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Border-collision period-doubling scenario
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Using a one-dimensional dynamical system, representing a Poincaré return map for dynamical systems of
the Lorenz type, we investigate the border-collision period-doubling bifurcation scenario. In contrast to the
classical period-doubling scenario, this scenario is formed by a sequence of pairs of bifurcations, whereby each
pair consists of a border-collision bifurcation and a pitchfork bifurcation. The characteristic properties of this
scenario, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors and
noninvariant attractive sets, are investigated.
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I. INTRODUCTION whereby it can be shown that these bifurcations are not the

) ) ) ) well-known flip bifurcations. Such bifurcations are already
Piecewise-smooth dynamical systems have been investyiscssed in[5,44,49 and denoted as border-collision

gated intensively in the last years. One reason for this is thaﬁeriod-doubling bifurcationf44]. In [5] experimental obser-
these systems represent models of several technical devicggtions of these bifurcations in some electronic circuits
showing any kind of switching behavior. Several eIectronic(buck and boost convertgrare also presented. In these
circuits [1-5] and mechanical systems with impact or stick-\yorks however, a class of maps with a piecewise-smooth,

slip phenomeng-1 are typical examples here. In the field pt continuous system function are investigated. The system
of nonlinear dynamics 1D maps with a piecewise-smoothpat e investigate does not belong to this class. The inter-

system function are well known as return maps, obtained bysiing property of this system is that it shows a complete
the investigation of Poincaré sections of several dynamicalifrcation scenario similar to the well-known period-

systems continuous in timgl7,18. This is caused by the goypling scenario, but dominated by the border-collision

complex stretching, squeezing, and folding mechanism, thhenomenon. Therefore, it is further denoted as a border-
is inherent for chaotic attractors, for instance in systems of)jision period-doubling scenario.

the Lorenz typg19,20. The behavior of piecewise-smooth
dynamical systems is mainly influenced by phenomena oc-
curring at the border between partitions in the state space. ||. BORDER-COLLISION PERIOD-DOUBLING SCENARIO
Early works in this field are presented by Feigin in the , ,
Russian publication§21-23. In the Western literature the A. Investigated dynamical system
first works on border collision bifurcations are performed by  The scalar one-parametric dynamical system discrete in
Chin et al. [6], Nusse and York¢24,2q, Nusseet al. [25],  time, which is investigated in this work, is defined as fol-
and Duttet al. [27]. A lot of important results are discovered lows:
by Maistrenkoet al. [3,4,28,29, Lamba and Budd7] di

Bernardoet al. [30-33, and Kowalczyk and di Bernardo fi(n @) = axy(1-x,)  if x, <1/2

[33], as well as by other authof8,34—-364. Recently, several  x,.,=f(X,,a) = fo(x,) =1/2 if X,=1/2

types of border-collision related bifurcations are found, like fo(X @) = axo(X, = 1)+ 1 if x, > 1/2

corner collision, sliding, and grazing bifurcatiof87,38. An L men "

overview about bifurcations in piecewise-smooth dynamical (1)

systems and relateq phenomena is givefs®]. ] with xe[0,1], a[0,4]. For all parameter values except
_In our work we investigate a scalar one-parametric map,=p the system functior is discontinuous at the point

with a piecewise-smooth system function. [88,4Q it is  -1/2 (see Fig. 1 There are two characteristic properties of

shown that this system represents a special kind of Poincal stem(1), which should be emphasized. The first one is the
return map of the Lorenz system. There exist further artiC|e§ymmetry of the system functidnwith respect to its discon-
concerning symbolic dynamics in systems of this typetinuity point, namely, f(x,@)=1-f(1-x,a). As a conse-
[41,42 whereas the emergence of coexisting attractors is r€uence of this symmetry, the asymptotic dynamics of the
ported in[43]. However, the bifurcation scenarios oCcurming iy estigated system takes place either on symmetric attrac-
in systems like this are not well investigated until now. It s o hairs of coexisting attractors symmetric to each other.

turns out that these dynamical systems show a sequence pfrefore, it is expected that symmetry-breaking—symmetry-
bifurcations where attractors with twice the period eMerge ecovering phenomena occur in systehy. It should be re-

marked that in the literature that we know so [&a8,40—42,

systems like(1) are considered only in nhonsymmetric vari-
*Electronic address: Viktor.Avrutin@informatik.uni-stuttgart.de ~ ants, whereby the singular poirt1/2 is contained in one
"Electronic address: Michael.Schanz@informatik.uni-stuttgart.deof the partitions that is eithg0,1/2] or [1/2,1]. The sym-
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FIG. 1. Typical shapes of the system function
f(x, @) for different values of the parametar
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metric variant seems to be more natural because it fits bette€. Fixed points and periodic orbits of the investigated system
into the Poincaré return maps of dynamical systems continu- . : .
ous in time. Especially for the Poincaré return map of the -6t us consider the behavior of systén in the complete
Lorenz system considered ja8], the point of discontinuity Ntervala [0,4]. Firstly one can see, that for all parameter
of system(1) corresponds to the stable manifold of the fixedValueés the system possesses three fixed poifed, X,
point in the origin. The second characteristic property is, thaf: 1/2, andxs=1. Using the linear stability analysis, one
the functionf is on the intervak e [0,1/2 identical with the ~ 1INdS, that in the parameter intervakQy <1 the fixed points
system function of the logistic map X, andxg are sEabIe. All initial values froni0,1/2) tend to
the fixed pointx;, whereas all initial values frorfiL/2,1] are
Xnr1= a%q(1 = Xp) (2 mapped to the fixed poin, )
with x € [0,1], @ € [0,4]. The dynamic properties of the lo-  The stability of the fixed poink, cannot be determined
gistic map and especially its period-doubling bifurcation sceUSing linear stability analysis, because the derivative of the
nario are, in the meanwhile, well investigated. Here now theyStém functionf is not defined at this point. However we
question arises, how far the identical system functions on thétate that the fixed poing, is unstable for all parameter val-
interval x e [0,1/2) lead to an analogy in the dynamic be- uesa €[0,2). This can be shown taking into account that

havior of systent1) compared with that of the logistic map Orbits with initial valuesx,=x,%¢ for any arbitrary small
). deviatione converge fom— o either to the fixed poink; or

to the fixed poinix,.
B. Description of the bifurcation scenario Both fixed pointsx; and x; become unstable by a tran-

By variation of the parameter system(1) shows a bifur- scritical bifurcation, which occurs at the parameter value
cation scenario, which one can denote as border-collisior =1 (see Fig. 5 At this point two new stable fixed points
period-doubling scenario. As one can see from Fig),2zhe =~ X;=1-1/a and x;=1/a emerge in the domaifi0, 1. All
period diagram of this scenario cannot be distinguished froninitial values from(0,1/2) tend tox; and all initial values
the one of the period-doubling scenario taking place in thérom (1/2,1) are finally mapped to,. Note that in Fig. 3,
logistic map. One observes here also a sequence of periodier reasons of simplicity and clarity, only one fixed point,
attractors, whereby the subsequent periods represent a gammelyx, is shown.
metrical seriesp,=py2", with n=0,1,2,...¢c and py=1. For parameter values between 1 and 2, the fixed points
The diagram of the Lyapunov exponeifiig. 2b)] shows  Xj, X,, andx; are unstable and the fixed poingsandx; are
also the well-known behavior with=0 at the local bifurca- ~stable. At the parameter value=a5°=2 the first border-
tion points and\ — —« at points, which lie between each two collision bifurcation(see Figs. 4 and)Soccurs. Hereby two
subsequent local bifurcations. However, the bifurcation diafacts are important. Firstly, the fixed point:§andx; vanish
gram (Fig. 3) is totally different from the classical period at the bifurcation point. Note that due to the border collision,
doubling scenario. The bifurcations that we observe here arthese fixed points do not lose their stability as is typical for
clearly not the usual flip bifurcations. Hence, the importantlocal bifurcations in smooth maps, but disappear altogether.
guestion we have to deal with is how the bifurcation scenaridecondly, a stable limit cycle with period two emerges. This
emerges here. limit cycle consists of the point& -1/« and 1/, which
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FIG. 2. Border-collision period-doubling sce-
nario. Shown are the periods(logarithmic ploy
and the Lyapunov exponenis Note, that these
diagrams are identical with the corresponding
diagrams of the period-doubling scenario in the

-8 case of the logistic map.
2 3 3 4 2 3 o 4

(a) period diagram (b) Lyapunov exponent
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bifurcation (see Fig. 5. Therefore, it loses its stability and
two coexisting stable limit cycles with period two emerge.
These limit cycles are given by

0.75 |
*k Kk 1 l "—
X X% }==+—(x1+\a?-2a-3) (3)
2 2«

05
and

{;*,4}— +—(+1—\a—2a 3). (4)

0.25

Note that in Fig. 3 the limit cycldx; ,x, } is not presented.
As expected, the two limit cycles are symmetric to each
other W|th respect to the point=1/2, namely xl =1/2
FIG. 3. Border-collision period-doubling scenario. This bifurca- —X, , X, =1/2-X; . The second border—coII|S|on bifurcation
tion diagram shows remarkable differences compared with that obccurs at the parameter value=a °=1+\/5~3.2361 (see
the classical period-doubling scenario. Fig. 5. Exactly at the b|furcat|on pointer=a(n=2) an
interesting phenomenon, namely attractive noninvariant sets,
were fixed points before the border-collision bifurcatidor ~ exist. For the caser=a, it is investigated in detail in Ap-
this reason we denote this limit cydlg,, xs}). This behavior ~ pendix I. However, for the border-collision period-doubling
can be explained taking Fig. 4 into consideration. As one cafcenario, the behavior in the vicinity of the bifurcation point
see from this figure, before the bifurcation the functidps is relevant. Here the two coexisting limit cyclds; %, }
andf, intersect, the angles bisector in their domditdsl /2 [shown in Fig. 18a)] and {x3 ,x4} undergo the same sce-
and(1/2,1]. Hence, these intersection points are fixed pointsnario as the two coexisting fixed points at the first border-
of system(1). After the border-collision bifurcation the inter- collision bifurcation. That means they do not exist any more
section points leave the domains where the functiprend  after the bifurcation, and a stable limit cycle with period four
f. have effect, but the second iterated function now intersectémerges. Again, the new limit cycle after the border collision
the angles bisector at the same points. has twice the period as the coexisting limit cycles before. It
In addition we remark that the fixed pointg; andx*s col-  consists of four points, which form the two coexisting limit
lide at the bifurcation point, not only with each other, but cycles before the border collision. Accordingly, we denote
also with the fixed poink,. Hence, the fixed point,, which  this new limit cycle with{x;' ,X; ,X; ,X; } [see Fig. 1&)].
is unstable before the bifurcation, is stable at the bifurcation The limit cycle{x; ,%, ,X; ,X, } represents the global at-
point itself, and after the bifurcation the fixed poixt be-  tractor until the second pitchfork bifurcation takes place at
comes unstable again. We remark that the described behaviar e§=1+\6~ 3.4495(see Fig. 5. There it loses its stabil-
is not essential for the border-collision bifurcation takingity and two new limit cycles with the same period emerge.
place ate=2. The border-collision bifurcation occurs as a These limit cycles coexist until the next border-collision bi-
result of the collision of the fixed points, and x; with the  furcation, and the scenario continues with the same pattern
border between the partitions and not due to their collision(see Fig. § Note that the described behavior is not specific
with the fixed pointx,, which in the considered case lies on for the parameter value)® of the second border-collision

L I L L
2 25 o 3 35 4

this border. bifurcation, but takes place at all following border-collision
For parameter values<2a<3 the limit cycle{x;,x;} is  bifurcationsa®(n>2) as well.
the global attractor of syste). The flxed p0|nts<1, X5, and As one can see from Fig. 2, the border-collision bifurca-

x; are unstable and the fixed pointg andx; do not exist tions take place at the border, whexes - holds. We re-
after the first border-collision bifurcation. At the parametermark, however, that this is not a general property of border-
value a=a!=3 this limit cycle undergoes the first pitchfork collision bifurcations, but a specific feature of systei).

1 15 T
A 0.56 fi

FIG. 4. First border-collision bifurcation at
a=a2°=2. Shown are the system functigitick
line) and its second iterated functigthin line)
before the bifurcatioifa) and after the bifurcation
\ (b). (c) is a blowup of the rectangle marked in
/ . / S| 044 (b). The dotted lines irib) and(c) mark the func-

0 025 05,075 1 0 025 05 075 1 025 05 ., 075 tions f; and f, outside their domains.
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FIG. 5. Analytical results about the attractors
of system(1). The following bifurcation points
10 are markeda! t itical bifurcation;a2® fi
3 ' transcritical bifurcationje; first
08 - border collision bifurcationg), first pitchfork bi-
furcation;a’ZJC second border collision bifurcation;
* osl and of second pitchfork bifurcation. The points
o X1, X9, @andxg are the fixed points. The poinig
04r and x; are fixed points between!' and o2° and
o2 b build a limit cycle with period two aftetull’c. The
' " pointsx; , X, , X3 , andx, build two coexisting
0.0 ! limit cycles with period two between? and a5°
o » , - 5 and limit cycle with period four aftea:s".

This property is here due to the fact, that the left and right Concerning the symmetry-breaking—symmetry-recovering
derivatives of the functiori(x) are equal to zero at the point property of the border-collision period-doubling scenario,
of discontinuity, i.e., at the point=1/2. mentioned in Sec. Il A, we yield now the following. In each
Now we can summarize the results obtained so far angtep of the scenario the symmetry breaking takes place at the

compare the border-collision period-doubling scenario depitchfork bifurcation, where a symmetric limit cycle be-
scribed here with the usual period-doubling scenario. In botltomes unstable and splits into two coexisting asymmetric
cases there exists a sequence of periodic attractors with pkmit cycles with the same period, which are symmetric to
riods py2", n=0. In the case of the usual period-doubling each other(Note that Figs. 3, 9, and 11 show only one of the
scenario, the sequence can be illustrated with the diagragpexisting limit cycles. The symmetry is recovered by the
shown in Fig. 7a). In contrast to this, the border-collision next border-collision bifurcation, whereby the asymmetric
period-doubling scenario is formed by a sequence of pairs dfmit cycles disappear, and a new symmetric one with twice
bifurcations. Each of them consists of two bifurcations, athe period emergesee Fig. 6. This behavior is illustrated in
border-collision bifurcation and a pitchfork bifurcation, as it Fig. 8, which shows the mean poirtof the attractors de-

is schematically shown in Fig.(3). fined by
Both scenarios converge to the parameter vallevhere N
an attractor of the Feigenbaum tyfee strange, but not cha- — 1 . e .
otic ong exists. Note, that the scaling properties of the X(A) = Nle, A= xl ®)

border-collision period-doubling scenario of systé¢in are

the same as the scaling properties of the classical perioglepending on the parameter For a symmetric attractod
doubling scenario of the logistic m&p). Indeed, the border- Of system(1), it holdsx(A)=1/2,whereas for two asymmet-
collision bifurcations occur in syste) at the same param- ric attractors.4; and.4,, symmetric to each other, it holds
eter values, where the logistic map has the superstable orbits(.A;)=1/2-X(A5).

The pitchfork bifurcations in syster(l) take place at the

same parameter values, where the logistic map has the flip

bifurcations. Hence, the Feigenbaum constant corresponding 1ll. BEHAVIOR OF THE INVESTIGATED SYSTEM

to the scaling behavior in the parameter space of the border- BEYOND a,,

collision period-doubling scenario in systgih) have to be
the same as in the case of the logistic map. Furthermore, als
the Feigenbaum constant corresponding to the scaling behav-
ior in the state space has to be the same for both systems. At the parameter value., the description of the border-
This is due to the fact that both parabolas, that of each pitcheollision period-doubling scenario is completed. However,
fork bifurcation in the border-collision period-doubling sce- system(1) shows fora> «., a lot of interesting phenomena,
nario of system1) and that of the corresponding flip bifur- which we will briefly describe in this section.

cation of the classical period-doubling scenario of the The first one is the band-merging bifurcation cascade,

&. Influence of the border-collision period-doubling scenario
on the band-merging scenario

logistic map(2), are identical. which takes place directly after the parameter valueThis
o =1 1
+ ’ + ’ +
£ £ £
" 8 r 8 FIG. 6. Third border-collision bifurcation at
08 05 05 a=al~3.4985. Two coexisting asymmetric
limit cycles with periodT=4 before the bifurca-
tion (a), (b). A symmetric limit cycle with period
% 05 a(m) 1 % 05 om) 1 by 05 wm) 1 T=8 after the bifurcatior{c).
(a) & = 3.49, z(0) = 0.4 (b) a = 3.49, 2(0) = 0.6 ©a=351
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fomo—-—---n | 3 e | i In the system(1) this cascade is similar to the one de-
scribed above, but there exists some remarkable difference
also(see Fig. %

(i) Before then-th band-merging bifurcation a chaotic at-
tractor with 2*1-1 bands exists.

one limit cycle two coexisting limit cycles

with period p2™ with period po2™

E Tip bifurcation i E border mlhﬂim biurcation : (i) At the bifurcation point the Z1-1 bands of the at-

! b ) | tractor merge pairwise with each other. Additionally, the
; v one limit cycle : merging points collide with the points of an unstable limit

! P with period p2™+! 1 cycle with the period 2 which emerges at theth border-

| | l I : collision bifurcation and becomes unstable at tile pitch-
N I J .. _Ppirchfork bifurcation | fork bifurcation. Especially fon=1, the bands of a chaotic
oo —c ) e O ) three-band attractor merge and collide with the points of an

one limit cycle unstable limit cycle with period two.
(i) After the nth band-merging bifurcation, a chaotic at-

tractor with 2’—-1 bands exists.

two coexisting limit cycles

with period pg27t? with period py27+!

! flip bifurcation E E border collision bifurcation E Note, that the counting of the band-merging bifurcations
j Lo | : is done for decreasing parameter values due to the following
E Lo one limit cycle . fact: at thenth band merging bifurcation, the unstable limit
! ; ! with period pp2™+2 ! cycle is myqlved_, Whlch emerges at the pom.t of t_h'dn
: o ! border-collision bifurcation. In order to emphasize this rela-
S I pitchfork bifurcation ; _tiorlnship we count the band-merging bifurcations correspond-
“““““““““““ ingly.
@ ® In Fig. 9 the behavior described above is illustrated in

more detail for the last two band-merging bifurcations. Be-

FIG. 7. Schematic representation of the classical periodfore the band-merging bifurcations at the parameter_vagﬂe_

nario (b). The dashed boxes mark the regions that can be denoted &9ints, its bands merge and collide with the points of the
one step of the corresponding scenario. limit cycle {x; ,X, ,X3 ,X, }, which emerges at the second
border-collision bifurcation aw3® and becomes unstable at
. . the second pitchfork bifurcatioa 5. After the band-merging
behavior is well-known for the logistic map and can be SUM+y¢ eation, a chaotic three-band attractor exists. Its bands
marized for this system as follows. . . collide at the parameter valu€ with each other and with
(i) Before thenth band-merging bifurcation, a chaotic at- the limit cycle {xz,x’;}, which emerges at the first border-

tractor with 2 bands exists. . ; . be .
- . . ; collision bifurcation «;° and becomes unstable at the first
(i) At the bifurcation point, the 2bands of the attractor pitchfork bifurcationa P,

merge pairwise with each other. Additionally the merging
points collide with the points of an unstable limit cycle with

the period 2-1 which emerges at thath flip bifurcation and B. Kneading orbits and boundaries of chaotic attractors

becomes unstable at tfie+ 1)th one. Especially fon=1 the Further interesting results can be obtained considering the
bands of a chaotic two-band-attractor merge and collideboundaries of the chaotic attractors of systgm The tech-
with an unstable fixed point. nigue that we use here is related to the technique of kneading
(i) After the nth band-merging bifurcation, a chaotic at- orbits[46,47. The usual approach here is to investigate itin-
tractor with 21 bands exists. eraries of some critical points. For systéf) this is obvi-
0.510
07 . . : — ® 0500 —(1
0.490
06| _
_ 3.54 a3-56 FIG. 8. Mean pointx of the attractors within
o / , ® the border-collision period-doubling scenario ob-
0.5 \—E ‘ o 0.501 tained for two symmetric initial value$x(0)
o / =0.25 andx(0)=0.75. (b) and(c) are blowups of
3 i ;
04l | 0,500 <_<ﬁ the regions marked ite) and (b).
03 . ‘ . . . 0.499 \
28 3 3.2 3.4 3.6 3.8 4 3.569 3.57
27 [e3

(@ ©

026222-5



V. AVRUTIN AND M. SCHANZ

PHYSICAL REVIEW E 70, 026222(2004)

1.0

FIG. 9. Band-merging cascade in systéhn
See text for detailed description.

L
:

ously the pointx=1/2. Due to thefact, that the pointx
=1/2 is afixed point of systen{1), one has to track itiner-

1 1 1 1
O (@)= —a'-— 6+*cv5+*a4—zfoz3+l

a @
256 32 16 16

aries of points in its vicinity. The images of these points are

the boundaries of the chaotic attractors. Therefore, the cha-

otic attractors of systeril) are open sets. For @&band at-

tractor, we denote withg! ., the limes supremum of the

upper boundary of itenth band withm=1, ... n. Analogous

we denote With(l[?]’m] the limes infimum of the lower bound-
ary of this band. Now we introduce the following functions:

. 1 _ }
gl(a)_lmf(2_81a>_f|<21a)1 (6)
. 1 _ }
gr(a)_lmf<2+81a)_fr<21a) (7)
and yield
gl@)=7, al@=1-7. (8

The smallest and the largest boundaries for all chaotic attrac-

tors of system(1) are directly given by the functiong and
O

xPa=a(® x0p=glae) On=2-1,keN. (9

As expected, the valueg! andx'[‘;yl] are symmetric to each

other with respect to the poimt=1/2. For theinvestigation
of the multiband attractors of syste(t), we have to deal
with iterated functions. Therefore, we define

Or(@) =f(g(a), @), gnla)="1(g(a),®),

gn(@) =fi(@(a)a), gu () =fi(ry(e),a),  (10)

and calculate

1 1
—a*-=?+1=1-g,(a),

glr(a) 16 4

=1 _grlr(a)- (11

These functions determine the boundaries forrntzand at-
tractors withn=3,7,15,...(that meansd,=2-1,k>1).
Especially for the three-band attractor, we obtain

X[3 7= % (@), ng?,z]:gk(a),

=gn(a), =0 (a). (12

X[a 3=

Note, that the boundaries? ; and x$ are already deter-

mined by Eq(9). Hence, we have here the analytic result for
all six boundaries of the three-band attractor of systém
[see Fig. 1()].

The same procedure can be applied for the further chaotic
attractors of systerfl). For instance, from the 14 boundaries
of the seven-band attractor six bands are given by the func-
tions that we have already defined

X[s 2=

X[7 1=0(a), XTg5=0r(a),
X721 = O (@), X|[°7,e] =0 (a), (13
X% 3=0n(@), xPp=g(a),

and the remaining eight bands can be determined as follows
[see Fig. 1(M)]:

X[7 1= e (@) = (G (@), @),
Xl[%,z] = Gririnir (@) = f(Gnn (@), @),
X7 3= Grrin (@) = (G (), @),

XI[%A] = gnn (@) = f1(gyr (@), @),

026222-6
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1 . . 1
ai(e) Giriri(@)
gm(a) glrlrlrl(a)
FIG. 10. Boundaries of chaotic attractofa)
air(@) Grtrir(0) are the six functions defining the boundaries of
Grrr(02) three-band attractorgb) are the eight functions
z 05 z 05 (thick lineg that define together with the six
griri(e) functions of(a) (thin lines the 14 boundaries of
(@) driries(0) seven-band attractors. Note that these function
also reveal the basic structure of the bifurcation
diagram, including periodic windows presented
grlr(a) Griririr(2) in F|gS 3 and 9.
gr{c) grlrlr(a)
3.55 3.6 o 3.65 3.7 %.55 3.6 o 3.65 3.7
@ ®
4P = (a) = f,(gy (@), @) the period-doubling cascade takes place, and in the case of
[7,4] Yirir r(Qir & .. . .
system (1), the border-collision period-doubling cascade.
o _ (@) = (g (), ) The bifurcation leading to the formation of the periodic win-
%75 = Qurtrr (@) = Te{Girn (), @), dows is the same in both cases, namely, the tangent bifurca-
tion. For the logistic map there exists a pair of limit cycles
X% 6= Girirrt (@) = f1(Qinnr (@), @), after this bifurcation—a stable and an unstable one. For sys-
tem (1) two such pairs emerge after the bifurcation. For in-
X'[‘%,7]=gmr| (@) = (g (@), ). (14) ~ creasing parameter values, the stable limit cycles of both

pairs undergo the border-collision bifurcation described
Using the presented technique, the parameter valuesbove. This bifurcation leads to the formation of a single
where the band-merging bifurcations occur, can be easilyimit cycle with twice the period. After that the border-
calculated. For instance, the parameter vaife can be collision period-doubling scenario continues as described
found using any of the equatiorngl]:x'[%'z] or xf‘g’yz]:x'[%ﬁ]. above fora < a... Note also that the two unstable limit cycles

However, it is more simple to solve the equatiotﬁ,%l]:xs or emer_ging at the tangent bifurcation do not_cqllide with the
x{% 3]:x2, from which one gets this value also because th artition border. As in the case of the logistic map, these

) ) - imit cycles lead to the global bifurcatio¢crisis) at which
bands collide here not only with each other, but also with thgpe periodic window is closed.

points of the unstable limit cycléxz,x;}. In any case we

obtain IV. SUMMARY AND OUTLOOK
o= 2 319 +3/33 +;_ +1] ~3678573511. In this work we have described the border-collision
3 ¥19+3y33 period-doubling scenario. Although this scenario has some

(15) similarities with the_ classical period-doubl_ing scenario, there
are remarkable differences as well. It is shown that the
The functionsg (@) defined so far play an important role border-collision period-doubling scenario is formed by a se-
also after the merging of the corresponding bands. Here theg@ience of pairs of bifurcations. Each pair consists of a
functions[see Fig. 10 determine the peaks of the invariant border-collision bifurcation and a pitCh-fOfk bifurcation. A

measure of the chaotic attractors, as describgd8h remarkable characteristic property of the described scenario
is the symmetry-breaking and symmetry-recovering phenom-

enon within each pair of these bifurcations. It is further
shown, how the border-collision phenomenon influences the
band-merging scenario and the behavior within periodic win-
The last interesting property of systeii) that we would  dows in the chaotic regime. In the Appendix the dynamics of
like to consider concerns the periodic windows within thethe investigated system at the border-collision bifurcation
chaotic regimgsee Fig. 11 Again there are similarities and points is investigated in detail. It is shown that at these
also differences between syst¢in and the logistic map. For points, orbits for all typical initial values tend to noninvariant
both systems the periodic windows exist at the same paranattractive sets. These noninvariant attractive sets are numeri-
eter values and occur in the same order, which can be desally difficult to detect and lead, therefore, often to the ob-
scribed using the Metropolis-Stein-Stein sequetid®k The  servation of numerical artifacts.
difference between the logistic map and syst@mis that Concerning the investigated system, the following ques-
within each specific window in the case of the logistic map,tion remains open: as it is shown @8], system(1) repre-

C. Influence of the border-collision period-doubling scenario on
the behavior within periodic windows

026222-7
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055 §
015

0.45
0.05
04 : 4
3.82 3.83 3.84 (x3.85 3.86 3.82 3.83 3.84 3.85 3.86

© )

FIG. 11. Border-collision period-doubling scenario within the three-periodic win@wvEnlarged are the upper pab), the middle part
(c), and the lower partd) of the scenario.

sents a special kind of Poincaré return map for the well- Using numeric simulations one obtains at the paiﬁf
known Lorenz system[19]. The relationship between orbits like the one presented in Fig.(b3 However, it turns
bifurcations occurring in the Lorenz system and the bordeout that this behavior is a numerical artifact based on the
collision period doubling scenario has to be investigated irfinite representation of floating point numbers in the com-
more details. Especially the hypothesis that the borderputer and hence must be investigated in more details analyti-

collision bifurcations in systerl) correspond to homoclinic cally. Therefore, we have to consider the following three
bifurcations in the Lorenz system has to be checked. points:

APPENDIX: DYNAMICAL BEHAVIOR AT THE 1 1+ \g 1+ \g
BORDER-COLLISION BIFURCATIONS A=—-, B=f(A=1- 7 C=1(A)= I
The dynamical behavior of the investigated sysidnat (A1)
the border-collision bifurcations is more complex. Let us
consider for instance the second border-collision bifurcation
taking place at the parameter value a§°:1+\f‘°5. Note, that Note, that these points are the points corresponding to the

the behavior at all following border-collision bifurcations two coexisting limit cycle with period two before the bifur-
points a=al’ n>2 is similar. cation:

B S - A meee c
FIG. 12. Behavior of systeril) at the point

[} ]
[} 1 .
e /’W—\ AR a=a5°=1+\5 of the second border-collision bi-
[T |
] T
t

~

— n ! | I | | | furcation. Upper part: critical pointa, B, C and
up) | utE) U Ut utey - Ut the mapping of their neighborhoods onto each
) st ——u@ other. Lower part: three steps of this mapping for
! ' the right-side open neighborhodf (A).
H 51 +(a) H 72t (4)) g p g (A)
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1 1
=
+
2 z(n)
8
0.5 . 0.5
0 0 A
] 05 4(n) 1 0 10 20 30 , 40 50
(a) before the bifurcation (o = 3.23606797749978)
1 : 1
=
+
= z(n)
8
05 r 1 0.5 FIG. 13. Second border-collision bifurcation
at a=a5°=1+\5. Numerical observed behavior
of system(1) before the bifurcation(a), at the
bifurcation point(b), and after the bifurcatiotc).
0 : 0 , : :
0 05 1(n) 1 0 10 20 30 , 40 50
(b) at the bifurcation point (c = 3.23606797749979)
1 1
=
+
£ z(n)
8
0.5t 0.5
0 . 0
0 05 4(n) 1 0 10 20 30 , 40 50
(c) after the bifurcation (o = 3.23606797749980)
A= x, |a:a[2;(;: X3 |a:agq B= X, |a:agc1 C=X] | azabe how the typical initial states behave, i.e., the initial states

from the setX'=[0, 1]\X™. Let us consider the left and right
(A2) side open neighborhoods of the poiisB, andC:

It is remarkable that at this bifurcation point the points o o

andx; collide with each other, with the partition border, and UTN=(AA+e), UA)=(A-eA),

with the fixed pointx,, which lies on this border. Due to the

stability of the limit cycles before the bifurcation, one can U*(B)=(B,B+¢), U (B)=(B-¢,B), (A4)
assume that all typical initial states will be mapped during
the iteration into the neighborhoods of poiAtsB, andC. As
nontypical initial states we denote the unstable fixed points
and their preimages, i.e., the points that will be finally
mapped to these fixed points:

UT(C)=(C,C+e), U(C)=(C-¢,0),

with a sufficient small positive number(see Fig. 12 Using
straightforward iterations we obtain for the right-side neigh-

X"={x, e [0,1]] Om= 0:f M(x) =x,i = 1,2,3,4,5, borhood of pointA

(A3) X e UHA) O Xeg € UT(B) O Xeup € UT(A)  (AB)

wherebyf [™ denotes themth iterated function of the func-
tion f. The setX™ is obviously countable and hence its Le- and an analogous result for the left-side neighborhood of

besgue measure is zero. Now the question that remains mint A:

026222-9
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X € U(A) O Xy € U (C) O Xeup € U(A).  (AB)

It can be shown analytically that the neighborhodd¥A),
U~ (A), U *(B), andld ~(C) are contracting with respect to the
flow of system(1). That is,

XkeU+(A)D 0<|Xk+2_A|<|Xk_A|,
XkEZ/{_(A)D 0<|Xk+2—A|<|Xk—A|,
XkeU+(B)D 0<|Xk+2_B|<|Xk_B|,
Xk € L{_(C) Oo< |Xk+2 - C| < |Xk - C|, (A?)
or equivalently,
2t (A), a3 C U A), U (B),a8T U (B),

2 =(A), a5 cu~(A), fP[U=(C), a1 U (C).
(A8)

Concerning the neighborhoods™(B) and ¢/ *(C) we state
that they are transient. That is,

PHYSICAL REVIEW E 70, 026222(2004)

f (U (B),ad) Cc-U(A), fUT(C),add)Cc-U A,
(A9)

with a suitable factor.

The described behavior is quite similar to the convergence
of orbits against stable limit cycles with period two. How-
ever there exists a significant difference, namely, that neither
the set{B,A} nor the sefA,C} are limit cycles. All typical
initial states converge toward these sets, hence the sets are
attractive. However it remains a question whether these sets
can be denoted as attractors.

The numerical artifact presented in Fig.(iBcan be ex-
plained easily now. As soon as the numerical calculated orbit
reaches the-neighborhoods of the poimt with ¢ less than
the smallest machine numbéhat is the smallest represent-
able number corresponding to the chosen precjsibe cur-
rent state will be interpreted as poidtand the orbit remains
at this point forever. Because sdB,A} and{A,C} are at-
tractive, the described behavior takes place for all typical
initial valuesxg € X.

[1] J. M. Perez Phys. Rev. 82, 2513(1985.

[2] A. N. Sharkovsky and L. O. Chua, IEEE Trans. Circuits Syst.

I: Fundam. Theory Appl.40, 722 (1993.

[3] Y. L. Maistrenko, V. L. Maistrenko, and L. O. Chua, Int. J.
Bifurcation Chaos Appl. Sci. Eng3, 1557(1993.

[4] Y. L. Maistrenko, V. L. Maistrenko, S. I. Vikul, and L. O.
Chua, Int. J. Bifurcation Chaos Appl. Sci. Eng, 653(1995.

[5] S. Banerjee and C. Grebogi, Phys. Rev5& 4052(1999.

[21] M. 1. Feigin, Prikl. Mat. Mekh.34, 861 (1970 (in Russiai.

,[22] M. I. Feigin, Prikl. Mat. Mekh.38, 810(1975 (in Russian.

[23] M. 1. Feigin, Prikl. Mat. Mekh.42, 820(1978 (in Russian.

[24] H. E. Nusse and J. A. Yorke, Physica &Y, 39 (1992.

[25] H. E. Nusse, E. Ott, and J. A. Yorke, Phys. Rev4B, 1073
(1994).

[26] H. E. Nusse and J. A. Yorke, Int. J. Bifurcation Chaos Appl.
Sci. Eng. 5, 189(1995.

[6] W. Chin, E. Ott, H. E. Nusse, and C. Grebogi, Phys. Rev. E[27] M. Dutta, H. E. Nusse, E. Ott, J. A. Yorke, and G. Yuan, Phys.

50, 4427(1994.
[7]1 H. Lamba and C. J. Budd, Phys. Rev.99, 84 (1994).
[8] S. Foale, Proc. R. Soc. London, Ser.347, 353(1994.

Rev. Lett. 83, 4281(1999.
[28] Y. L. Maistrenko, V. L. Maistrenko, and S. I. Vikul, J. Tech.
Phys. 37, 367 (1996

[9] B. Blazejczyk-Okolewska and T. Kapitaniak, Chaos, Solitons[29] Y. L. Maistrenko, V. L. Maistrenko, and S. I. Vikul, Chaos,

Fractals 7, 1455(1996.
[10] F. Peterka, Chaos, Solitons Fractals1635(1996.

[11] N. Hinrichs, M. QOestreich, and K. Popp, Chaos, Solitons

Fractals8, 535(1997).

[12] M. D. Todd and L. N. Virgin, Chaos, Solitons Fractes 699
(1997).

[13] A. Batista and J. M. Carlson, Phys. Rev.5, 4986(1998.

Solitons Fractals9, 67 (1998.

[30] M. di Bernardo, C. J. Budd, and A. R. Champneys, Nonlinear-
ity 11, 858(1998.

[31] M. di Bernardo, C. J. Budd, and A. R. Champneys, Physica D
160, 222(200D.

[32] M. di Bernardo, C. J. Budd, and A. R. Champneys, Phys. Rev.
Lett. 86, 2553(2001).

[14] B. Blazejczyk-Okolewska and T. Kapitaniak, Chaos, Solitons[33] P. Kowalczyk and M. di Bernardo, inlybrid Systems: Com-

Fractals9, 1439(1998.

[15] U. Feudel, A. Witt, Y.-C. Lai, and C. Grebogi, Phys. Rev. E

58, 3060(1998.

putation and Contrgl edited by M. di Bebedetto and A.
Sangiovanni-VincentelliSpringer, New York, 2001 LNCS
2034, pp. 361-374.

[16] J. Molenaar, J. G. de Weger, and W. van de Water,[34] A. B. Nordmark, J. Sound Vib145 279(1991).

Nonlinearity 14, 301 (200D.

[35] M. Misiurevicz and A. L. Kawczyski, Physica D52, 191

[17] J. Guckenheimer and R. F. Williams, Publ. Math., Inst. Hautes (1991

Etud. Sci. 50, 307 (1979.

[36] A. B. Nordmark, Phys. Rev. E55, 266 (1997).

[18] J.-M. Gambaudo, I. Procaccia, S. Thomae, and C. Tressef37] M. di Bernardo, K. H. Johansson, and F. VasceRiaceedings

Phys. Rev. Lett57, 925(1986).
[19] E. N. Lorenz, J. Atmos. Sci20, 130(1963.

[20] C. Sparrow,The Lorenz Equations: Bifurcations, Chaos, and

Strange AttractorgSpringer-Verlag, Berlin 1973

of the International Workshop on Nonlinear Dynamics of Elec-
tronic Systems (NDESgdited by G. Setti, R. Rovatti, and G.
Mazzini (World Scientific, Singapore, 2000

[38] M. di Bernardo, C. J. Budd, and A. R. Champneys, Physica D

026222-10



BORDER-COLLISION PERIOD-DOUBLING SCENARIO PHYSICAL REVIEW EOQ, 026222(2004

154, 171 (2002. Circuits Syst., I: Fundam. Theory App#7, 389 (2000.
[39] Z. T. Zhusubaliyev and E. MosekildBjfurcations and Chaos [45] S. Banerjee, P. Ranjan, and C. Grebogi, IEEE Trans. Circuits
in Piecewise-Smooth Dynamical Systems, of Nonlinear Science  Syst., I: Fundam. Theory AppK7, 633 (2000.

A (World Scientific, Singapore, 2003/0l. 44. [46] P. Collet and J.-P. Eckmantigrated Maps on the Interval as
[40] I. Procaccia, S. Thomae, and C. Tresser, Phys. ReB5A Dynamical System@irkhauser, Basel, 1980

1884(1987). [47] J. Milnor and W. Thurston, iDynamical Systemedited by J.
[41] W.-M. Zheng, Phys. Rev. A39, 6608(1989. C. Alexander, Lecture Notes in Mathematics Vol. 1342
[42] W.-M. Zheng, Phys. Rev. M2, 2076(1990. (Springer, New York, 1987 pp. 465-563.
[43] P. R. K. Nair and V. M. Nandakumaran, Pramaba, 377 [48] R. V. Jensen and C. R. Myers, Phys. Rev38 1222(1985.

(1998. [49] N. Metropolis, M. L. Stein, and P. R. Stein, J. Comb. Theory,

[44] S. Banerjee, M. Karthik, G. Yuan, and J. Yorke, IEEE Trans. Ser. B 15, 25(1973.

026222-11



