the ex-

cating that the oscillatory behavior observed in both systems = N 7
may be correlated. periments are performed &Q.—Q)/Q=0.01, the plateau

Since many of the measurements discussed in the papEfdime lasts for over 20 min. When collecting data for the
are performed in the vicinity of the transition, care must pesScaling rglatlons, it is important to _determlne the val_ue of the
taken when measuring the hump height and curvature. jRump height and mean curvature in the plateau reg|me.A!so,
order to understand how,,, and x change with time, the @ larger amount of error must be assigned to data points
following experiment is performed. First, the system istaken from plateau regimes that are short lived. Note, how-
placed in the hump state. Then, the flow rate is increase@Ver, that since the plateau regime lengthens quite rapidly as
momentarily so that the interface forms a spout for a shorQ:.~Q)/Q is increased, for the cleaned interface, these pre-
period of time. Just after spout collapse, the time dependendgutions only apply to the one or two data points in the
of the hump curvature and height is measured. Figu¢ags 8 scaling relations, which are closest to the transition. For the
and §b) show the results of measurements performed for thequilibrated systems, the plateau regimes are shorter and
same system, with the same valueSytut at different val- ~greater caution must be taken in making the measurements.
ues ofQ. The initial decay, which occurs over a time scale of Comparisons between tliB, —hya) / hmax Versusx/n curves
about 5 s, gives some measure of the relaxation time for théor equilibrated systems and clean systems indicate that
flows in these systems. Following this initial decay, thewhen these precautions are taken there is no change in the
height and curvature values plateau. These plateaus are assealing curves.
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calculated in the following way: First a local linear fit was linear fit to curve, and the sum is taken over the index
used to interpolate the value of cupMgetween the data points. which labels the points in curye

Second, the minimum distance between the interpolated curvgs7] The definition is made ambiguous since there are a number of
and the value of the points in cure’; , was calculated. The velocity gradients characteristic of the flows near the stagna-

x> value for the entire curve is defined asy?

=1INS &,/[0%,+ 05 +(o5,+05)/n] whereN is the number
of points comparedgy, and oy, are the experimental errors
associated with the andy points in curve, oy, and o, are
the experimental errors associated with thandy points in
curve, nis equal to the number of points used in making the

tion point at the hump tip.

[38] It is well known that inertial stresses, which dominate when
very low viscosity fluids are used to conduct the selective
withdrawal experiments, cannot produce humps of significant
height or curvature.
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