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Stochastic bifurcation in a driven laser system: Experiment and theory
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We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional
dynamical system. The physical model is that of a cBdaser, which is perturbed stochastically with finite
noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the
dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced
chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator
[L. Billings et al,, Phys. Rev. Lett88, 234101(2002] to a model of the experimental system. Our main result
is the identification of a global mechanism to induce chaoslike behavior by adding stochastic perturbations in
a realistic model system of an optics experiment. In quantifying the stochastic bifurcation, we have computed
a transition matrix describing the probability of transport from one region of phase space to another, which
approximates the stochastic Frobenius-Perron operator. This mechanism depends on both the standard devia-
tion of the noise and the global topology of the system. Our result pinpoints regions of stochastic transport
whereby topological deterministic dynamics subjected to sufficient noise results in noise-induced chaos in both
theory and experiment.
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I. INTRODUCTION point or a crisis of chaotic attractors that leave a chaotic
saddle present.
Noise-induced escape, which appears as a form of bifur- In driven deterministic systems, the existence of chaotic
cation in dynamical systems, is now documented in manynvariant sets, such as chaotic saddles, can be proven by
areas of science and engineerifig. It arises in stochastic €X@mining the topology of intersecting manifolf. As an

processes, which we consider to be a composition of deteﬁ—xample’ we cite the Melnikov methg@l]. Although it has

ministic and time-dependent noisv svstems. Detecting chaceen extended to stochastic systeft§], it is limited in
ministi Ime-dep: . ISy Sy i Ny ac‘pplication since it is a bifurcation result that is perturbed
in noisy systems is still an issue of debate. Efforts have bee

d ional definiti fd € PeehHom a global homaoclinic or heteroclinic connection in a con-
made to carry over operational definitions of deterministiCseyative system. Therefore, in many cases, one must rely on

chaos to stochastic systems, such as proving the eXiStencezﬁborithmic methods for the numerical computation of un-
a positive Lyapunov exponef2] and exploring the interac-  staple objects and their manifolfil—13, with the hope that
tion of noise and a global bifurcation based on underlyingone may extract transverse intersections. We also note that in
unstable structures, such as a chaotic saf8jleMany of the  contrast to the hypothesis that noise-induced chaos is caused
underlying deterministic systems in these examples have pay a chaotic saddle excitation, a recent result shows that only
rameter regimes in which multiple attractors give rise topartially formed manifold intersection@& which no chaotic
noise-induced escape from one attractor to another. Such sysaddle existsmay also be found to have a positive Lyapunov
tems may be analyzed globally using the Hamiltonian theoryexponent 14].

of large fluctuations, or considering escape from attracting In this paper, we compare a bifurcation observed in a
potential wells along most probable exit pafd$ using the  nonequilibrium stochastic clagslaser experiment to a cor-
theory of quasipotentialb,6] or a variational formulation of responding model of the system. We include experimental
optimal escape pathg’]. It is well known that noise can results, as well as the theoretical explanation of the observa-
excite unstable chaotic structures while destroying regulations. In particular, experiments support the claim that add-
periodic dynamics, but most studies consider noise-inducethg larger stochastic perturbations to the system results in
chaos occurring near a bifurcation, such as a saddle-nodgualitatively different dynamics. Using the model, we pro-
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g acousto-optic modulator; BS, beam split-
ter; PM, power meter; PD, photodetec-
tor; TG, trigger generator; ADC, analog-

to-digital converter; and PC, personal
Driver computer.
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vide evidence that this is an example of a bifurcation toserved. In fact, the transition is smooth statistically, evi-
noise-induced chaos by explicitly computing the probabilitydenced by the smooth transition of a Lyapunov exponent
transport due to noise. In this way, the interaction of noisghrough zero, which may be due to the noise-induced un-
and the underlying topology is identified in the emergentstable dimension variabiliti21]. There is also a resemblance
dynamics. We present analytic methods that specificallyo noise-induced switching between multiple attractors as de-
carry out the task of constructing the invariant density andscribed in[3], but evidence provided by the probability den-
transition probabilities in a rigorous manner to address theity function supports the fact that trajectories spend as much
problem of thisP-type stochastic bifurcation, as defined in time (if not more near the partially formed heteroclinic
[15]. Since it is a global approach, it is an alternative to usingangle as the two periodic attractors. We also note that as
the Hamiltonian theory of large fluctuations, as described irpreviously reported irf6] and [3], both explosions and at-
[7,16 for autonomous systems, and[ib7] for periodic sys- tractor switching are facilitated by fractal basin boundaries
tems. New tools were developed that are based on discresd nonattracting chaotic sets.
approximations to the Frobenius-Perron operator with addi- The layout of the paper is as follows. In Sec. I, we de-
tive noise, defined as the stochastic Frobenius-Perron operseribe the experimental setup of a nonequilibrium stochastic
tor (SFPQ [18,19. classB laser. We illustrate the effects of noise on the dynam-

Using the SFPO, we identify the active regions of sto-ics of the intensity and show how the structure of the attrac-
chastic transport, or probability transitions, in the model. Thetor changes. In Sec. Ill, we briefly review the laser model of
advantage of this method is that we can find the probabilitythe experiment in a reduced form and show that it captures
density functionPDF and maximal transport across bound- many of the features of the experiment. Section IV illustrates
aries in the absence afpriori knowledge of manifold struc- the effect of noise on the laser model and specifically shows
tures and without time averaging. From the SFPO methodhow the maximal(or top Lyapunov exponent depends
since one can directly compute the invariant density, spasmoothly on the standard deviation as it transitions from sto-
tially averaged Lyapunov spectra may be computed if theehastic periodic behavior to stochastic chaos. The global
linear variation along an orbit is known. For stochastic sys-structure of the underlying topology and transport results are
tems that are sufficiently ergodic, spatial and temporal averpresented in Sec. V, and the discussion is presented in Sec.
ages of the Lyapunov spectra are equal, and therefore, a po&it.
tive Lyapunov exponent averaged spatially is a possible
indicator of stochastic, or noise-induced, chfbs]. II. AN ACOUSTICALLY OPTICAL MODULATED LASER

To contrast our work from previous theories, we note that EXPERIMENT WITH NOISE
the bifurcation is far from parameters that would lead to a

natural bifurcation to chaos, and large noise levels are in\_/ve consider an acoustically optical modulated laser system
cluded. Many studies in this field have relied on examinin y op y '

small noise limits, such as quasipotential thef8jyyand op- g-la—h;ne)ig?r::r(?(je;tg;lgzzrra\t;ifhlsa?wh?r\n/;lrgtl:r;v':i;g.;(.:(;L(s:?orizlszi: of
timal path theory[4], although this work has more recently 9 Y P

been extended to the regime of finite noise intengag. modulator allowing modulation of the cavity losses. The op-

Underlying unstable fractal structures and noise-induced batICaI cavity is 1.30 m long and the total transmission coeffi-

sin escape times have also been examined from quasipote%'-entT is 0.10 for a single pa§s. The intensity decay kit
tial theory [6] for simple maps. The basin boundary in the can be expressed as follows:

system we study is a simple structure; i.e., it is nonfractal k(t) = k(1 + a Si{Bo[1 +f(1)]}), (1)
due to the lack of intersecting stable and unstable manifolds. . o ]

In fact, only the forward crossings of a heteroclinic tangleWherek=cT/L, cis the speed of light in a vacuurh, is the
could be identified, and no nonattracting chaotic sets argavity length,a=(1-2T)/2T, By is a bias, and(t) is the
found to exist. The maximum Lyapunov exponent was cal-modulation signal,

culated to increase smoothly through zero at the transition. .

Although both smooth and diyscontin%ous onset are attributed f() = B sin2mvt) + (1), 2
to noise-induced chaos, the transition, which resembles with »=100 kHz and the modulation amplitug® The ran-
noise-induced attractor explosion described@} is not ob-  dom variablez is considered to be normally distributed with

To examine the effects of external noise in an experiment,
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[ ' . T ] trum is slightly broadened around the corresponding fre-
14001 & Noise=0.002 , : .
\ quency. In the right panel, considerably more noise causes a
qualitative change in the attractor. The periodic orbit is still
located in the darkest regions of the graphs, but notice how
there is significant sampling to other parts of the phase space
x not previously sampled at lower noise amplitudes. To under-
stand the mechanism resulting in the stochastic bifurcation,
we consider an accurate model of the experimental process.
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L In [23], a multifrequency phase control on a two-level,
: : two-dimensional C@laser model produced both experimen-
Noise=0.012 | tal and numerical evidence that it was able to preserve peri-
odic behavior within a chaotic window as well as to reexcite
1500+ ] chaotic behavior when it is destroyed by a crisis. In the
model used, only intensity and population inversion were
considered. To retain fidelity between theory and experiment,
a more realistic four-level model of a Gdaser, which in-
corporated intensity, two resonant population levels, and two
Wi coupled rotational manifolds, was used [iB84]. Analysis
o0 .&& | showed that an approximate reduction to three state variables
- = could be made by examining differences in the resonant and
(b) 500 1000 1500 2000 rotational population levels while still retaining many of the
X, global features of the bifurcations. Therefore, we begin our
study of the scaled three-dimensional model in a stochastic

) ! et ) _version, where noise is added to the intensity equation. The
units) under perturbations of. Darker shades indicate regions vis-

variables have already been scaled to be dimensio
ited with higher frequency. Small perturbations are used in the lef y [dags

) ) ) o ) ® ®ftrhe driven three-dimensional system has the advantages that
graph, which result in a noisy periodic orbit. Larger perturbations

. : X . i) it is higher dimensional than other models, digwhen
are used in the right graph. Notice how the emergent dynamics ar . . .
. Sampled discretely at the drive frequency, its phase space can
fundamentally different from the smaller case.

be visualized in three dimensions. The model equations are

20001

+1

* 1000}

FIG. 2. Contour plots of the embedded intensity datditrary

o ) ) _ given by
mean zero and standard deviatienThe noisy signaf(t) is
provided by an arbitrary waveform generat@Fektronix Y1 =Ko(y2 =1 —a sir{B[1 +f(1)]}),
Mod. AWG420, which generates both the sinusoidal signal
and the random variabley using an independent internal Yo == y1Yp — 2Koely, + Y5 + P,

Gaussian noise generator. Specifically, the noise is added pe-
riodically with the period of drive; i.e., VL= = yoys+ Zys + 2P, (4)

7(t) = 77n5<t- E), n=1,2, ..., (3) and

: : . . . f(t) = A sin(wt) + 7(t), (5

and é is the Dirac delta function, ang, is nhow a discrete
random variable. where 7(t) is discretely modeled as in E¢3) with period

It is known that by increasing the amplitude modulation, 27/ w, y; is the natural logarithm of the intensity; is the
the system undergoes a sequence of subharmonic bifurcerain population difference, ang is the difference in rota-
tions leading to chaos whep=0 [22]. However, when noise tional levels. The fixed parameters dkg=32.97, a=4, B
is added to the system through the driver, the resulting dy=0.21, ®=0.897 597 9,y,=10.0643,P=0.082, y,=1.0643,
namics is highly dependent on the noise amplitude. In Fig. 2z=10, and we vanA.
we see two examples of the output of the intensity plotted as We now describe the topology of Eqd4) and(5) without
a contour map of the embedded data for two values of thetochastic perturbations, i.ey(t) =0. As shown in the bifur-
noise strength at the same value of the modulation amplitudeation diagram in Fig. 3, periodic orbits are represented as a
B=0.360. Note that darker shades indicate regions visitefunction of A. As A is increased, a period-one attractor pro-
with higher frequency, and, is the local maximum of the ceeds through a period-doubling bifurcation. Several saddle-
measured intensity. The left panel shows the case whenmode bifurcations for varying periodic orbits also occur,
small noise results in a two-piece attractor. The deterministievhich will play a role when noise is turned on. We show the
attractor at this parameter value is periodic, located at théirst saddle node, which is of period three in the figure.
dark regions in the middle of the pieces. We describe thisTherefore atA=0.214, there exists an interval of bistability
behavior as a noisy periodic attractor since its power sped-, formed by period-four and period-three attractors. Asso-
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0.0086 : - - - - space is a unit box in three dimensions. With no noise, the
A=0-222\ - only observable behavior is asymptotically periodic trajecto-
0.005} -7 -7 ries converging to the period-three or period-four orbits. By

A=0.181 -~ adding noise with increasing standard deviation, a random
trajectory changes from a noisy periodic orbit to chaoslike
deterministic behavior, visiting the two periodic orbit basins.
We remark that although in the original unscaled model,
noise is added multiplicatively, it is approximately equivalent
to adding noise additively in the scaled model from K.
This is due to the fact that the intensity of the original model
is represented by the logarithm of the intensity in [E4).
[26]. The noise source appears as a term of the form

0.0041

=

g 0.003}

x

(]
0.002}

0.001F

of Sir?{B[1+A sin(wt)+ 7(t)]}. Taking a Taylor series expan-
: : : sion with respect tay yields a noise term on the order gf
005 010 015 020 025 which is independent of the state variables. Since the model
A is based on the natural logarithm of the intensity, a good

FIG. 3. (Color onling The bifurcation diagram for the laser e_lpprOXImatlon t(_)_the noise source Is that the intensity equa-
tion has an additive noise term.

model as a function of the forcing amplitude. Plotted are branches In quantifying underlying complex determinism in sto-
of both stable and unstable periodic orbits. Thexis is scaled . L L .
intensity. The parameters are given in the text. cha§tlg sygtems, it is inherently d|ff|cglt tp draw a clea'r Img
to distinguish between complex oscillations due to signifi-
. , , , . cant contributions from deterministic parts influenced by
ciated with the'perlqd—fqur attractor is an unstable period+,gise and a large noise amplitude effect wherein complex
two saddle orbit(which is a flip saddlgand an unstable ,qgijations are primarily due to random Brownian diffusion.
period-one flip saddle orbit from the period-doubling bifur- 5ne necessary, but not sufficient, condition for the existence
cation. The period-three attractor has an associated unstalle «haos is the calculation of positive Lyapunov exponents.

period-three regular saddle orbit arising from a saddle-nodgy o500y exponents measure the average rate of separation
bifurcation. We hypothesize that the multi-instability in this ¢ neighboring initial points. Because we are adding pertur-

system Whem_e I, has fthe tc_)pologipal structure 'needed O hations to this system discretely, we can find a finite-time
induce chaoslike behavior with additive stochastic perturbas ;merical approximation for the Lyapunov exponents of the
tions. Smc_e the_b|furcat!on diagram contains only st(:xbnltym(,;lp using the linear variational equations of the original
and amplitude information, we explore the phase spacgystem on the Poincaré section. A positive Lyapunov expo-
through numerical simulatioriRigorous analysis of the on- yent can identify chaotic behavior, but diffusion can yield a
set of the saddle-node bifurcation, which leads to b'Stabl?)ositive Lyapunov exponent as wéfi7]. Since chaos is also

regions, is similar to that done {i25] and will be presented yggqciated with the underlying topology of the manifolds of

elsewhere. the dynamical system, we examine the unstable structures in
the deterministic model and observe how they interact with
IV. STOCHASTIC DYNAMIC SIMULATIONS the stochastic source terms. Specifically, we would like to

identify the structures in the original phase space that noise

In keeping with the experimental setup, we model thecan excite. For example, if noise causes a trajectory to visit a
stochastic system as a discrete dynamical system. Since t@Raotic saddle, then there should be locally unstable contri-
experimental system was forced periodically with discreteputions to the Lyapunov spectrum. If enough of the unstable
noise using Eq(3), we can add the perturbations at the samecontributions are sampled, then the topology underlying the
period as that of the drive given by E(p). Consider the chaotic saddle will be reflected in an increasing maximum
periodic sampling as discrete time events of a deterministiexponent.
system. We add the perturbations to initial conditions, similar  In modeling the experiment, we consider additive stochas-
to adding noise to a discrete map. In general, we consideic perturbations to the first component, settiog=o3=0.
stochastically perturbing a functiof with additive noise: The phase space projection of the attractor changes qualita-
F:R3—R3, x—F(x)+7, wherey is an identically indepen- tively as a function of the standard deviation, as we saw
dently distributed random variable with normal distribution earlier. However, in Fig. 4, we show how the experiment and
and mean =0 applied once each iteration. Since we are mostodel both appear to change smoothly as the standard de-
interested in the situation where small noise amplitude cawiation increased. This is reflected in the time-averaged
have major global consequences, we focus on the case whergapunov exponent computations. That is, as we increqse
the random part; is assumed to be independent of state away from zero, the Lyapunov exponent increases and has a
and relatively small, so that the deterministic plarhas pri-  smooth transition from negative to positive values, as shown
mary influence. We add the perturbation to each componerih Fig. 5. The crossing is near;=0.064. As an example, we
independently and set the standard deviatiadh  graph two trajectories to show the emergent dynamics in the
=diag(oy,0,,03) as a parameter. This standard deviation isthree-dimensional phase space in Fig. 6. Setting0.04,
relative to the normalized scaling of the@mostcompact the largest Lyapunov exponent is negative, predicting noisy
space we consider. That is, eaghis scaled as if the phase periodic behavior, as seen near the period-four orbit. Setting
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FIG. 4. The left graphs show intensity data
(arbitrary unitg for increasing perturbations of.
The right graphs show similar results for the
model given by Eq.(4). Plotted are successive
local maxima of the intensity values. Notice that
in both cases, the attractors go from a stochasti-
cally perturbed period-four cycle, through a basin
hopping attractor, and then to bursting among
several basins of attraction from the deterministic
0.5 1.0 3 1.5 20 d o 4 8 12 case.

107y, 103 [exp(
Py,

103 yn+1

2.0 12
4 noise=0.010 6=0.12

8
10°% [expy, )],

0,=0.16, the largest Lyapunov exponent is positive, predictsetting a threshold foe¥t at 0.009. This value was deter-

ing chaoslike behavior. mined by monitoring a trajectory with no noise. For each
More detail about the dynamics can be obtained by calstandard deviation value, we count the number of points in a

culating the bursting statistics as a function of the standargiandom trajectory above the threshold and divide by the total

deviation of the noise. We approximate the burst rate byumber of points. See Fig. 7 for the results using trajectories
700 000 points long. Notice how bursting occurs for

02: 0>0.12. This value is different from the bifurcation value
- predicted by the Lyapunov exponent. Therefore, we will in-
§ 01r evaer et teeaan, s vestigate the stochastic dynamical system as the noise pa-
S ol st rametero is varied.
i 2N Experimentally, we observe and show in Fig. 6 the
§-0.1 L changes that occur as varies. There exists a two-piece
3 L noisy period-four attractor forr<<0.064. Then, the two
S-02f pieces join into one attractor for 0.064r<0.12, which is
. . . . . reflected by a positive Lyapunov exponent. Then, the trajec-
0 0.04 0.08 016 0.20 0.24 tories start to burst and visit the period three. This statistic is
STD (o) not noticeable untilb=0.12. The amount of bursting is re-

flected in the burst rate. For 0.084r<0.12, the noise pro-
FIG. 5. The largest Lyapunov exponent as a function of thevides the transport for the trajectories to visit the stable
standard deviation of the noise. The transition from negative tgeriod-four orbit, the unstable period-two orbit, and the un-
positive values is smooth, as predicted21]. stable period-one orbit. But far>0.12, the trajectory visits
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122 V. PHASE-SPACE ANALYSIS OF STOCHASTIC
7 o : ‘ DYNAMICS
T ae Iy :

Understanding the interaction between noise and the de-
terministic topology requires that we examine the structure
of the stable and unstable manifolds of the relevant saddles
in the prechaotic regime. Locating stable and unstable mani-
folds can be done in several wajkl,12. We use the box
algorithm from[13] and describe it here briefly. By picking a
box containing the unstable saddle with part of its stable and
unstable manifolds, we can determine initial conditions that
will generate trajectories remaining in the box for a large
number of iterations. We then eliminate any points converg-
ing to an attractor. The initial conditions remaining in the
punctured box approximate the union of the stable mani-
folds, while the last point of the trajectory that remains in the
12.2+ box approximates the unstable manifolds. This algorithm

T was used to generate the stable and unstable manifolds in
Fig. 8.

As shown in Fig. 8, the two-dimensional stable manifolds
of the period-three saddle orbit form the basin boundary be-
tween the period-three basin and period-four basin. The one-
dimensional unstable manifolds approach the period-four or-
bit, intersecting the two-dimensional stable manifolds of the
period-two and period-one saddles. This forms a forward

(a) y(t) S ()

112- _ B S L connection of a heteroclinic tangle . There are no re-
' 1275 : 10 S verse connections or intersections of the stable manifolds of
) v 1115 vl the period-three saddle orbit, which would be necessary for
2 1

fully developed chaos.

FIG. 6. The left graph shows noisy periodic behavior generated By adding .Stc.)ChaSt'C perturbqtlons_ with a large enough
by the system when the standard deviation of the noisenis Standard deviation, random trajectories frequently escape
=0.04. This is the behavior predicted by a negative Lyapunov ex{N€ir asymptotic limit toward one of the attracting periodic
ponent. The right graph shows chaoslike behavior generated by tH¥Pits and visit the other. In contrast to basin hopping, the

system whenr,=0.16. This is the behavior predicted by a positive trajectories spenda significant amount of time in between the
Lyapunov exponent in Fig. 5. two attractors, near the forward connections of the hetero-

clinic tangle. Essentially, short visits to the other basin act
like a reverse connection, completing the tangle and enabling
ghaoslike behavior. Therefore, the trajectory follows the cha-
gslike dynamics in the time spent in between the two attrac-
an example. We will now explore these dynamical changegors' As .the standard deviation of the noise is |nqrea§ed, this
by a transfer operator-based analysis, and we will compar[eeverse jump occurs more frequently and more time is spent
the results to the topology of the stable and unstable man{!! bereen the attractors. These events can be identified by
folds of the corresponding deterministic system and interpre ursting, and the chaoticlike behavior IS C?‘Pt“fed by both the
the influence of the added noise. Lyapunov exponent and burst-rate statistics.
What we wish to identify here is where the noise facili-

tates the reverse jump in phase space and provide evidence
that the phenomenon is similar to a heteroclinic tangle. We

both the period-three and period-four attractors, and th
manifolds in between them. See the right graph in Fig. 6 a

I begin by analyzing the time-series data. In Fig. 8, the point
- 01r . before-the trajectory switches basi(defined in the noise-
E- 0.081 o 1 free casgis recorded. It is clear that the jumps occur fre-
G 0.06] . | quently in three regions near the unstable period-three
3 004l saddles. To qu_antlfy these regions, we calculate the Galerkin
3 : . transport matrix.
% 0.02F e 1 The Galerkin transport matrix can be used as a tool to
2 . . . ‘ . . ‘ identify transport between the original basins as a function of
0 004 008 0'123T0D1%c) 020 024 028 032 the standard deviation of the noise added to the sy§id@in
Let »(x) be the distribution of the random variabig
FIG. 7. The burst rate as a function of the standard deviation of y(x) = e'(XTE_l")’Z/\J'm. (6)
the noise. Notice that the bursting increases from zero wear
=0.12. As a spatial approximation, we use the SFPO in the form
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O p1sadde
oL o A A p2 saddle . . .
e M 1 Ao 23 saddle FIG. 8. (Color onling The period-three basin
129 T SR D 74 ///A(///47/{,{,4////{{//' % p3node is denoted by stripes and the rest of the space is
I PG gl ALl _ : _
<. 3§:~2\\‘\"\:‘*¢,‘; nu“,/{// // 7 ’f’ * _p4 node the period-four basin. The union of the stable
121 —7, 08 s 0 e o5 e e B NI I‘..‘”.:;{“;i’ st manifolds in the phase space is approximated by
L T RN i e "'.‘.f:o".‘v’ e '." ‘3’v.,0§r{ "/” . . . ..
12— ;{‘,,?.u,..:-‘ Rld .‘-»-.\\ S ;!j».:':;»,.’ ¥ eeX w e small dots in the period-four basin. This includes
';:ff‘.eff{zé,i PR E TR :,,_:‘...,ae'ﬁ‘f'&m«;:fﬁ"f\‘ ré.'.,».f‘ o the stable manifolds for the period-one and
1.9 ff’A//f///// B0 e, ATRET T period-two orbits. The union of the unstable
T SUoanE e . ; ; . -
18- :,//Z?.//////y/////” ‘s, o '.:‘.; Sow ,:.'.:‘;,:.':e%j,,-?;'»",:”. rr:anlfolttist;]s the ZollchhurvE W|tr(1jthe pbertlod thret(;
e Im'.'.&'"‘"""{éf//////// s W ,~~~»~w; AN stars at the ends. The boundary between the
MT =, Sads R Tess ...,,'.q..v RS period-three and period-four basins is formed by
’o.‘" S Wl ; ‘8 7‘ ":‘m,} £ JU ":é{’ £5E S ; ;
16 '::.::o;.“,:,:.;:.““: «.3.’:,,.':‘“ >3 2 ww- A LS LRE the stable manifold of the period-three saddle
PN Py S50t o f....,.,, Ny 20 ;’x::j;‘/',/f.:}:‘ (squares Notice how the unstable manifolds of
_ ,.‘,"&':‘.*’:: " MEE TR S T R AR A Py . .
1.5 /; // // \‘ Py “;’. = .: *’:T:.'::';:' m‘i : ‘f’f;ﬁf:/ . ]'Eh:ed pe_rlo% th;ﬁe sad_dlz ]Lnterstt)ect_thef stak_)le n:r?nl
ST i olds inside the period-four basin, forming the
1.4 P IRI A i 5"’ , o,
74 L .”z’%{"" ;}leﬂ ///// "j forward connections of the heteroclinic tangle.
11.3 4‘ u -.'s‘fj . Superimposed is the time-series approximation of
12 w7 1_1'5y the flux from the period-four to the period-three
- 7 7 7 7 4 V4 7/ / AER 2 A
43 42 41 10 - 8 7 & 5 basin in large dots.
Yy
partition. In theory, the case with no noise will result in a
Pr [p(x)] = L Kxy)p(y)dy, (7)  block-diagonal matrix, reflecting dynamics in the disjoint ba-
R sins. Under stochastic perturbations, the GTM approximates

where the stochastic kernel describing the PDF of the nois€€ things:(i) the off-diagonal blocks indicate where the

perturbation isK(x,y)=»(x—F(y)). Assuming a nonzero ex- translpoﬂrt t;e(tm;eﬁn ctj)asms occurs—this 'Sh the mass (ﬁmi
o . simply flux), (ii) the dominant eigenvector having eigenvalue
ternal noise is added in each component, & .becomes unity approximates the PDF, agil ) by weighting the mass

flux by the PDF, we pinpoint regions in phase space that
p(y)dy. have the greatest probability of leakage into another basin—
this is the area flux. Seg9,18 for details.
(8) We show the GTM approximation of the PDF in Fig. 9.

Note that although it is possible to let any of the standarqsmce the noise distribution is assumed to be normal, it is

deviations tend to zero in the SFPO where the kernel limits )ﬁgigtidatch:t Ijgsveﬁ/z:: ;Zi ngfn tzheergeevr;atlrlljeei z\r/:rgl\j\;fr:gr:ntlln
to a delta function, it is more realistic to approximate theP P y y

zeros by very small values. This is due to the fact that th small so that when added to unity, they make zero contribu-

ion due to the fact they are below machine error. Therefore,
experiment is always perturbed by small noise. Since we

require a finite dimension for computation, we cover the
phase space witiN disjoint boxesB; and choose a set of
basis functions to be the family of characteristic functions

1 ifXEBi

%00 itxeB. ©

e x-y) TS L(x-y)12
Prlpt0]= (277)3de(2)f

In principle, any set of basis functions bf can be used, but
we use characteristic functions to help us locate spatial trans-
port, as was motivated historically by Ulam’s method. The
approximation of the Frobenius-Perron operator projects to a
N X N matrix, called the Galerkin transport matiigTM),

A= (Pe Ll g = f P [4(0]¢(x)dx, 1<i,j<N.
e FIG. 9. An approximation by the GTM of the PDF when
(10 =0.16. The squares represent the stable period-four orbit. The

) circles represent the stable period-three orbit. The darker shades
The GTM describes the mass flow from one box to anothefdicate regions with the highest probability. Notice that they occur

over one iteration. That is, the entry f8y; approximates the near the stable periodic orbits, but there is structure connecting
percentage of bokthat iterates to box under the stochastic these regions called the stochastic chaotic saddler Ascreases,
map. Then partition the boxes according to their basin andrbits spend more time on the chaotic saddle, indicating the in-
reorder the GTM by similarity transformations to reflect thatcreased frequency of bursting dynamics.
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FIG. 11. Bursting time series from the experimé&jtand model
(b). The dashed line indicates the threshold used to determine a
burst.

Moteopo o 115

12 10 8 6 _4' 11y, regions where the_traj_ectory is most likely to switch bgsins
are found by multiplying the mass flux by the associated

PDF value for that region of phase space. Notice the agree-

FIG. 10. (Color onling Approximation of the transport from the ment between the transport region predicted by the time se-

GTM when 01=0.16. (a) shows regions of most active transport ries in Fig. 8 and the area flux from the period-four to the
from the period-three to the period-four basin in large dabs. period-three basin.

shows regions of most active transport from the period-four to the
period-three basin in large dots. Notice that these regions occur near
the period-three saddle orbit represented by the squarga), Ithe VI. DISCUSSION
union the stable manifolds is displayed in layered sheets and un-
stable manifolds form the one-dimensional curve with the period- Dynamics with noise is always present in experiments at
three pointg(starg at the ends. They are approximated by the boxleast at some level. In many cases, noise is sufficiently small
algorithm from [13]. The stable manifolds of the period-three so that its role is ignorable with respect to the underlying
saddle form the basin boundary between the two basing))ihe  determinism. However, even relatively low-amplitude noise
basin of the period-three orbit is represented by the small dots. Alsgnay play a significant role in which the dynamics takes on a
shown in both(a) and(b) are the stable period-four orliitary, the  qualitative change that is different from the deterministic
unstable period-two orbigtriangles, and the unstable period-one strycture. In the physical example presented here, we have
(circle). examined an experiment where noise has been injected into a
modulated laser. The amplitude of the noise was adjusted,
we choose a numerical threshold of machine precision as and the laser was seen to go from stochastically perturbed
lower bound and replace all smaller values to zero in theperiodic behavior to one of stochastic-induced chaoslike dy-
PDF. Notice that as we add stochastic perturbations to theamics. Because discrete control of the random noise ampli-
system, the most frequently visited regions lie near the untude could be achieved, the system was therefore analyzable
stable manifolds of the period-two and period-one saddldy a discrete-map approach, thereby revealing explicitly the
orbits from the noiseless case. interaction of noise and the underlying deterministic topol-
We observe that as the standard deviation is increased, tlogy.
PDF spreads and crosses into the period-three basin, and In conjunction with the laser experiment, we have exam-
through the stable manifold of the period-three saddle. Thisned a quantitative model with additive noise in the intensity.
is evidence that there is the topology for a trajectory to emuBoth exhibit similar bursting behavior, as shown in the time
late chaoslike behavior. We now will verify the fact that the series data in Fig. 11. Although the topology of the experi-
trajectory actually uses these regions for transport. This isnental dynamics is difficult to ascertain, the quantitative na-
supported by the area flux, which is shown in Fig. 10. Theture of the model does allow an in-depth view of the under-
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12 in Fig. 12, we can see where the maximum probability of
transport from one basin to another occurs. Notice that much
of it takes place near the basin boundary saddle points. That
10 , : \ is, the period-three saddle stable manifold, which forms the

‘ . o basin boundary, intersects the regions of maximal probability
transport. The stochastic dynamics fluctuates until it comes
near the basin boundary, at which point it is attracted to the
saddle point. Noise then takes on a dominant role, where the
intensity is either pushed across the basin boundary, or re-
mains in the same basin. The unstable manifold then domi-
nates the noise, by pushing the dynamics further into the
respective basin.

Our model of the clasB-laser includes more physics in
the problem, which in turn, leads to a more interesting class
of dynamical behavior. Most laser models consist of just two
population levels, describing the change in the population
inversion and intensity. The advantage of such a model is
that it may be studied in the plane, having one-dimensional
stable and unstable manifolds. The resulting stochastic analy-
10 sis could be compared directly to manifolds that were built

v, from curve-following methods in the plane. In contrast, the
model considered here is based on a four-level model, which

FIG. 12. (Color onling The return map of the fixed points cor- agrees quantitatively with the experiment over a large range
responding to the periodic orbits and their projected manifolds.of values. The model requires two main levels and two rota-
(The x axis has been plotted logarithmically to show more dgtail. tional levels, resulting in a five-dimensional system of differ-
The unstable manifolds form the dark solid curve in the middle,ential equations. Approximating the relaxation rates of the
while the stable manifolds are approximated by smaller points. Injibrational states by their average allows one to reduce the
addition, the projected regions of transport are overlaid in largenodel to the current three-dimensional driven ci8. The
dots. Notice that the transport between the two basins predicted by gin difference here is that the stable manifolds are no
the GTM in Sec. V lies close to the period-three saddieangles longer one-dimensionalThe unstable manifolds are one-
on the stable manifold. The other periodic orbits are labeled alimensional, howeverHere, two-dimensional stable mani-
follows: period two, stars; period four, squares; period one, lardgq|4s are pierced by one-dimensional unstable manifolds.
dot; period-three node, circles; period-three saddle, triangle. The e efore regions of transient behavior may wander over a
value of the standard deviation used wgs=0.04. greater region of phase space in both the deterministic and

|y|ng t0p0|ogy and its relation to noise. In the absence ofStOChaStiC models, offering a richer set of dynamical behav-
noise, the topology of the system was determined, and th®r than the two-level laser model.
structure of the stable and unstable manifolds was computed One of the main conclusions of the current stochastic
in a prechaotic regime. When noise is added, the structure @falysis is that maximal transport from one basin to another
the topology interacts with the stochastic fluctuations in suchmay not occur near the basin boundary saddles. Similar ex-
a way to induce chaoslike behavior, which is the emergenamples based on asymptotic properties of problems of escape
structure observed in both theory and experiment as showwhere the phenomenon of saddle avoidance occurs can be
in Fig. 4. The stochastic dynamics is the union of local stofound in [28,29. We note that the methods used here not
chastic dynamics within each basin and the dynamics near @enly agree with the previous local theories, but is an alterna-
partially formed chaotic saddle. For sufficiently large noisetive to describe the global structure of the transport as well
amplitudes, local instability near the manifold structure con-{18].
tributes to the time- and space-averaged linear variation so In general, computing stable and unstable manifolds is a
that the Lyapunov exponent becomes positive, which we takdifficult task, compounded here by the fact that the mani-
as criteria for stochastic bifurcation as defined[1%3], and  folds are of different dimensions. The technique used in this
exemplified in[2]. paper cannot grow the manifolds from a given saddle. There-
In tying together the dynamics from the model and ex-fore, the global analysis of the four-level laser system lacks
periment, we can project the phase portrait of the transpogome of the precision of the two-level system. On the other
and manifold structure to a lower dimensional return map, akand, the SFPO tool does not require the manifold construc-
we did in Sec. IV. In Fig. 12, we have depicted the fixedtionsa priori. Rather, the transport requires a partition of the
points that correspond to the unstable periodic orbits antbasins of attraction in the zero noise case. When noise is
their manifolds. Notice that because we used the box algoadded, the phase space is reconstructed in terms of transport
rithm of [13], the manifolds are not grown from a saddle, butacross the referenced basin boundaries, and thus must con-
reflect the union of all such manifolds in the region we con-tain components of the basin manifolds, regardless of their
sidered. The stable manifol@n black) corresponds to the dimension.
basin boundary in the original phase space separating the In terms of model development, much work on noise had
bistable attractors in the deterministic case. In the projectiofbeen done on maps in the plane, or two-dimensional flows.

10° [exp(y,)], .,

10
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In this paper, we have presented a stochastic experiment #sat there exists a smooth transition from negative to positive
well as a quantitative model that simulates the stochastityapunov exponents.

dynamics. The model is itself a reduction of a previously

more complicated modgPR4], but nonetheless, captures the ACKNOWLEDGMENTS
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