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Using a one-dimensional dynamical system, representing a Poincaré return map for dynamical systems of
the Lorenz type, we investigate the border-collision period-doubling bifurcation scenario. In contrast to the
classical period-doubling scenario, this scenario is formed by a sequence of pairs of bifurcations, whereby each
pair consists of a border-collision bifurcation and a pitchfork bifurcation. The characteristic properties of this
scenario, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors and
noninvariant attractive sets, are investigated.
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I. INTRODUCTION

Piecewise-smooth dynamical systems have been investi-
gated intensively in the last years. One reason for this is that
these systems represent models of several technical devices
showing any kind of switching behavior. Several electronic
circuits [1–5] and mechanical systems with impact or stick-
slip phenomena[6–16] are typical examples here. In the field
of nonlinear dynamics 1D maps with a piecewise-smooth
system function are well known as return maps, obtained by
the investigation of Poincaré sections of several dynamical
systems continuous in time[17,18]. This is caused by the
complex stretching, squeezing, and folding mechanism, that
is inherent for chaotic attractors, for instance in systems of
the Lorenz type[19,20]. The behavior of piecewise-smooth
dynamical systems is mainly influenced by phenomena oc-
curring at the border between partitions in the state space.

Early works in this field are presented by Feigin in the
Russian publications[21–23]. In the Western literature the
first works on border collision bifurcations are performed by
Chin et al. [6], Nusse and Yorke[24,26], Nusseet al. [25],
and Duttet al. [27]. A lot of important results are discovered
by Maistrenkoet al. [3,4,28,29], Lamba and Budd[7] di
Bernardoet al. [30–32], and Kowalczyk and di Bernardo
[33], as well as by other authors[8,34–36]. Recently, several
types of border-collision related bifurcations are found, like
corner collision, sliding, and grazing bifurcations[37,38]. An
overview about bifurcations in piecewise-smooth dynamical
systems and related phenomena is given in[39].

In our work we investigate a scalar one-parametric map
with a piecewise-smooth system function. In[18,40] it is
shown that this system represents a special kind of Poincaré
return map of the Lorenz system. There exist further articles
concerning symbolic dynamics in systems of this type
[41,42] whereas the emergence of coexisting attractors is re-
ported in[43]. However, the bifurcation scenarios occurring
in systems like this are not well investigated until now. It
turns out that these dynamical systems show a sequence of
bifurcations where attractors with twice the period emerge,

whereby it can be shown that these bifurcations are not the
well-known flip bifurcations. Such bifurcations are already
discussed in [5,44,45] and denoted as border-collision
period-doubling bifurcations[44]. In [5] experimental obser-
vations of these bifurcations in some electronic circuits
(buck and boost converters) are also presented. In these
works, however, a class of maps with a piecewise-smooth,
but continuous system function are investigated. The system
that we investigate does not belong to this class. The inter-
esting property of this system is that it shows a complete
bifurcation scenario similar to the well-known period-
doubling scenario, but dominated by the border-collision
phenomenon. Therefore, it is further denoted as a border-
collision period-doubling scenario.

II. BORDER-COLLISION PERIOD-DOUBLING SCENARIO

A. Investigated dynamical system

The scalar one-parametric dynamical system discrete in
time, which is investigated in this work, is defined as fol-
lows:

xn+1 = fsxn,ad = 5 f lsxn,ad = axns1 − xnd if xn , 1/2

fcsxnd = 1/2 if xn = 1/2

f rsxn,ad = axnsxn − 1d + 1 if xn . 1/2
6
s1d

with xP f0,1g, aP f0,4g. For all parameter values except
a=2, the system functionf is discontinuous at the pointx
=1/2 (see Fig. 1). There are two characteristic properties of
system(1), which should be emphasized. The first one is the
symmetry of the system functionf with respect to its discon-
tinuity point, namely, fsx,ad=1−fs1−x,ad. As a conse-
quence of this symmetry, the asymptotic dynamics of the
investigated system takes place either on symmetric attrac-
tors or pairs of coexisting attractors symmetric to each other.
Therefore, it is expected that symmetry-breaking–symmetry-
recovering phenomena occur in system(1). It should be re-
marked that in the literature that we know so far[18,40–42],
systems like(1) are considered only in nonsymmetric vari-
ants, whereby the singular pointx=1/2 is contained in one
of the partitions that is eitherf0,1/2g or f1/2,1g. The sym-
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metric variant seems to be more natural because it fits better
into the Poincaré return maps of dynamical systems continu-
ous in time. Especially for the Poincaré return map of the
Lorenz system considered in[18], the point of discontinuity
of system(1) corresponds to the stable manifold of the fixed
point in the origin. The second characteristic property is, that
the functionf is on the intervalxP f0,1/2d identical with the
system function of the logistic map

xn+1 = axns1 − xnd s2d

with xP f0,1g, aP f0,4g. The dynamic properties of the lo-
gistic map and especially its period-doubling bifurcation sce-
nario are, in the meanwhile, well investigated. Here now the
question arises, how far the identical system functions on the
interval xP f0,1/2d lead to an analogy in the dynamic be-
havior of system(1) compared with that of the logistic map
(2).

B. Description of the bifurcation scenario

By variation of the parametera system(1) shows a bifur-
cation scenario, which one can denote as border-collision
period-doubling scenario. As one can see from Fig. 2(a), the
period diagram of this scenario cannot be distinguished from
the one of the period-doubling scenario taking place in the
logistic map. One observes here also a sequence of periodic
attractors, whereby the subsequent periods represent a geo-
metrical seriespn=p02

n, with n=0,1,2, . . . ,̀ and p0=1.
The diagram of the Lyapunov exponent[Fig. 2(b)] shows
also the well-known behavior withl=0 at the local bifurca-
tion points andl→−` at points, which lie between each two
subsequent local bifurcations. However, the bifurcation dia-
gram (Fig. 3) is totally different from the classical period
doubling scenario. The bifurcations that we observe here are
clearly not the usual flip bifurcations. Hence, the important
question we have to deal with is how the bifurcation scenario
emerges here.

C. Fixed points and periodic orbits of the investigated system

Let us consider the behavior of system(1) in the complete
interval aP f0,4g. Firstly one can see, that for all parameter
values the system possesses three fixed pointsx1

* =0, x2
*

=1/2, and x3
* =1. Using the linear stability analysis, one

finds, that in the parameter interval 0øa,1 the fixed points
x1

* andx3
* are stable. All initial values fromf0,1/2d tend to

the fixed pointx1
* , whereas all initial values froms1/2,1g are

mapped to the fixed pointx3
* .

The stability of the fixed pointx2
* cannot be determined

using linear stability analysis, because the derivative of the
system functionf is not defined at this point. However we
state that the fixed pointx2

* is unstable for all parameter val-
ues aP f0,2d. This can be shown taking into account that
orbits with initial valuesx0=x2

* ±« for any arbitrary small
deviation« converge forn→` either to the fixed pointx1

* or
to the fixed pointx3

* .
Both fixed pointsx1

* and x3
* become unstable by a tran-

scritical bifurcation, which occurs at the parameter valuea
=at=1 (see Fig. 5). At this point two new stable fixed points
x4

* =1−1/a and x5
* =1/a emerge in the domain[0, 1]. All

initial values froms0,1/2d tend tox5
* and all initial values

from s1/2,1d are finally mapped tox4
* . Note that in Fig. 3,

for reasons of simplicity and clarity, only one fixed point,
namelyx4

* is shown.
For parameter valuesa between 1 and 2, the fixed points

x1
* , x2

* , andx3
* are unstable and the fixed pointsx4

* andx5
* are

stable. At the parameter valuea=a1
bc=2 the first border-

collision bifurcation(see Figs. 4 and 5) occurs. Hereby two
facts are important. Firstly, the fixed pointsx4

* andx5
* vanish

at the bifurcation point. Note that due to the border collision,
these fixed points do not lose their stability as is typical for
local bifurcations in smooth maps, but disappear altogether.
Secondly, a stable limit cycle with period two emerges. This
limit cycle consists of the points1−1/a and 1/a, which

FIG. 1. Typical shapes of the system function
fsx,ad for different values of the parametera.

FIG. 2. Border-collision period-doubling sce-
nario. Shown are the periodsT (logarithmic plot)
and the Lyapunov exponentsl. Note, that these
diagrams are identical with the corresponding
diagrams of the period-doubling scenario in the
case of the logistic map.
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were fixed points before the border-collision bifurcation(for
this reason we denote this limit cyclehx4

* ,x5
*j). This behavior

can be explained taking Fig. 4 into consideration. As one can
see from this figure, before the bifurcation the functionsf l
and f r intersect, the angles bisector in their domainsf0,1/2d
ands1/2,1g. Hence, these intersection points are fixed points
of system(1). After the border-collision bifurcation the inter-
section points leave the domains where the functionsf l and
f r have effect, but the second iterated function now intersects
the angles bisector at the same points.

In addition we remark that the fixed pointsx4
* andx5

* col-
lide at the bifurcation point, not only with each other, but
also with the fixed pointx2

* . Hence, the fixed pointx2
* , which

is unstable before the bifurcation, is stable at the bifurcation
point itself, and after the bifurcation the fixed pointx2

* be-
comes unstable again. We remark that the described behavior
is not essential for the border-collision bifurcation taking
place ata=2. The border-collision bifurcation occurs as a
result of the collision of the fixed pointsx4

* andx5
* with the

border between the partitions and not due to their collision
with the fixed pointx2

* , which in the considered case lies on
this border.

For parameter values 2,a,3 the limit cyclehx4
* ,x5

*j is
the global attractor of system(1). The fixed pointsx1

* , x2
* , and

x3
* are unstable and the fixed pointsx4

* and x5
* do not exist

after the first border-collision bifurcation. At the parameter
valuea=a1

p=3 this limit cycle undergoes the first pitchfork

bifurcation (see Fig. 5). Therefore, it loses its stability and
two coexisting stable limit cycles with period two emerge.
These limit cycles are given by

hx1
** ,x2

** j =
1

2
+

1

2a
s±1 + Îa2 − 2a − 3d s3d

and

hx3
** ,x4

** j =
1

2
+

1

2a
s±1 − Îa2 − 2a − 3d. s4d

Note that in Fig. 3 the limit cyclehx3
** ,x4

** j is not presented.
As expected, the two limit cycles are symmetric to each
other with respect to the pointx=1/2, namely x1

** =1/2
−x4

** , x2
** =1/2−x3

** . The second border-collision bifurcation
occurs at the parameter valuea=a2

bc=1+Î5<3.2361 (see
Fig. 5). Exactly at the bifurcation pointsa=an

bcsnù2d an
interesting phenomenon, namely attractive noninvariant sets,
exist. For the casea=a2

bc, it is investigated in detail in Ap-
pendix I. However, for the border-collision period-doubling
scenario, the behavior in the vicinity of the bifurcation point
is relevant. Here the two coexisting limit cycleshx1

** ,x2
** j

[shown in Fig. 13(a)] and hx3
** ,x4

** j undergo the same sce-
nario as the two coexisting fixed points at the first border-
collision bifurcation. That means they do not exist any more
after the bifurcation, and a stable limit cycle with period four
emerges. Again, the new limit cycle after the border collision
has twice the period as the coexisting limit cycles before. It
consists of four points, which form the two coexisting limit
cycles before the border collision. Accordingly, we denote
this new limit cycle withhx1

** ,x2
** ,x3

** ,x4
** j [see Fig. 13(c)].

The limit cyclehx1
** ,x2

** ,x3
** ,x4

** j represents the global at-
tractor until the second pitchfork bifurcation takes place at
a=a2

p=1+Î6<3.4495(see Fig. 5). There it loses its stabil-
ity and two new limit cycles with the same period emerge.
These limit cycles coexist until the next border-collision bi-
furcation, and the scenario continues with the same pattern
(see Fig. 6). Note that the described behavior is not specific
for the parameter valuea2

bc of the second border-collision
bifurcation, but takes place at all following border-collision
bifurcationsan

bcsn.2d as well.
As one can see from Fig. 2, the border-collision bifurca-

tions take place at the border, wherel→−` holds. We re-
mark, however, that this is not a general property of border-
collision bifurcations, but a specific feature of system(1).

FIG. 3. Border-collision period-doubling scenario. This bifurca-
tion diagram shows remarkable differences compared with that of
the classical period-doubling scenario.

FIG. 4. First border-collision bifurcation at
a=a1

bc=2. Shown are the system function(thick
line) and its second iterated function(thin line)
before the bifurcation(a) and after the bifurcation
(b). (c) is a blowup of the rectangle marked in
(b). The dotted lines in(b) and(c) mark the func-
tions f l and f r outside their domains.
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This property is here due to the fact, that the left and right
derivatives of the functionfsxd are equal to zero at the point
of discontinuity, i.e., at the pointx=1/2.

Now we can summarize the results obtained so far and
compare the border-collision period-doubling scenario de-
scribed here with the usual period-doubling scenario. In both
cases there exists a sequence of periodic attractors with pe-
riods p02

n, nù0. In the case of the usual period-doubling
scenario, the sequence can be illustrated with the diagram
shown in Fig. 7(a). In contrast to this, the border-collision
period-doubling scenario is formed by a sequence of pairs of
bifurcations. Each of them consists of two bifurcations, a
border-collision bifurcation and a pitchfork bifurcation, as it
is schematically shown in Fig. 7(b).

Both scenarios converge to the parameter valuea`, where
an attractor of the Feigenbaum type(a strange, but not cha-
otic one) exists. Note, that the scaling properties of the
border-collision period-doubling scenario of system(1) are
the same as the scaling properties of the classical period-
doubling scenario of the logistic map(2). Indeed, the border-
collision bifurcations occur in system(1) at the same param-
eter values, where the logistic map has the superstable orbits.
The pitchfork bifurcations in system(1) take place at the
same parameter values, where the logistic map has the flip
bifurcations. Hence, the Feigenbaum constant corresponding
to the scaling behavior in the parameter space of the border-
collision period-doubling scenario in system(1) have to be
the same as in the case of the logistic map. Furthermore, also
the Feigenbaum constant corresponding to the scaling behav-
ior in the state space has to be the same for both systems.
This is due to the fact that both parabolas, that of each pitch-
fork bifurcation in the border-collision period-doubling sce-
nario of system(1) and that of the corresponding flip bifur-
cation of the classical period-doubling scenario of the
logistic map(2), are identical.

Concerning the symmetry-breaking–symmetry-recovering
property of the border-collision period-doubling scenario,
mentioned in Sec. II A, we yield now the following. In each
step of the scenario the symmetry breaking takes place at the
pitchfork bifurcation, where a symmetric limit cycle be-
comes unstable and splits into two coexisting asymmetric
limit cycles with the same period, which are symmetric to
each other.(Note that Figs. 3, 9, and 11 show only one of the
coexisting limit cycles.) The symmetry is recovered by the
next border-collision bifurcation, whereby the asymmetric
limit cycles disappear, and a new symmetric one with twice
the period emerges(see Fig. 6). This behavior is illustrated in
Fig. 8, which shows the mean pointx̄ of the attractors de-
fined by

x̄sAd =
1

N
o
i=1

N

xi , A = hx1 ¯ xNj s5d

depending on the parametera. For a symmetric attractorA
of system(1), it holds x̄sAd=1/2,whereas for two asymmet-
ric attractorsA1 and A2, symmetric to each other, it holds
x̄sA1d=1/2−x̄sA2d.

III. BEHAVIOR OF THE INVESTIGATED SYSTEM
BEYOND a`

A. Influence of the border-collision period-doubling scenario
on the band-merging scenario

At the parameter valuea` the description of the border-
collision period-doubling scenario is completed. However,
system(1) shows fora.a` a lot of interesting phenomena,
which we will briefly describe in this section.

The first one is the band-merging bifurcation cascade,
which takes place directly after the parameter valuea`. This

FIG. 5. Analytical results about the attractors
of system(1). The following bifurcation points
are marked:at transcritical bifurcation;a1

bc first
border collision bifurcation;a1

p, first pitchfork bi-
furcation;a2

bc second border collision bifurcation;
and a2

p second pitchfork bifurcation. The points
x1

* , x2
* , andx3

* are the fixed points. The pointsx4
*

and x5
* are fixed points betweenat and a1

bc and
build a limit cycle with period two aftera1

bc. The
pointsx1

** , x2
** , x3

** , andx4
** build two coexisting

limit cycles with period two betweena1
p anda2

bc

and limit cycle with period four aftera2
bc.

FIG. 6. Third border-collision bifurcation at
a=a3

bc<3.4985. Two coexisting asymmetric
limit cycles with periodT=4 before the bifurca-
tion (a), (b). A symmetric limit cycle with period
T=8 after the bifurcation(c).
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behavior is well-known for the logistic map and can be sum-
marized for this system as follows.

(i) Before thenth band-merging bifurcation, a chaotic at-
tractor with 2n bands exists.

(ii ) At the bifurcation point, the 2n bands of the attractor
merge pairwise with each other. Additionally the merging
points collide with the points of an unstable limit cycle with
the period 2n−1, which emerges at thenth flip bifurcation and
becomes unstable at thesn+1dth one. Especially forn=1 the
bands of a chaotic two-band-attractor merge and collides
with an unstable fixed point.

(iii ) After the nth band-merging bifurcation, a chaotic at-
tractor with 2n−1 bands exists.

In the system(1) this cascade is similar to the one de-
scribed above, but there exists some remarkable difference
also (see Fig. 9):

(i) Before then-th band-merging bifurcation a chaotic at-
tractor with 2n+1−1 bands exists.

(ii ) At the bifurcation point the 2n+1−1 bands of the at-
tractor merge pairwise with each other. Additionally, the
merging points collide with the points of an unstable limit
cycle with the period 2n, which emerges at thenth border-
collision bifurcation and becomes unstable at thenth pitch-
fork bifurcation. Especially forn=1, the bands of a chaotic
three-band attractor merge and collide with the points of an
unstable limit cycle with period two.

(iii ) After the nth band-merging bifurcation, a chaotic at-
tractor with 2n−1 bands exists.

Note, that the counting of the band-merging bifurcations
is done for decreasing parameter values due to the following
fact: at thenth band merging bifurcation, the unstable limit
cycle is involved, which emerges at the point of thenth
border-collision bifurcation. In order to emphasize this rela-
tionship we count the band-merging bifurcations correspond-
ingly.

In Fig. 9 the behavior described above is illustrated in
more detail for the last two band-merging bifurcations. Be-
fore the band-merging bifurcations at the parameter valuea2

m

there exists a chaotic seven-band attractor. At the bifurcation
points, its bands merge and collide with the points of the
limit cycle hx1

** ,x2
** ,x3

** ,x4
** j, which emerges at the second

border-collision bifurcation ata2
bc and becomes unstable at

the second pitchfork bifurcationa 2
p. After the band-merging

bifurcation, a chaotic three-band attractor exists. Its bands
collide at the parameter valuea1

m with each other and with
the limit cycle hx4

* ,x5
*j, which emerges at the first border-

collision bifurcationa1
bc and becomes unstable at the first

pitchfork bifurcationa 1
p.

B. Kneading orbits and boundaries of chaotic attractors

Further interesting results can be obtained considering the
boundaries of the chaotic attractors of system(1). The tech-
nique that we use here is related to the technique of kneading
orbits [46,47]. The usual approach here is to investigate itin-
eraries of some critical points. For system(1) this is obvi-

FIG. 7. Schematic representation of the classical period-
doubling scenario(a) and the border-collision period-doubling sce-
nario(b). The dashed boxes mark the regions that can be denoted as
one step of the corresponding scenario.

FIG. 8. Mean pointsx̄ of the attractors within
the border-collision period-doubling scenario ob-
tained for two symmetric initial values[xs0d
=0.25 andxs0d=0.75]. (b) and(c) are blowups of
the regions marked in(a) and (b).
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ously the pointx=1/2. Due to thefact, that the pointx
=1/2 is afixed point of system(1), one has to track itiner-
aries of points in its vicinity. The images of these points are
the boundaries of the chaotic attractors. Therefore, the cha-
otic attractors of system(1) are open sets. For an-band at-
tractor, we denote withxfn,mg

up the limes supremum of the
upper boundary of itsmth band withm=1, . . . ,n. Analogous
we denote withxfn,mg

lo the limes infimum of the lower bound-
ary of this band. Now we introduce the following functions:

glsad = lim
«→0

fS1

2
− «,aD = f lS1

2
,aD , s6d

grsad = lim
«→0

fS1

2
+ «,aD = f rS1

2
,aD s7d

and yield

glsad =
a

4
, grsad = 1 −

a

4
. s8d

The smallest and the largest boundaries for all chaotic attrac-
tors of system(1) are directly given by the functionsgl and
gr:

xfn,ng
up = glsad xfn,1g

lo = grsad ∀n = 2k − 1, k P N. s9d

As expected, the valuesxfn,ng
up andxfn,1g

lo are symmetric to each
other with respect to the pointx=1/2. For theinvestigation
of the multiband attractors of system(1), we have to deal
with iterated functions. Therefore, we define

glrsad = f r„glsad,a…, glrl sad = f l„glrsad,a…,

grlsad = f l„grsada…, grlr sad = f r„rrlsad,a…, s10d

and calculate

glrsad =
1

16
a3 −

1

4
a2 + 1 = 1 −grlsad,

glrl sad =
1

256
a7 −

1

32
a6 +

1

16
a5 +

1

16
a4 −

1

4
a3 + 1

= 1 −grlr sad. s11d

These functions determine the boundaries for then-band at-
tractors with n=3,7,15, . . . (that means∀n=2k−1,k.1).
Especially for the three-band attractor, we obtain

xf3,1g
up = grlr sad, xf3,2g

up = glrsad,

xf3,2g
lo = grlsad, xf3,3g

lo = glrl sad. s12d

Note, that the boundariesxf3,1g
lo and xf3,3g

up are already deter-
mined by Eq.(9). Hence, we have here the analytic result for
all six boundaries of the three-band attractor of system(1),
[see Fig. 10(a)].

The same procedure can be applied for the further chaotic
attractors of system(1). For instance, from the 14 boundaries
of the seven-band attractor six bands are given by the func-
tions that we have already defined

xf7,1g
lo = grsad, xf7,5g

up = glrsad,

xf7,2g
up = grlr sad, xf7,6g

lo = glrl sad, s13d

xf7,3g
lo = grlsad, xf7,7g

up = glsad,

and the remaining eight bands can be determined as follows
[see Fig. 10(b)]:

xf7,1g
up = grlrlr sad = f r„grlrl sad,a…,

xf7,2g
lo = grlrlrlr sad = f r„grlrlrl sad,a…,

xf7,3g
up = grlrlrl sad = f l„grlrlr sad,a…,

xf7,4g
lo = grlrl sad = f l„grlr sad,a…,

FIG. 9. Band-merging cascade in system(1).
See text for detailed description.
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xf7,4g
up = glrlr sad = f r„glrl sad,a…,

xf7,5g
lo = glrlrlr sad = f r„glrlrl sad,a…,

xf7,6g
up = glrlrlrl sad = f l„glrlrlr sad,a…,

xf7,7g
lo = glrlrl sad = f l„glrlr sad,a…. s14d

Using the presented technique, the parameter values
where the band-merging bifurcations occur, can be easily
calculated. For instance, the parameter valuea1

m can be
found using any of the equationsxf3,1g

up =xf3,2g
lo or xf3,2g

up =xf3,3g
lo .

However, it is more simple to solve the equationsxf3,1g
up =x5

* or
xf3,3g

lo =x4
* , from which one gets this value also because the

bands collide here not only with each other, but also with the
points of the unstable limit cyclehx4

* ,x5
*j. In any case we

obtain

a1
m =

2

3SÎ3 19 + 3Î33 +
4

Î3 19 + 3Î33
+ 1D < 3.678 573 511.

s15d

The functionsg. . .sad defined so far play an important role
also after the merging of the corresponding bands. Here these
functions[see Fig. 10] determine the peaks of the invariant
measure of the chaotic attractors, as described in[48].

C. Influence of the border-collision period-doubling scenario on
the behavior within periodic windows

The last interesting property of system(1) that we would
like to consider concerns the periodic windows within the
chaotic regime(see Fig. 11). Again there are similarities and
also differences between system(1) and the logistic map. For
both systems the periodic windows exist at the same param-
eter values and occur in the same order, which can be de-
scribed using the Metropolis-Stein-Stein sequences[49]. The
difference between the logistic map and system(1) is that
within each specific window in the case of the logistic map,

the period-doubling cascade takes place, and in the case of
system (1), the border-collision period-doubling cascade.
The bifurcation leading to the formation of the periodic win-
dows is the same in both cases, namely, the tangent bifurca-
tion. For the logistic map there exists a pair of limit cycles
after this bifurcation—a stable and an unstable one. For sys-
tem (1) two such pairs emerge after the bifurcation. For in-
creasing parameter values, the stable limit cycles of both
pairs undergo the border-collision bifurcation described
above. This bifurcation leads to the formation of a single
limit cycle with twice the period. After that the border-
collision period-doubling scenario continues as described
above fora,a`. Note also that the two unstable limit cycles
emerging at the tangent bifurcation do not collide with the
partition border. As in the case of the logistic map, these
limit cycles lead to the global bifurcation(crisis) at which
the periodic window is closed.

IV. SUMMARY AND OUTLOOK

In this work we have described the border-collision
period-doubling scenario. Although this scenario has some
similarities with the classical period-doubling scenario, there
are remarkable differences as well. It is shown that the
border-collision period-doubling scenario is formed by a se-
quence of pairs of bifurcations. Each pair consists of a
border-collision bifurcation and a pitch-fork bifurcation. A
remarkable characteristic property of the described scenario
is the symmetry-breaking and symmetry-recovering phenom-
enon within each pair of these bifurcations. It is further
shown, how the border-collision phenomenon influences the
band-merging scenario and the behavior within periodic win-
dows in the chaotic regime. In the Appendix the dynamics of
the investigated system at the border-collision bifurcation
points is investigated in detail. It is shown that at these
points, orbits for all typical initial values tend to noninvariant
attractive sets. These noninvariant attractive sets are numeri-
cally difficult to detect and lead, therefore, often to the ob-
servation of numerical artifacts.

Concerning the investigated system, the following ques-
tion remains open: as it is shown in[18], system(1) repre-

FIG. 10. Boundaries of chaotic attractors.(a)
are the six functions defining the boundaries of
three-band attractors.(b) are the eight functions
(thick lines) that define together with the six
functions of(a) (thin lines) the 14 boundaries of
seven-band attractors. Note that these function
also reveal the basic structure of the bifurcation
diagram, including periodic windows presented
in Figs. 3 and 9.
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sents a special kind of Poincaré return map for the well-
known Lorenz system[19]. The relationship between
bifurcations occurring in the Lorenz system and the border
collision period doubling scenario has to be investigated in
more details. Especially the hypothesis that the border-
collision bifurcations in system(1) correspond to homoclinic
bifurcations in the Lorenz system has to be checked.

APPENDIX: DYNAMICAL BEHAVIOR AT THE
BORDER-COLLISION BIFURCATIONS

The dynamical behavior of the investigated system(1) at
the border-collision bifurcations is more complex. Let us
consider for instance the second border-collision bifurcation
taking place at the parameter valuea=a2

bc=1+Î5. Note, that
the behavior at all following border-collision bifurcations
pointsa=an

bc, n.2 is similar.

Using numeric simulations one obtains at the pointa2
bc

orbits like the one presented in Fig. 13(b). However, it turns
out that this behavior is a numerical artifact based on the
finite representation of floating point numbers in the com-
puter and hence must be investigated in more details analyti-
cally. Therefore, we have to consider the following three
points:

A =
1

2
, B = f rsAd = 1 −

1 +Î5

4
, C = f lsAd =

1 +Î5

4
.

sA1d

Note, that these points are the points corresponding to the
two coexisting limit cycle with period two before the bifur-
cation:

FIG. 11. Border-collision period-doubling scenario within the three-periodic window(a). Enlarged are the upper part(b), the middle part
(c), and the lower part(d) of the scenario.

FIG. 12. Behavior of system(1) at the point
a=a2

bc=1+Î5 of the second border-collision bi-
furcation. Upper part: critical pointsA, B, C and
the mapping of their neighborhoods onto each
other. Lower part: three steps of this mapping for
the right-side open neighborhoodU+sAd.
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A = ux2
** ua=a2

bc = ux3
** ua=a2

bc, B = ux4
** ua=a2

bc, C = ux1
** ua=a2

bc.

sA2d

It is remarkable that at this bifurcation point the pointsx2
**

andx3
** collide with each other, with the partition border, and

with the fixed pointx2
* , which lies on this border. Due to the

stability of the limit cycles before the bifurcation, one can
assume that all typical initial states will be mapped during
the iteration into the neighborhoods of pointsA, B, andC. As
nontypical initial states we denote the unstable fixed points
and their preimages, i.e., the points that will be finally
mapped to these fixed points:

Xnt = hx0 P f0,1gu ∃ mù 0:f fmgsx0d = xi
* ,i = 1,2,3,4,5j,

sA3d

wherebyf fmg denotes themth iterated function of the func-
tion f. The setXnt is obviously countable and hence its Le-
besgue measure is zero. Now the question that remains is

how the typical initial states behave, i.e., the initial states
from the setXt=f0,1g \Xnt. Let us consider the left and right
side open neighborhoods of the pointsA, B, andC:

U +sAd = sA,A + «d, U −sAd = sA − «,Ad,

U +sBd = sB,B + «d, U −sBd = sB − «,Bd, sA4d

U +sCd = sC,C + «d, U −sCd = sC − «,Cd,

with a sufficient small positive number« (see Fig. 12). Using
straightforward iterations we obtain for the right-side neigh-
borhood of pointA

xk P U +sAd ⇒ xk+1 P U +sBd ⇒ xk+2 P U +sAd sA5d

and an analogous result for the left-side neighborhood of
point A:

FIG. 13. Second border-collision bifurcation
at a=a2

bc=1+Î5. Numerical observed behavior
of system(1) before the bifurcation(a), at the
bifurcation point(b), and after the bifurcation(c).
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xk P U −sAd ⇒ xk+1 P U −sCd ⇒ xk+2 P U −sAd. sA6d

It can be shown analytically that the neighborhoodsU +sAd,
U −sAd, U +sBd, andU −sCd are contracting with respect to the
flow of system(1). That is,

xk P U +sAd ⇒ 0 , uxk+2 − Au , uxk − Au,

xk P U −sAd ⇒ 0 , uxk+2 − Au , uxk − Au,

xk P U +sBd ⇒ 0 , uxk+2 − Bu , uxk − Bu,

xk P U −sCd ⇒ 0 , uxk+2 − Cu , uxk − Cu, sA7d

or equivalently,

f f2gfU +sAd,a2
bcg� U +sAd, f f2gfU +sBd,a2

bcg� U +sBd,

f f2gfU −sAd,a2
bcg� U −sAd, f f2gfU −sCd,a2

bcg� U −sCd.

sA8d

Concerning the neighborhoodsU −sBd and U +sCd we state
that they are transient. That is,

f „U −sBd,a2
bc
… , c ·U −sAd, f „U +sCd,a2

bc
… , c ·U +sAd,

sA9d

with a suitable factorc.
The described behavior is quite similar to the convergence

of orbits against stable limit cycles with period two. How-
ever there exists a significant difference, namely, that neither
the sethB,Aj nor the sethA,Cj are limit cycles. All typical
initial states converge toward these sets, hence the sets are
attractive. However it remains a question whether these sets
can be denoted as attractors.

The numerical artifact presented in Fig. 13(b) can be ex-
plained easily now. As soon as the numerical calculated orbit
reaches the«-neighborhoods of the pointA with « less than
the smallest machine number(that is the smallest represent-
able number corresponding to the chosen precision), the cur-
rent state will be interpreted as pointA, and the orbit remains
at this point forever. Because setshB,Aj and hA,Cj are at-
tractive, the described behavior takes place for all typical
initial valuesx0PXt.
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