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A phase-space semiclassical approximation vali@(6) at short times is used to compare semiclassical
accuracy for long-time and stationary observables in chaotic, stable, and mixed systems. Given the same level
of semiclassical accuracy for the short time behavior, the squared semiclassical error in the chaotic system
grows linearly in time, in contrast with quadratic growth in the classically stable system. In the chaotic system,
the relative squared error at the Heisenberg time scales linearlyiyttallowing for unambiguous semiclas-
sical determination of the eigenvalues and wave functions in the high-energy limit, while in the stable case the
eigenvalue error always remains of the order of a mean level spacing. For a mixed classical phase space,
eigenvalues associated with the chaotic sea can be semiclassically computed with greater accuracy than the
ones associated with stable islands.
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[. INTRODUCTION failure of torus quantization to reproduce the spectra of two-
dimensionalintegrable billiards, such as the circle billiard

Semiclassical methods have a long history traceable to thpf], suggesting that integrability may in some cases lead to
very beginnings of the “old quantum theory” and serve twogn increase of semiclassical errors; Raledval. have ob-
interrelated purposes in many areas of physics. First, semigined more recent results consistent with this concluggn
classical methods provide valuable approximation techniquesrimack and Smilansky were among the first to analyze
in situations where a full quantum calculation is either im'semic|assica| accuracy for three-dimensional chaotic sys-
possible or unnecessary. Equally importantly, semiclassicabms, focusing on including corrections to the state-counting
methods provide a link between quantum results and oufynction beyond the leading Weyl terfs].
Cla.SSical intuition, a.nd a”OW us to Separate phySica| behaVior Main and Co||aborat0rs have deve'oped the powerfu' har-
that is due simply to classical paths and their interferencenonic inversion technique for accurate and efficient semi-
from behavior that is attributable to nonclassical processeg|assical calculations of energiesy resonances, and matrix el-
such as tunneling or diffraction. ements[7]. This technique, as well as the earlier cycle-

For Strongly chaotic SyStemS, pur&']bassicalcalculations expansion methoqs] were app“ed recenﬂy to the four_
in d dimensions that ignore phase effects must break down @lphere scattering problem, demonstrating a high degree of
the mixing time or log timeTj,g~\"INN~\"d-1)Infig,  accuracy at a greatly reduced computational cost compared
where\ is the maximal Lyapunov exponent of the classicalwith brute-force quantum calculatiori8]. Another promis-
dynamics and\l~ﬁ;§fd_1) is the effective dimension of the ing recent approach, put forward by Vergini and co-workers,
accessible Hilbert space, or the size of the accessible classivolves the accurate construction of quantum eigenstates as
cal phase space in Planck cell units. This breakdown ofinear superpositions of “scar functions” associated with
classicatquantum correspondence occurs because beyorshort unstable periodic orbifd 0].
the mixing time, multiple classical paths connect a generic In the time domain, statistical arguments concerning the
initial state to a generic final state, and interference effectpropagation of semiclassical errors have shown that semi-
becomeO(1). On the other hand, in a series of papers, Hellerclassical error in chaotic systems accumulates incoherently,
and co-workers showed thaemiclassicalcalculations in  and thus the squared error typically grows only linearly with
chaotic systems, which include the effect of interference betime, in contrast with quadratic growth for the regular case
tween distinct classical paths, can follow the quantum propafl1]. Transforming to the energy domain, this implies that
gator at times well beyond the mixing tinj&]. An estimate  semiclassical methods are generically more accurate for
for the breakdown time scale of semiclassical-quantum coreomputing wave functions and eigenvalues for chaotic sys-
respondence was obtained by quantifying the effects of causems than for regular ones, in tiigz— 0 (or high energy
tics for a stadium billiard 2]. limit. In particular, ford=2, analytical arguments and nu-

Over the past decade, significant light has been shed omerical tests show that eigenvalues can be semiclassically
the issue of semiclassical accuracy and its breakdown in diresolved with great accuracy for chaotic systems, for suffi-
verse chaotic and regular systems. For example, Boasmatiently smallZ.s, while in the regular case even the order of
has used a semiclassical approximation to the boundary ireigenvalues cannot be unambiguously determined semiclas-
tegral method to obtain a semiclassical spectrum for twosically. This result has been related to the reduction of the
dimensional chaotic billiards, observing an overall semiclasquantization ambiguity in chaotic systeris2] and to the
sical spectral shift as compared with the exact quantunslower decay of fidelity in the presence of strong chéass
spectrum, in addition to small random fluctuatidi®. On  long as the perturbation has nonzero diagonal matrix ele-
the other hand, Prosen and Robnik have shown the completrents in the basis of the unperturbed syst¢h3].
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Both the theoretical analysis and the numerical tests in 1 K _
Ref. [11] were performed for semiclassical evolution in the T(p) = Empp2+ (2_7# sin(27p). (@)
position representation, i.e., for the Van Vleck—Gutzwiller
propagatof14]. Although well suited for the model systems The dynamics is iterated to obtain classical evolution over
treated in that work, position-representation semiclassics sufnany kicks (or many bounces in the corresponding two-
fers in general from the problem of proliferation of caustics,dimensional Hamiltonian systenfor valuesm,=m,=1 and
which eventually dominate the semiclassical propagpr  0<|K,|,|K,| <1, for example, we obtain the purely chaotic
The problem becomes particularly acute when one attempiserturbed cat map, or kicked inverted oscillator, while for
to compare semiclassical dynamics in hard chaotic systemﬁq:-l, m,=1 and smallK,,Kp, the dynamics is predomi-
with that in a regular system or in a mixed phase spacenantly regular, corresponding to a kicked regular oscillator.
Semiclassical calculations in a phase space basis are mopgrameter&, andK, are essential to introduce nonlinearity
natural from the point of view of classical-quantum corre-into the dynamicsif Kq=K,=0, the semiclassical propagator
spondence and have the inherent advantage of allowing djs exact, for any integensy, andmy). The above four param-
rect Comparison between time evolution in chaotic, regulareters can also be adjusted to vary the Lyapunov exponent in
and mixed systems, without the result being overwhelmed byhe chaotic regime, or to study a mixed phase space, as we
the problem of position-space or momentum-space causticsyill see below in Sec. Ill.

The aim of this paper is to improve our understanding of  The one-step quantum evolution matrix for the above sys-
semiclassical accuracy in a phase space representation, agefh takes the very simple form
function of time andig, and to directly compare the behav-
ior of the semiclassical error in chaotic, regular, and mixed U, = exd - iT(p)/h]exd— iV(@)/4], (3)
systems. The organization is as follows. In Sec. Il we briefly
present the model and the method used for performing semivhich again may be iterated or diagonalized to obtain long-
classical and quantum calculations in phase space. Theorefjme or stationary behaviot),=[U,]'. As discussed in the

cal expressions for semiclassical accuracy in chaotic SySterTi‘ﬁtroduction, we will apply this propagator to Gaussian wave

are presented in Sec. Il A, along Wit.h. supporting “‘_”_“erica' ackets(or coherent stat¢centered at phase space points
data from the model system. In addition to generalizing th Qo PO

analysis of Ref[11] from position space to a phase space
representation, we explicitly test the prediction of Réfl] (@) =N ex- (q-q)?/2h +ip(q - q)/h], (4)
concerning the linear growth with the time of the mean

squared semiclassical error, as well as the prediction of lineakhereN is a normalization constant.

decrease withh of the error at the Heisenberg time. This is Unfortunate|y' there is not a unique and universa"y used
followed by a similar analysis for regular and mixed sys-semiclassical approximation for wave packet evolution,
tems, in Secs. Il B and Il C, respectively. Finally, Sec. IV gnalogous to the Van Vleck-Gutzwiller expression in posi-
summarizes the results and presents an outlook for the fl.tron or momentum space. Several methods have been pro-
ture. posed that differ in both the ordéin 7.4) of the semiclassi-
cal error at fixed timet and in the numerical size of that
error. The so-called “thawed Gaussian” approximation, for
Il. MODEL AND METHOD example, allows the shape of the Gaussian wave packet to

Although our theoretical analysis applies quite generallyChange as it evolves under a locally quadratic poteNig)

X . . i L2 [16]. An alternative approach uses “frozen” or unspreading
to two-dimensional noninteracting systems, we simplify the .

. . ) . . d wave packet$l7]. Another coherent state method retains the
numerical simulations by focusing on one-dimensional
kicked maps, which share most scaling and other physic
properties of this class of systemis5]. The discrete-time
map can be regarded as a Poincaré surface of section ofia.. ” )
two-dimensional system with Hamiltonian dynamics. Spe-"%\Itlal conditions in phase spaqéo].

o X ; In the present work, we are not interested in reducing the
cifically, we parametrize the one-step map on a toroidal clas- : : . . .

. numerical size of the semiclassical error but only in under-
sical phase spaag,p) €[0,1) X[0,1) as

standing its scaling properties wittand#., for regular and
chaotic systems. For this reason, we will choose what is a
Po— P1=Po—V'(gp) mod 1, convenient method for our purposes, noting that the results
would hold for any semiclassical approximation valid to the
same order infie. We essentially use a variation of the
Jo— 01=0qo+ T'(py) mod 1, (1) thawed Gaussian method, extended to next-to-leading order
in Ve, and then calculate semiclassically the overlaps of
where the time-evolved “thawed” Gaussians with the Gaussians in
the original basig20].
Specifically, we start with &honorthogonglcomplete set
of N=1/27h Gaussians; of the form given in Eq(4), with
the center pointgq;,p;) offset slightly from a rectangular

§tationary phase idea of the Van Vleck—Gutzwiller propaga-
Qor but extends dynamics into complex phase spa8E It is
fpossible instead to work in complex time while retaining real

1 K .
V(g) =- quqz - (2—;)—2 sin(2mq),
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grid to reduce numerical instabilities. The semiclassical overtum and semiclassical evolution at long times for a chaotic
lap matrix system, or between quantum and semiclassical stationary
) properties for such a system, faces the obstacle of the expo-
AO(I*k):<¢J|¢’k>SC (5 nential proliferation of classical pathgl]; an analogous

is obtained analytically by Gaussian integration. To evaluat®roblem of exponential growth in the number of periodic
the t-step semiclassical propagaté(j,k) between initial ~ Orbits exists in the energy domajt4,8,23. This prolifera-
Gaussiang, and final Gaussianp;, we find real classical tion seemingly makes long-time semiclassical propagation in
trajectories from(d, o) t0 (g, py) in time t that minimize @ classically chaotic system an exponentially harder problem
(o= )2+ (Po= P2+ (q— )2+ (p—p)> i.e., all trajectories than the full quantum evol_utlon,_puts into question the con-
that start near the center of Gausslarand end near the Vergence of long-time semiclassical dynamics to any station-
center of Gaussia aftert steps. Of course for fixetdand &Y behavior, and_ prevents the_comparlson of semiclassical
sufficiently smallz (t<Tj,q~\"tIn 7%, there will be at and quantum stationary properties for snialThe threefold
most one such trajectory, and in principle that is all we needjlfﬁculty can be addressed using the idea that the Heisenberg

even o ot ongime analy, as i be seen blow. 24T PIOSEIE Ueshen UL o an o Senoe by
practice, however, for finite values éfwe include all con- '

tributing trajectories. For each trajectory, the potentiéd) finite for all times and scales only as a powerfofWe can

is expanded tehird order around the starting position of the tr:ﬁ;?j?z)en Zﬂﬁcéc;%gsﬂgg}ﬁfnantﬂ;ﬁ, rl?tszs]?ga'égi;ﬁzlna_m'
trajectory,go. When this potential is applied to the original b ' 9 g

Gaussiang,, we obtain a wave packet of the form t!me Qynamlqs t? arbﬁrary accuracy in po'Ynom'a!, qomputa-
tion time. This “semiclassical path consolidation” idea has

exgda+b(q-qo) +c(q-qgo)?+d(q-qo)°] previously been used successfully to investigate long-time
_ 2 semiclassical accuracy in the position representation for cha-
=expa+b(g-do) +c(q- o)l otic dynamics[20,1] and to demonstrate the semiclassical
X[1+d(g-qo)+O(%)], (6) nature of dynamical localization in one dimensj@2]. Con-

1 ceptually, the approach is similar to cycle expansion methods
wherea, b, ¢, andd are complex numbers of ordér™, and i "herigdic orbit theory[8,23; however, no information

thereforeq—qp 'S_O(hllz)- We note that an “extended” semi- 51,6t periodic orbits is needed here. Instead of accounting
classical dynamicf21], which truncates the expansion of the for |ong-time semiclassical behavior in terms of periodic
Hamiltonian at third order rather than second order is needegaths Up to periode g~ Tiog We Useall short paths up to
to keep the error in the one-step phase space propagator |ghgth 7~ 1. In the following, we adapt the methods of Ref.
O(%), consistent with the error in the Van Vieck-Gutzwiller 111 to a phase space representation, and refer the reader to
propagator in position spag¢é4]. _ _ that earlier paper for a detailed discussion.

The wave packet of Eq6) may now be rewritten, via.  \we begin by noting that although semiclassical dynamics
Fourier transform, as a momentum space wave packet having not multiplicative, due to the fact that a concatenation of

the same form but expanded in powerspofp, instead of  two stationary paths is in general not stationary, we may
g-dp. The kinetic termr(p) of the Hamiltonian may now be nevyertheless write

applied, again expanded to third order prp;. Then, the
packet is Fourier transformed back to position space and the Ay (i.K) = > Ay] ,6’)A51(€’,€)Atl(€,k) +O(%)

procedure is repeatddimes. At the end of steps, we may 00
analytically find the overlap between the semiclassically . )
evolvedt-step wave packep, sdt), still having the form of =[AA0 A (G K) + O(f), (7)

Eg. (6), and the final Gaussian wave packfgtto obtain the
semiclassical propagatdk(j,k). If several classical paths
lead from the vicinity of¢y to the vicinity of ¢; in time t,
their contributions must be summed to produce the semicla
sical amplitudeA(j,k), just as in the Gutzwiller expression. fime+ semiclassical propagatek, by evaluating the exact
As we will see in Sec. Il A, for a chaotic system the long- semiclassical d namFi)cs pto some y uantization timeand
time semiclassical propagator may be arbitrarily well aP-en iterati thy i trix: q

proximated(in thez — 0 limit) using only the matrix4; for en fterating the resuiting matnix.

1<t<T, Where at most one path contributes to each ma- _ -1 [t/7]

trix elemgnt. However, as we are dealing with finitén our Aur= Acmon A0 AT ®

numerical simulations, we will always use the sum over allyhere[t/7] is the integer part of/ 7. We may callA, , the

where theO(#) error is due to the intermediate sums being
done exactly rather than by stationary phase, and the inverse
é)_f the semiclassical overlap matri, is necessary due to
nonorthogonality. In general, we may approximate the true

classical paths in numerical calculations. “ r-semiclassical” propagator. Fer 1, A, . is the one-bounce
semiclassical quantization pioneered by Bogomo|@¥].
. SEMICLASSICAL ACCURACY For a continuous-time system, thez1 limit is equivalent to

quantum propagation via the Feynman path integral ap-
proach. The exact time-semiclassical propagator, on the

As discussed previously in the context of position-spaceother hand, is recovered in the opposite limit when the quan-
semiclassical propagation, direct comparison between quatization time approaches

A. Chaotic dynamics

026223-3



L. KAPLAN PHYSICAL REVIEW E 70, 026223(2004)

=7 T

tion for 7=1 and similar calculations for larger quantization

P 2 - é times 7. We also note that using the iterated propagator with
ol T =4 short quantization time overestimates the true size of the
; - 2 semiclassical error. At the same time, we observe rapid con-
-10 vergence oE; . as7> 1, with ther=5 andr=6 curves lying
! almost on top of one another. Thus theemiclassical error
E: . appears to be rapidly approaching the true semiclassical
5 -12 error
_13 L
el Et:Zk A LK) = UK. (12)
In
-15 p£

We are now ready to investigate the semiclassical €for
-16 ' ' ' ‘ ' as a function of time& and semiclassical paramefdr For a
chaotic system, we may assume that the errors associated
with the semiclassical approximation add incoherently as
long as the times at which the errors occur are separated by
at least the classical time scalg [11]. Since the squared
error in the semiclassical approximation over one time step is
E;=0(h?)=0(1/N?), we obtain

In (£t / N)

FIG. 1. The mean squaredsemiclassical errdg; , in a chaotic
system is plotted as a function ofN for semiclassical parameter
N=256 and for several values of the quantization time~or =
>1, E; . is a reliable proxy for the true semiclassical eripr The
classical system parameters for H@) are my=m,=1; K =K ¢
=1/2. The lower andupper solid curves represent the theoretical E = C,ht= hcl<—>, (13
predictions forE; given by Eqs.(13) and (14), respectively, with N

C,=0.017 andC,=0.037. .
! and-z whereC;~ T is a system-dependent constant and we take

t=1 to correspond to one period of the kicked map. The
A, —A ast—t. (9 linear growth of the error predicted by Ed.3) breaks down
at times comparable to the Heisenberg time, where we must
include an additional error term that is diagonal in the eigen-
basis of the true quantum propagatdy [11]. The error as-
sociated with diagonal matrix elements adds coherently,
leading to quadratic growth of the cumulative error in time.
However, the fraction of diagonal matrix elements scales as
h=1/N. Equation(13) must therefore be modified to read

In Ref. [11], it was shown analytically and numerically that
the error|A, (j, k) =A(j,k)|? falls off as T,/ 7 in a chaotic
system, wherél, is the time scale of classical correlations.
This implies that forr>T, the approximate semiclassical
correlatorA, , is closer to the exact semiclassical correlator
than either is to the quantum dynamics:
|AI,T_ At| < |At - Ut|- t £)\2
Thus E,=C;h’t + C,h%? = h{q(ﬂ - c2<ﬁ> ] . (19
Ty
IA—Ul — |A - Uy (10) The data in Fig. 1 for=4 show good agreement with the
) , L __prediction of Eq.(14), which is indicated by the upper solid
allowing for an unambiguous determination of the error ing,e The linear growth indicated by E@.3), shown as the
the true semiclassical dynamiég at timet usingA,, and — ,\er solid line, is valid for times short compared with the
permitting a study of the breakdown of the Sem'C|aSS'Ca|I-|eisenberg time\.
approximation at long time$ where performing an exact In Fig. 2, we confirm the behavior predicted by E({S)
sum overO(eM) classical paths is impractical or impossible. and(14) as we vary the semiclassical parameter1/h. In
To confirm the convergence of the iterated propaga{or  this figure, the erroE.., has been scaled by a factor Nfto
to the true long-time semiclassical propagakerfor semi-  make the curves at different values Nfapproximately co-
classical dynamics in phas_e space, and specifically the COlilicide and to emphasize that the error at a fixed fraction of
vergence of the semiclassical error in accordance with Egy,e Heisenberg time is falling off s~ 1/N in the semiclas-
(10), we first compute, as a function of timiethe average gjca) limit h— 0.
7-semiclassical error defined as Specifically, we may ask about the size of the semiclassi-
E..= A - Ul? cal error at the Heisenberg time itself, i.e.tAN=1, which
B T corresponds to the right edge of the graph in Figs.1 and 2.
=THA — Ud'TA .- Ud The scaling of the error at the Heisenberg time determines
- S (12 the feasibility of semiclassically computing individual eigen-
% A k) = UG R (D states and eigenvalues in the limit of snmvalk, correspond-
ing physically to the high-energy limi> Ey, Based on Eqg.

The results are shown in Fig. 1 for a chaotic kicked map14), we predict the error at the Heisenberg time to be pro-
defined by parametersy=m,=1 and K,=K,=1/2, with  nhortional toh:

semiclassical parametédd=256. We notice the relatively
poor agreement between the iterated semiclassical calcula- Ei-y=h[C; + C,]. (15
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FIG. 4. The convergence of the finite-time approximation to the

system is plotted as a function ofN for 7=5>1 and several long-time one-step semiclassical propagakeris studied for sev-
values of the semiclassical paramelz1/h=64, 128, 256. The eral systems and different values of the semiclassical parameter
classical system parameters are the same as in the previous figurel/h [see Eq(17)]. The circles represent data for the same system
The lower and upper solid curves represent the theoretical predig@rameters that were used in the previous three figures, white and
tions of Egs.(13) and (14), respectively. The dotted line indicates Plack circles corresponding téi=64 and N=144, respectively.

the predicted growth of the error for a system wiglyular dynam- ~ White triangles represent data fbi=64 with an alternative set of

ics, E,~t2 (see Sec. Ill B, and is shown to emphasize the qualita- Parametersmy=2, my=1, Kq=K,=1/2 in Eq.(2), having a larger
tively different behavior. Lyapunov exponent. The solid lines for the two systems are the

predictions of Eq. (18), with A=cosh’(3/2)=0.96 and A

. .. . . . _ 1/ _ . R
This prediction is tested in Fig. 3, where the black square§ ¢0Sh (2)=1.32, respectively. The white and black squafsis
represent the numerical data and the corresponding solid lingd# @1dN=256, respectivelyrepresent data for the regular dynam-

is a best fit to a power-law fornE._y=ahf=aN®, with B Ics discussed in Sec. lll B, where no convergence witls pre-
o TN ! - .. dicted or observed.
~0.8. This is to be compared with the asymptotic prediction

B=1 for h—0. The falloff in the error withN shows that ) ) ) ] .
individual eigenstates and eigenvalues may be determined The semiclassical spectrum and semiclassical eigenstates
with ever improving accuracy ad— . As we will find in ~ ¢an be obtained in prln_C|pIe by computing .the 'semlclassmal
the following section, this is in contrast with the situation for PropagatorA, for long times and transforming into the en-

systems with regular classical dynamisee also the white €rgy domain. However, since the semiclassical propaggtor
squares in Fig. B at long times becomes approximately multiplicatj\d],

| At+1) = AA(), (16)
. chaotic dynamics

s regular dynamics for some constant matriA., it is much more convenient to
diagonalizeA- directly to obtain the semiclassical eigenval-
ues and wave functions. We emphasize thais neither the
quantum evolution matrixJ; nor the semiclassical evolution

f -7 | matrix A, for one time step, but is instead the effective one-
] step semiclassical propagator that describes semiclassical
evolution at long times, and thus the stationary behavior of
the semiclassical dynamig&1]. In practice, we may obtain

A, as the limit

A =1lim A = lim A(7+ D[A(D] (17)

T—® T—00

FIG. 2. The mean squaredsemiclassical errdg; , for a chaotic

-6

]

64 144 256 As discussed in Ref11], the convergencé. ,—A. is ex-
N ponentially fast inr, at least for the position space semiclas-

FIG. 3. The semiclassical error at the Heisenberg tig, , is sical propagator:

plotted for 7=5>1, and for three values of the semiclassical pa- |
rameterN=1/h. Black squares correspond to the chaotic system of

the previous two figures, while white squares correspond to thén Fig. 4, we verify this convergence in the case of the phase
regular system of Sec. Ill B. The straight lines are fits to the powerspace semiclassical propagator for two different values of
law form Eny=aN™?, with the best fit givingBsa0ic=0-8 and  N=1/h (white and black circles The rate of convergence
Brequa=0.1, to be compared with the theoretical predictionsis consistent with the classical value of the Lyapunov expo-
Behaotic= 1 [EQ. (15)] and Brequia=0 [EQ. (21)]. nent, and is independent &#f The white triangles correspond

2~ h2e™M, (18)

A*,T_ A*
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to an example with a larger Lyapunov expongémg=2, mj, -6
=1,Kq=K,=1/2in Eq.(2)], where the convergence wittis
correspondingly faster. gt
Exponentially fast convergence & with 7implies that
the semiclassical spectrum and semiclassical wave function
can be obtained with very high accuracy using semiclassica = ~10
dynamics fort > 1 but still short compared to the Heisenberg ™
time t=N or even the log tim& ;.. In other words, all the 5 _i, |
information needed to calculate long-time or stationary semi-
classical properties is already contained in the short-time
classical behavior, well before interference effects become
relevant.
The stationary semiclassical spectrum and wave functions _1¢
can now be compared with their quantum analogs. From the
linear scaling withh of the error in the time evolution at the In ( £ / N)
Heisenberg time, Eq15), which has been tested above in
Fig. 3, we can deduce that the mean squared error in the FIG.5. The mean squaredsemiclassical errd, . for a system
eigenvalues must also scale linearly withignoring a pos- with regular dynamics, is plottgd as a functiontéN for 7=5>1
sible overall shift in the spectrufil2] which is absent in the @nd several values of the semiclassical parantétet /h=64,128,

present system due to symmetry. Thus 256. The classical system parameters mpe-1; my=—1; K=K,
=0.1. The solid curve represents the theoretical prediction of Eq.

1 N (€ sc— €)° 1 (20), with C=0.0016. The dotted line corresponds to linear growth
F= —E '—2' ~h=—, (19 of the error with timeE; ~t, applicable to the chaotic case olisee

Niz A N Eqg. (13) and Fig. 2, and is shown to emphasize the very different
scaling behavior in the case of regular dynamics.

_14 -

where theg and g sc are the quantum and semiclassical
eigenvalues, and is the mean level spacing. In practice, this
improvement in the semiclassical approximation for indi-Where the quadratic growth is confirmed as well as the pre-
vidual eigenvames ab—0 is difficult to measure due to dicted Scaling with the semiclassical parameﬂa’l/h. Fur-

numerical errors. For example, for the same chaotic systerthermore, the growth of the semiclassical error with time is

discussed previouskm,=m,=1, K =K,=1/2), F is already completely different in the regular and chaotic case, as can
1.3x 10°° for N=36. be seen from the dotted lines in Figs. 2 and 5.

For a regular system at the Heisenberg tim&l, we ob-

_ tain anfqg-independent semiclassical error
B. Regular dynamics

We may easily change parameters in E2). to obtain En=C, (21)

fully or almost fully stable classical dynamics and then re-
peat the semiclassical calculations and analysis of Sec. IlI
We choosemy=1, my=-1, K,=K;=0.1. The small nonlin-

earity Ipara_lmleteer z_in(irl](q hz;vetk?[_een selectedtto.reduce th?‘; egular system is plotted for several valuedNdh Fig. 3. We
semiclassica rror in the short-time propagator; as We Will,oa that the Heisenberg-time semiclassical error is larger for

see below, the semiclassical error grows much faster W'“Pne regular system as compared with a chaotic system at the

time here than in the chaotic case. same value oN, despite the fact that the one-step semiclas-

In a system with regular dynamics, a typical classical tra’sgcal error is larger in the chaotic case.

Jectory_repeatedly vISits the Same regions of phase space, and O(#% error in the semiclassical evolution at the

. . ! dlqeisenberg time, as indicated by E@1), suggests that
coherently[12]. Thus, in contrast with the chaotic case, thesemiclassical eigenvalues and wave functions, if they exist,

squared dlfferen.ce betwgen the_ time evolution matrix fordo not approach the corresponding quantum eigenvalues and
quantum dynamics and its semiclassical counterpart is e

: AR Xyave functions in thefies— 0 limit. Instead, for a two-
pected to grow quadratically with time: dimensional system with regular classical dynamics, the
t)\2 semiclassical error in the eigenvalues is proportional to the
E= Ch2t2=C<N) : (200 mean level spacing, implying that even the order of eigen-
values in the spectrum cannot be unambiguously determined
whereC is a classical constant that depends on the nonlinusing semiclassical methods.
earity of the system, as well as on the typical number of The problem, however, is more serious still, as the semi-
kicks needed for a typical classical trajectory to return to theclassical dynamics for a regular system does not in general
vicinity of its starting point. This quadratic growth of the approach a stationary behavior at long times. We recall that
error, even at times short compared to the Heisenberg timior a chaotic system, the dynamics at long times approaches
N, is to be contrasted with the result of H44) for a fully ~ multiplication by a constant matrif., whose eigenvalues
chaotic system. The prediction of EQO) is tested in Fig. 5, and wave functions determine the stationary properties of the

to be contrasted with the diminishing semiclassical error at
Ahe Heisenberg time in thie,s— O limit for a chaotic system,
as indicated by Eqc15). The Heisenberg-time error for our
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system. In contrast, for a regular system, the convergence of
Eq. (17) does not hold, since the Lyapunov exponent van-
ishes. This lack of convergence is observed in the squares
plotted in Fig. 4, where it is seen that successive approxima-
tions to A« differ from one another aO(l/Nz):O(hgﬁ). In
other words, the eigenvalues of the matrix defining semiclas-
sical evolution from time to t+1 and the eigenvalues of the
matrix defining semiclassical evolution frotm 1 tot+2 dif-
fer from one another on the scale of a mean level spacing, so
no unique semiclassical spectrum can be defined that de-
scribes the long-time semiclassical behavior.

We note that a system with regular dynamics may be
separable, in which case one may have a special set of coor- /
dinates for which semiclassical dynamics is exgast as
semiclassics may be exact for special chaotic systems such =
as the cat maps The above results apply to the general
situation where separability may not hold, e.g., a pseudoin-
tegrable system or a generic polygonal billiard, and also to
the separable case when the quantization is done in a set of

~ -
coordinates other than the ones for which the equations of .=
motion separate. Assuming the semiclassics is not exact, and /
independent of the initial size of the semiclassical error, the

semiclassical accuracy will progressively improve in the

heﬁ—>0.0r high-energy _l'm't as long as t.h.e Lyapl,mov €XPO- kG, 6. (a) The weighted semiclassical eigenvalue ey is

nent\ is nonzero, until eventually |nd|\(|dual eigenvalues plotted as a function of phase space locatign p,) for semiclas-

and wave functions become semiclassically resolvable. Ijca) parameterN=256. The contour curves correspond Fo

the case of zero Lyapunov exponent, this improvement doesg 001, 0.003, 0.005, 0.0Qthe thickest curve indicates the largest

not occur. erron. The semiclassical eigenvalues are obtained by diagonalizing

Ao in Eq. (17). (b) For each wave packepy, used in(a), the

fraction of stable trajectories for that wave packet is calculated clas-

sically and again plotted as a function of wave packet location. The
Generic two-dimensional systems are neither fully regulacontour curves correspond to stable fractions of 0.6, 0.9, Q95

nor fully chaotic, and it is therefore of interest to study thethickest curve corresponding to the most stable region

issue of semiclassical-quantum correspondence in the gen-

eral regime of “soft chaos.” A mixed classical phase spacésland surrounding thg=p=0 stable fixed point, and to a

can be obtained using parameteng=K,=0, m=K,=1 in  somewhat lesser extent in the islands associated with the

Eq. (2); for this system approximately 48% of phase space iperiod-2 orbit ap=1/2. In contrastF,, remains low in the

associated with the chaotic sea and the remainder consists @fgion of the chaotic sea, for example, in the vicinity of the

stable islands. Based on our discussion in Secs. Il A an@instable orbit agj=1/2, p=0. The contour plot in Fig. ®)

IIl B on the very different behavior of semiclassical accuracyshows the fraction of each wave packﬁi Consisting of

in chaotic and regular systems, respectively, it is natural t&table trajectories, and the similarity between the main fea-

ask whether semiclassical accuracy may vary with initia|tures in the two parts of the figure strongly suggests a corre-

C. Mixed dynamics

conditions in the case of a mixed phase space. spondence between semiclassical accuracy and classical
We define a local version of the mean squared eigenvalughase space structure.
error introduced in Eq(19): The total semiclassical error for a mixed system is of
N ( 2 1 course dominated by the error associated with the stable re-
€ cn— € ) .
F. = 2 |<lﬂi|¢k>|2L ~h==, (22) gions, a.nd scales in the same way as the error for a regular
Py 2
i=1 A N system in Sec. Il B.

where ¢y is one of the Gaussian wave packets introduced in
Sec. I, s and ¢; are the eigenstates and eigenvalues of the
quantum dynamics, ang sc are the semiclassically obtained  phase-space semiclassical propagation allows us to make
counterparts ta. In other wordsf, measures the error in direct comparison of semiclassical validity in chaotic and
the semiclassical eigenvalues, weighing each eigenvalue estable classical systems. Using the same semiclassical ap-
ror by the overlap of the corresponding eigenstate WithA  proximation in both cases results in a semiclassical error that
contour plot ode,k versus phase space coordinadgspy is  scales with% in the same way at short times. However, the
shown in Fig. 6a), for N=1/h=256. growth of the error with time is very different in the two
We see that the semiclassical error is peaked in the majaituations. In the regular case, the error grows coherently

stable regions of phase space, particularly in the large stableecause each trajectory repeatedly visits the same regions of

IV. SUMMARY
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space phase; the mean squared error therefore grows qua-All calculations in the present paper were performed for
dratically with time. In the chaotic case, this coherence effectime-dependent one-dimensional maps, whose scaling prop-
does not occur at times short compared with the Heisenbergrties are equivalent to those of two-dimensional Hamil-
time, resulting in a linear growth of the mean squared errortonian systems. Id=3 dimensions, or in an interacting sys-
At the Heisenberg time itself, the mean squared error inem, the Heisenberg time grows as a higher powet; df
the propagator matrix elements becon@4) in the case of  than in the two-dimensional single-particle case, resulting in
a classically stable dynamics, making it impossible in geny |arger accumulated semiclassical error by the Heisenberg
eral to speak of well-defined semiclassical wave functions ofime for both chaotic and regular systems. For example, the
eigenvalues, i.e., ones that are independent of the choice gf e scaling argument that leads to &d) for d=2 chaotic

semiclassical coordinates. For a given choice of coordinategysternS predict®(1) semiclassical errors at the Heisenberg

zignIé:ilétgslncalbqﬂ%gtlgﬁgﬂo?zn;g(;e::l?/ey/vgll Srggiunceffgr’ﬁrt‘xgil;time for chaotic systems, independent of energy, i.e., eigen-
g by P 9 value errors that remain a constant fraction of a mean level

quantum counterparts. Different semiclassical quantlzatlonspacing. In other words, the breakdown time of the semiclas-

of a regular system will produce spectra differing from each’! o ) ) ]
other at the same order, making it impossible to uniquelys'cal approximation will be proportional to the Heisenberg

determine even the order of eigenvalues in the spectrum vime in three dimensions, even when the dynamics is chaotic
semiclassical methodsinless a particularly favorable set of (@nd much shorter than the Heisenberg time for regular dy-

coordinates can be chosen where semiciassics happens toHMICS. _ _ . _ _
exact’ e.g., for a Separab|e dynan)jcs For d24, e.g., In the case of two |nteraCt|ng pal’tlcles n
In contrast, semiclassical dynamics at the Heisenberg tim&vo dimensions with no conserved quantities apart from total
for a classically chaotic system becomes increasingly accienergy, the semiclassical approximation is expected to break
rate as the system energy is increased. In the energy domaiown well before the Heisenberg time, even when the dy-
the semiclassical error becomes a progressively smaller fracamics is fully chaotic. It would be interesting to investigate
tion of a mean level spacing, so the spectrum can be semihis behavior quantitatively for model systems, and also to
classically determined with arbitrarily high accuracy whenascertain how a higher-order semiclassical approximation
very highly excited states are considered. The convergenagay enable semiclassical methods to remain valid for inter-
of semiclassical to quantum behavior for chaotic system igcting systems.
expected to be independent of the particular semiclassical
method choseiifor example, it is independent of whether a
position, momentum, or phase space semiclassics ig ased
long as the methods have the same scaling witht fixed
time.
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