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We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional
dynamical system. The physical model is that of a class-B laser, which is perturbed stochastically with finite
noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the
dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced
chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator
[L. Billings et al., Phys. Rev. Lett.88, 234101(2002)] to a model of the experimental system. Our main result
is the identification of a global mechanism to induce chaoslike behavior by adding stochastic perturbations in
a realistic model system of an optics experiment. In quantifying the stochastic bifurcation, we have computed
a transition matrix describing the probability of transport from one region of phase space to another, which
approximates the stochastic Frobenius-Perron operator. This mechanism depends on both the standard devia-
tion of the noise and the global topology of the system. Our result pinpoints regions of stochastic transport
whereby topological deterministic dynamics subjected to sufficient noise results in noise-induced chaos in both
theory and experiment.
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I. INTRODUCTION

Noise-induced escape, which appears as a form of bifur-
cation in dynamical systems, is now documented in many
areas of science and engineering[1]. It arises in stochastic
processes, which we consider to be a composition of deter-
ministic and time-dependent noisy systems. Detecting chaos
in noisy systems is still an issue of debate. Efforts have been
made to carry over operational definitions of deterministic
chaos to stochastic systems, such as proving the existence of
a positive Lyapunov exponent[2] and exploring the interac-
tion of noise and a global bifurcation based on underlying
unstable structures, such as a chaotic saddle[3]. Many of the
underlying deterministic systems in these examples have pa-
rameter regimes in which multiple attractors give rise to
noise-induced escape from one attractor to another. Such sys-
tems may be analyzed globally using the Hamiltonian theory
of large fluctuations, or considering escape from attracting
potential wells along most probable exit paths[4] using the
theory of quasipotentials[5,6] or a variational formulation of
optimal escape paths[7]. It is well known that noise can
excite unstable chaotic structures while destroying regular
periodic dynamics, but most studies consider noise-induced
chaos occurring near a bifurcation, such as a saddle-node

point or a crisis of chaotic attractors that leave a chaotic
saddle present.

In driven deterministic systems, the existence of chaotic
invariant sets, such as chaotic saddles, can be proven by
examining the topology of intersecting manifolds[8]. As an
example, we cite the Melnikov method[9]. Although it has
been extended to stochastic systems[10], it is limited in
application since it is a bifurcation result that is perturbed
from a global homoclinic or heteroclinic connection in a con-
servative system. Therefore, in many cases, one must rely on
algorithmic methods for the numerical computation of un-
stable objects and their manifolds[11–13], with the hope that
one may extract transverse intersections. We also note that in
contrast to the hypothesis that noise-induced chaos is caused
by a chaotic saddle excitation, a recent result shows that only
partially formed manifold intersections(in which no chaotic
saddle exists) may also be found to have a positive Lyapunov
exponent[14].

In this paper, we compare a bifurcation observed in a
nonequilibrium stochastic class-B laser experiment to a cor-
responding model of the system. We include experimental
results, as well as the theoretical explanation of the observa-
tions. In particular, experiments support the claim that add-
ing larger stochastic perturbations to the system results in
qualitatively different dynamics. Using the model, we pro-
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vide evidence that this is an example of a bifurcation to
noise-induced chaos by explicitly computing the probability
transport due to noise. In this way, the interaction of noise
and the underlying topology is identified in the emergent
dynamics. We present analytic methods that specifically
carry out the task of constructing the invariant density and
transition probabilities in a rigorous manner to address the
problem of thisP-type stochastic bifurcation, as defined in
[15]. Since it is a global approach, it is an alternative to using
the Hamiltonian theory of large fluctuations, as described in
[7,16] for autonomous systems, and in[17] for periodic sys-
tems. New tools were developed that are based on discrete
approximations to the Frobenius-Perron operator with addi-
tive noise, defined as the stochastic Frobenius-Perron opera-
tor (SFPO) [18,19].

Using the SFPO, we identify the active regions of sto-
chastic transport, or probability transitions, in the model. The
advantage of this method is that we can find the probability
density function(PDF) and maximal transport across bound-
aries in the absence ofa priori knowledge of manifold struc-
tures and without time averaging. From the SFPO method,
since one can directly compute the invariant density, spa-
tially averaged Lyapunov spectra may be computed if the
linear variation along an orbit is known. For stochastic sys-
tems that are sufficiently ergodic, spatial and temporal aver-
ages of the Lyapunov spectra are equal, and therefore, a posi-
tive Lyapunov exponent averaged spatially is a possible
indicator of stochastic, or noise-induced, chaos[15].

To contrast our work from previous theories, we note that
the bifurcation is far from parameters that would lead to a
natural bifurcation to chaos, and large noise levels are in-
cluded. Many studies in this field have relied on examining
small noise limits, such as quasipotential theory[6] and op-
timal path theory[4], although this work has more recently
been extended to the regime of finite noise intensity[20].
Underlying unstable fractal structures and noise-induced ba-
sin escape times have also been examined from quasipoten-
tial theory [6] for simple maps. The basin boundary in the
system we study is a simple structure; i.e., it is nonfractal
due to the lack of intersecting stable and unstable manifolds.
In fact, only the forward crossings of a heteroclinic tangle
could be identified, and no nonattracting chaotic sets are
found to exist. The maximum Lyapunov exponent was cal-
culated to increase smoothly through zero at the transition.
Although both smooth and discontinuous onset are attributed
to noise-induced chaos, the transition, which resembles a
noise-induced attractor explosion described in[6], is not ob-

served. In fact, the transition is smooth statistically, evi-
denced by the smooth transition of a Lyapunov exponent
through zero, which may be due to the noise-induced un-
stable dimension variability[21]. There is also a resemblance
to noise-induced switching between multiple attractors as de-
scribed in[3], but evidence provided by the probability den-
sity function supports the fact that trajectories spend as much
time (if not more) near the partially formed heteroclinic
tangle as the two periodic attractors. We also note that as
previously reported in[6] and [3], both explosions and at-
tractor switching are facilitated by fractal basin boundaries
and nonattracting chaotic sets.

The layout of the paper is as follows. In Sec. II, we de-
scribe the experimental setup of a nonequilibrium stochastic
class-B laser. We illustrate the effects of noise on the dynam-
ics of the intensity and show how the structure of the attrac-
tor changes. In Sec. III, we briefly review the laser model of
the experiment in a reduced form and show that it captures
many of the features of the experiment. Section IV illustrates
the effect of noise on the laser model and specifically shows
how the maximal (or top) Lyapunov exponent depends
smoothly on the standard deviation as it transitions from sto-
chastic periodic behavior to stochastic chaos. The global
structure of the underlying topology and transport results are
presented in Sec. V, and the discussion is presented in Sec.
VI.

II. AN ACOUSTICALLY OPTICAL MODULATED LASER
EXPERIMENT WITH NOISE

To examine the effects of external noise in an experiment,
we consider an acoustically optical modulated laser system.
The experimental apparatus is shown in Fig. 1. It consists of
a single-mode CO2 laser with an intracavity acousto-optic
modulator allowing modulation of the cavity losses. The op-
tical cavity is 1.30 m long and the total transmission coeffi-
cientT is 0.10 for a single pass. The intensity decay ratekstd
can be expressed as follows:

kstd = k„1 + a sin2hB0f1 + fstdgj…, s1d

wherek=cT/L, c is the speed of light in a vacuum,L is the
cavity length,a=s1−2Td /2T, B0 is a bias, andfstd is the
modulation signal,

fstd = b sins2pntd + hstd, s2d

with n=100 kHz and the modulation amplitudeb. The ran-
dom variableh is considered to be normally distributed with

FIG. 1. Experimental apparatus used
to perform our measurements. AOM,
acousto-optic modulator; BS, beam split-
ter; PM, power meter; PD, photodetec-
tor; TG, trigger generator; ADC, analog-
to-digital converter; and PC, personal
computer.
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mean zero and standard deviations. The noisy signalfstd is
provided by an arbitrary waveform generator(Tektronix
Mod. AWG420), which generates both the sinusoidal signal
and the random variableh using an independent internal
Gaussian noise generator. Specifically, the noise is added pe-
riodically with the period of drive; i.e.,

hstd = hndSt −
n

n
D, n = 1,2, . . . , s3d

and d is the Dirac delta function, andhn is now a discrete
random variable.

It is known that by increasing the amplitude modulation,
the system undergoes a sequence of subharmonic bifurca-
tions leading to chaos whenh=0 [22]. However, when noise
is added to the system through the driver, the resulting dy-
namics is highly dependent on the noise amplitude. In Fig. 2,
we see two examples of the output of the intensity plotted as
a contour map of the embedded data for two values of the
noise strength at the same value of the modulation amplitude
b=0.360. Note that darker shades indicate regions visited
with higher frequency, andxn is the local maximum of the
measured intensity. The left panel shows the case where
small noise results in a two-piece attractor. The deterministic
attractor at this parameter value is periodic, located at the
dark regions in the middle of the pieces. We describe this
behavior as a noisy periodic attractor since its power spec-

trum is slightly broadened around the corresponding fre-
quency. In the right panel, considerably more noise causes a
qualitative change in the attractor. The periodic orbit is still
located in the darkest regions of the graphs, but notice how
there is significant sampling to other parts of the phase space
not previously sampled at lower noise amplitudes. To under-
stand the mechanism resulting in the stochastic bifurcation,
we consider an accurate model of the experimental process.

III. AN AOM LASER MODEL

In [23], a multifrequency phase control on a two-level,
two-dimensional CO2 laser model produced both experimen-
tal and numerical evidence that it was able to preserve peri-
odic behavior within a chaotic window as well as to reexcite
chaotic behavior when it is destroyed by a crisis. In the
model used, only intensity and population inversion were
considered. To retain fidelity between theory and experiment,
a more realistic four-level model of a CO2 laser, which in-
corporated intensity, two resonant population levels, and two
coupled rotational manifolds, was used in[24]. Analysis
showed that an approximate reduction to three state variables
could be made by examining differences in the resonant and
rotational population levels while still retaining many of the
global features of the bifurcations. Therefore, we begin our
study of the scaled three-dimensional model in a stochastic
version, where noise is added to the intensity equation. The
variables have already been scaled to be dimensionless[24].
The driven three-dimensional system has the advantages that
(i) it is higher dimensional than other models, and(ii ) when
sampled discretely at the drive frequency, its phase space can
be visualized in three dimensions. The model equations are
given by

y18 = k0„y2 − 1 −a sin2hBf1 + fstdgj…,

y28 = − g1y2 − 2k0e
y1y2 + y3 + P,

y38 = − g2y3 + zy2 + zP, s4d

and

fstd = A sinsvtd + hstd, s5d

wherehstd is discretely modeled as in Eq.(3) with period
2p /v, y1 is the natural logarithm of the intensity,y2 is the
main population difference, andy3 is the difference in rota-
tional levels. The fixed parameters arek0=32.97, a=4, B
=0.21, v=0.897 597 9,g1=10.0643,P=0.082,g2=1.0643,
z=10, and we varyA.

We now describe the topology of Eqs.(4) and(5) without
stochastic perturbations, i.e.,hstd;0. As shown in the bifur-
cation diagram in Fig. 3, periodic orbits are represented as a
function of A. As A is increased, a period-one attractor pro-
ceeds through a period-doubling bifurcation. Several saddle-
node bifurcations for varying periodic orbits also occur,
which will play a role when noise is turned on. We show the
first saddle node, which is of period three in the figure.
Therefore atA=0.214, there exists an interval of bistability
IA, formed by period-four and period-three attractors. Asso-

FIG. 2. Contour plots of the embedded intensity data(arbitrary
units) under perturbations ofh. Darker shades indicate regions vis-
ited with higher frequency. Small perturbations are used in the left
graph, which result in a noisy periodic orbit. Larger perturbations
are used in the right graph. Notice how the emergent dynamics are
fundamentally different from the smaller case.
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ciated with the period-four attractor is an unstable period-
two saddle orbit(which is a flip saddle) and an unstable
period-one flip saddle orbit from the period-doubling bifur-
cation. The period-three attractor has an associated unstable
period-three regular saddle orbit arising from a saddle-node
bifurcation. We hypothesize that the multi-instability in this
system whenAP IA has the topological structure needed to
induce chaoslike behavior with additive stochastic perturba-
tions. Since the bifurcation diagram contains only stability
and amplitude information, we explore the phase space
through numerical simulation.(Rigorous analysis of the on-
set of the saddle-node bifurcation, which leads to bistable
regions, is similar to that done in[25] and will be presented
elsewhere.)

IV. STOCHASTIC DYNAMIC SIMULATIONS

In keeping with the experimental setup, we model the
stochastic system as a discrete dynamical system. Since the
experimental system was forced periodically with discrete
noise using Eq.(3), we can add the perturbations at the same
period as that of the drive given by Eq.(5). Consider the
periodic sampling as discrete time events of a deterministic
system. We add the perturbations to initial conditions, similar
to adding noise to a discrete map. In general, we consider
stochastically perturbing a functionF with additive noise:
F :R3→R3, x°Fsxd+h, whereh is an identically indepen-
dently distributed random variable with normal distribution
and mean =0 applied once each iteration. Since we are most
interested in the situation where small noise amplitude can
have major global consequences, we focus on the case where
the random parth is assumed to be independent of statex
and relatively small, so that the deterministic partF has pri-
mary influence. We add the perturbation to each component
independently and set the standard deviationS
=diagss1,s2,s3d as a parameter. This standard deviation is
relative to the normalized scaling of thealmost-compact
space we consider. That is, eachsn is scaled as if the phase

space is a unit box in three dimensions. With no noise, the
only observable behavior is asymptotically periodic trajecto-
ries converging to the period-three or period-four orbits. By
adding noise with increasing standard deviation, a random
trajectory changes from a noisy periodic orbit to chaoslike
deterministic behavior, visiting the two periodic orbit basins.

We remark that although in the original unscaled model,
noise is added multiplicatively, it is approximately equivalent
to adding noise additively in the scaled model from Eq.(4).
This is due to the fact that the intensity of the original model
is represented by the logarithm of the intensity in Eq.(4)
[26]. The noise source appears as a term of the form
sin2hBf1+A sinsvtd+hstdgj. Taking a Taylor series expan-
sion with respect toh yields a noise term on the order ofh,
which is independent of the state variables. Since the model
is based on the natural logarithm of the intensity, a good
approximation to the noise source is that the intensity equa-
tion has an additive noise term.

In quantifying underlying complex determinism in sto-
chastic systems, it is inherently difficult to draw a clear line
to distinguish between complex oscillations due to signifi-
cant contributions from deterministic parts influenced by
noise and a large noise amplitude effect wherein complex
oscillations are primarily due to random Brownian diffusion.
One necessary, but not sufficient, condition for the existence
of chaos is the calculation of positive Lyapunov exponents.
Lyapunov exponents measure the average rate of separation
of neighboring initial points. Because we are adding pertur-
bations to this system discretely, we can find a finite-time
numerical approximation for the Lyapunov exponents of the
map using the linear variational equations of the original
system on the Poincaré section. A positive Lyapunov expo-
nent can identify chaotic behavior, but diffusion can yield a
positive Lyapunov exponent as well[27]. Since chaos is also
associated with the underlying topology of the manifolds of
the dynamical system, we examine the unstable structures in
the deterministic model and observe how they interact with
the stochastic source terms. Specifically, we would like to
identify the structures in the original phase space that noise
can excite. For example, if noise causes a trajectory to visit a
chaotic saddle, then there should be locally unstable contri-
butions to the Lyapunov spectrum. If enough of the unstable
contributions are sampled, then the topology underlying the
chaotic saddle will be reflected in an increasing maximum
exponent.

In modeling the experiment, we consider additive stochas-
tic perturbations to the first component, settings2=s3=0.
The phase space projection of the attractor changes qualita-
tively as a function of the standard deviation, as we saw
earlier. However, in Fig. 4, we show how the experiment and
model both appear to change smoothly as the standard de-
viation increased. This is reflected in the time-averaged
Lyapunov exponent computations. That is, as we increases1
away from zero, the Lyapunov exponent increases and has a
smooth transition from negative to positive values, as shown
in Fig. 5. The crossing is nears1=0.064. As an example, we
graph two trajectories to show the emergent dynamics in the
three-dimensional phase space in Fig. 6. Settings1=0.04,
the largest Lyapunov exponent is negative, predicting noisy
periodic behavior, as seen near the period-four orbit. Setting

FIG. 3. (Color online) The bifurcation diagram for the laser
model as a function of the forcing amplitude. Plotted are branches
of both stable and unstable periodic orbits. They axis is scaled
intensity. The parameters are given in the text.
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s1=0.16, the largest Lyapunov exponent is positive, predict-
ing chaoslike behavior.

More detail about the dynamics can be obtained by cal-
culating the bursting statistics as a function of the standard
deviation of the noise. We approximate the burst rate by

setting a threshold forey1 at 0.009. This value was deter-
mined by monitoring a trajectory with no noise. For each
standard deviation value, we count the number of points in a
random trajectory above the threshold and divide by the total
number of points. See Fig. 7 for the results using trajectories
700 000 points long. Notice how bursting occurs for
s.0.12. This value is different from the bifurcation value
predicted by the Lyapunov exponent. Therefore, we will in-
vestigate the stochastic dynamical system as the noise pa-
rameters is varied.

Experimentally, we observe and show in Fig. 6 the
changes that occur ass varies. There exists a two-piece
noisy period-four attractor fors,0.064. Then, the two
pieces join into one attractor for 0.064,s,0.12, which is
reflected by a positive Lyapunov exponent. Then, the trajec-
tories start to burst and visit the period three. This statistic is
not noticeable untils=0.12. The amount of bursting is re-
flected in the burst rate. For 0.064,s,0.12, the noise pro-
vides the transport for the trajectories to visit the stable
period-four orbit, the unstable period-two orbit, and the un-
stable period-one orbit. But fors.0.12, the trajectory visits

FIG. 4. The left graphs show intensity data
(arbitrary units) for increasing perturbations ofh.
The right graphs show similar results for the
model given by Eq.(4). Plotted are successive
local maxima of the intensity values. Notice that
in both cases, the attractors go from a stochasti-
cally perturbed period-four cycle, through a basin
hopping attractor, and then to bursting among
several basins of attraction from the deterministic
case.

FIG. 5. The largest Lyapunov exponent as a function of the
standard deviation of the noise. The transition from negative to
positive values is smooth, as predicted in[21].
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both the period-three and period-four attractors, and the
manifolds in between them. See the right graph in Fig. 6 as
an example. We will now explore these dynamical changes
by a transfer operator-based analysis, and we will compare
the results to the topology of the stable and unstable mani-
folds of the corresponding deterministic system and interpret
the influence of the added noise.

V. PHASE-SPACE ANALYSIS OF STOCHASTIC
DYNAMICS

Understanding the interaction between noise and the de-
terministic topology requires that we examine the structure
of the stable and unstable manifolds of the relevant saddles
in the prechaotic regime. Locating stable and unstable mani-
folds can be done in several ways[11,12]. We use the box
algorithm from[13] and describe it here briefly. By picking a
box containing the unstable saddle with part of its stable and
unstable manifolds, we can determine initial conditions that
will generate trajectories remaining in the box for a large
number of iterations. We then eliminate any points converg-
ing to an attractor. The initial conditions remaining in the
punctured box approximate the union of the stable mani-
folds, while the last point of the trajectory that remains in the
box approximates the unstable manifolds. This algorithm
was used to generate the stable and unstable manifolds in
Fig. 8.

As shown in Fig. 8, the two-dimensional stable manifolds
of the period-three saddle orbit form the basin boundary be-
tween the period-three basin and period-four basin. The one-
dimensional unstable manifolds approach the period-four or-
bit, intersecting the two-dimensional stable manifolds of the
period-two and period-one saddles. This forms a forward
connection of a heteroclinic tangle inR3. There are no re-
verse connections or intersections of the stable manifolds of
the period-three saddle orbit, which would be necessary for
fully developed chaos.

By adding stochastic perturbations with a large enough
standard deviation, random trajectories frequently escape
their asymptotic limit toward one of the attracting periodic
orbits and visit the other. In contrast to basin hopping, the
trajectories spenda significant amount of time in between the
two attractors, near the forward connections of the hetero-
clinic tangle. Essentially, short visits to the other basin act
like a reverse connection, completing the tangle and enabling
chaoslike behavior. Therefore, the trajectory follows the cha-
oslike dynamics in the time spent in between the two attrac-
tors. As the standard deviation of the noise is increased, this
reverse jump occurs more frequently and more time is spent
in between the attractors. These events can be identified by
bursting, and the chaoticlike behavior is captured by both the
Lyapunov exponent and burst-rate statistics.

What we wish to identify here is where the noise facili-
tates the reverse jump in phase space and provide evidence
that the phenomenon is similar to a heteroclinic tangle. We
begin by analyzing the time-series data. In Fig. 8, the point
before-the trajectory switches basins(defined in the noise-
free case) is recorded. It is clear that the jumps occur fre-
quently in three regions near the unstable period-three
saddles. To quantify these regions, we calculate the Galerkin
transport matrix.

The Galerkin transport matrix can be used as a tool to
identify transport between the original basins as a function of
the standard deviation of the noise added to the system[18].
Let nsxd be the distribution of the random variableh,

nsxd = e−sxTS−1xd/2/Îs2pd3detsSd. s6d

As a spatial approximation, we use the SFPO in the form

FIG. 6. The left graph shows noisy periodic behavior generated
by the system when the standard deviation of the noise iss1

=0.04. This is the behavior predicted by a negative Lyapunov ex-
ponent. The right graph shows chaoslike behavior generated by the
system whens1=0.16. This is the behavior predicted by a positive
Lyapunov exponent in Fig. 5.

FIG. 7. The burst rate as a function of the standard deviation of
the noise. Notice that the bursting increases from zero nears
=0.12.
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PFn
frsxdg =E

R3
Ksx,ydrsyddy, s7d

where the stochastic kernel describing the PDF of the noise
perturbation isKsx ,yd=n(x−Fsyd). Assuming a nonzero ex-
ternal noise is added in each component, Eq.(7) becomes

PFs
frsxdg =

1
Îs2pd3detsSd

E
R3

e−sx − ydTS−1sx−yd/2rsyddy.

s8d

Note that although it is possible to let any of the standard
deviations tend to zero in the SFPO where the kernel limits
to a delta function, it is more realistic to approximate the
zeros by very small values. This is due to the fact that the
experiment is always perturbed by small noise. Since we
require a finite dimension for computation, we cover the
phase space withN disjoint boxesBi and choose a set of
basis functions to be the family of characteristic functions

fisxd = H1 if x P Bi

0 if x ¹ Bi .
s9d

In principle, any set of basis functions ofL2 can be used, but
we use characteristic functions to help us locate spatial trans-
port, as was motivated historically by Ulam’s method. The
approximation of the Frobenius-Perron operator projects to a
N3N matrix, called the Galerkin transport matrix(GTM),

Ai,j = sPFs
ffig,f jd =E

R3
PFs

ffisxdgf jsxddx, 1 ø i, j ø N.

s10d

The GTM describes the mass flow from one box to another
over one iteration. That is, the entry forAi,j approximates the
percentage of boxi that iterates to boxj under the stochastic
map. Then partition the boxes according to their basin and
reorder the GTM by similarity transformations to reflect that

partition. In theory, the case with no noise will result in a
block-diagonal matrix, reflecting dynamics in the disjoint ba-
sins. Under stochastic perturbations, the GTM approximates
three things:(i) the off-diagonal blocks indicate where the
transport between basins occurs—this is the mass flux(or
simply flux), (ii ) the dominant eigenvector having eigenvalue
unity approximates the PDF, and(iii ) by weighting the mass
flux by the PDF, we pinpoint regions in phase space that
have the greatest probability of leakage into another basin—
this is the area flux. See[19,18] for details.

We show the GTM approximation of the PDF in Fig. 9.
Since the noise distribution is assumed to be normal, it is
expected that the PDF has nonzero entries everywhere in
phase space. However, many of these values are sufficiently
small so that when added to unity, they make zero contribu-
tion due to the fact they are below machine error. Therefore,

FIG. 8. (Color online) The period-three basin
is denoted by stripes and the rest of the space is
the period-four basin. The union of the stable
manifolds in the phase space is approximated by
small dots in the period-four basin. This includes
the stable manifolds for the period-one and
period-two orbits. The union of the unstable
manifolds is the solid curve with the period-three
stars at the ends. The boundary between the
period-three and period-four basins is formed by
the stable manifold of the period-three saddle
(squares). Notice how the unstable manifolds of
the period-three saddle intersect the stable mani-
folds inside the period-four basin, forming the
forward connections of the heteroclinic tangle.
Superimposed is the time-series approximation of
the flux from the period-four to the period-three
basin in large dots.

FIG. 9. An approximation by the GTM of the PDF whens1

=0.16. The squares represent the stable period-four orbit. The
circles represent the stable period-three orbit. The darker shades
indicate regions with the highest probability. Notice that they occur
near the stable periodic orbits, but there is structure connecting
these regions called the stochastic chaotic saddle. Ass increases,
orbits spend more time on the chaotic saddle, indicating the in-
creased frequency of bursting dynamics.
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we choose a numerical threshold of machine precision as a
lower bound and replace all smaller values to zero in the
PDF. Notice that as we add stochastic perturbations to the
system, the most frequently visited regions lie near the un-
stable manifolds of the period-two and period-one saddle
orbits from the noiseless case.

We observe that as the standard deviation is increased, the
PDF spreads and crosses into the period-three basin, and
through the stable manifold of the period-three saddle. This
is evidence that there is the topology for a trajectory to emu-
late chaoslike behavior. We now will verify the fact that the
trajectory actually uses these regions for transport. This is
supported by the area flux, which is shown in Fig. 10. The

regions where the trajectory is most likely to switch basins
are found by multiplying the mass flux by the associated
PDF value for that region of phase space. Notice the agree-
ment between the transport region predicted by the time se-
ries in Fig. 8 and the area flux from the period-four to the
period-three basin.

VI. DISCUSSION

Dynamics with noise is always present in experiments at
least at some level. In many cases, noise is sufficiently small
so that its role is ignorable with respect to the underlying
determinism. However, even relatively low-amplitude noise
may play a significant role in which the dynamics takes on a
qualitative change that is different from the deterministic
structure. In the physical example presented here, we have
examined an experiment where noise has been injected into a
modulated laser. The amplitude of the noise was adjusted,
and the laser was seen to go from stochastically perturbed
periodic behavior to one of stochastic-induced chaoslike dy-
namics. Because discrete control of the random noise ampli-
tude could be achieved, the system was therefore analyzable
by a discrete-map approach, thereby revealing explicitly the
interaction of noise and the underlying deterministic topol-
ogy.

In conjunction with the laser experiment, we have exam-
ined a quantitative model with additive noise in the intensity.
Both exhibit similar bursting behavior, as shown in the time
series data in Fig. 11. Although the topology of the experi-
mental dynamics is difficult to ascertain, the quantitative na-
ture of the model does allow an in-depth view of the under-

FIG. 10. (Color online) Approximation of the transport from the
GTM when s1=0.16. (a) shows regions of most active transport
from the period-three to the period-four basin in large dots.(b)
shows regions of most active transport from the period-four to the
period-three basin in large dots. Notice that these regions occur near
the period-three saddle orbit represented by the squares. In(a), the
union the stable manifolds is displayed in layered sheets and un-
stable manifolds form the one-dimensional curve with the period-
three points(stars) at the ends. They are approximated by the box
algorithm from [13]. The stable manifolds of the period-three
saddle form the basin boundary between the two basins. In(b), the
basin of the period-three orbit is represented by the small dots. Also
shown in both(a) and(b) are the stable period-four orbit(stars), the
unstable period-two orbit(triangles), and the unstable period-one
(circle).

FIG. 11. Bursting time series from the experiment(a) and model
(b). The dashed line indicates the threshold used to determine a
burst.
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lying topology and its relation to noise. In the absence of
noise, the topology of the system was determined, and the
structure of the stable and unstable manifolds was computed
in a prechaotic regime. When noise is added, the structure of
the topology interacts with the stochastic fluctuations in such
a way to induce chaoslike behavior, which is the emergent
structure observed in both theory and experiment as shown
in Fig. 4. The stochastic dynamics is the union of local sto-
chastic dynamics within each basin and the dynamics near a
partially formed chaotic saddle. For sufficiently large noise
amplitudes, local instability near the manifold structure con-
tributes to the time- and space-averaged linear variation so
that the Lyapunov exponent becomes positive, which we take
as criteria for stochastic bifurcation as defined in[15], and
exemplified in[2].

In tying together the dynamics from the model and ex-
periment, we can project the phase portrait of the transport
and manifold structure to a lower dimensional return map, as
we did in Sec. IV. In Fig. 12, we have depicted the fixed
points that correspond to the unstable periodic orbits and
their manifolds. Notice that because we used the box algo-
rithm of [13], the manifolds are not grown from a saddle, but
reflect the union of all such manifolds in the region we con-
sidered. The stable manifold(in black) corresponds to the
basin boundary in the original phase space separating the
bistable attractors in the deterministic case. In the projection

in Fig. 12, we can see where the maximum probability of
transport from one basin to another occurs. Notice that much
of it takes place near the basin boundary saddle points. That
is, the period-three saddle stable manifold, which forms the
basin boundary, intersects the regions of maximal probability
transport. The stochastic dynamics fluctuates until it comes
near the basin boundary, at which point it is attracted to the
saddle point. Noise then takes on a dominant role, where the
intensity is either pushed across the basin boundary, or re-
mains in the same basin. The unstable manifold then domi-
nates the noise, by pushing the dynamics further into the
respective basin.

Our model of the class-B laser includes more physics in
the problem, which in turn, leads to a more interesting class
of dynamical behavior. Most laser models consist of just two
population levels, describing the change in the population
inversion and intensity. The advantage of such a model is
that it may be studied in the plane, having one-dimensional
stable and unstable manifolds. The resulting stochastic analy-
sis could be compared directly to manifolds that were built
from curve-following methods in the plane. In contrast, the
model considered here is based on a four-level model, which
agrees quantitatively with the experiment over a large range
of values. The model requires two main levels and two rota-
tional levels, resulting in a five-dimensional system of differ-
ential equations. Approximating the relaxation rates of the
vibrational states by their average allows one to reduce the
model to the current three-dimensional driven case[24]. The
main difference here is that the stable manifolds are no
longer one-dimensional.(The unstable manifolds are one-
dimensional, however.) Here, two-dimensional stable mani-
folds are pierced by one-dimensional unstable manifolds.
Therefore, regions of transient behavior may wander over a
greater region of phase space in both the deterministic and
stochastic models, offering a richer set of dynamical behav-
ior than the two-level laser model.

One of the main conclusions of the current stochastic
analysis is that maximal transport from one basin to another
may not occur near the basin boundary saddles. Similar ex-
amples based on asymptotic properties of problems of escape
where the phenomenon of saddle avoidance occurs can be
found in [28,29]. We note that the methods used here not
only agree with the previous local theories, but is an alterna-
tive to describe the global structure of the transport as well
[18].

In general, computing stable and unstable manifolds is a
difficult task, compounded here by the fact that the mani-
folds are of different dimensions. The technique used in this
paper cannot grow the manifolds from a given saddle. There-
fore, the global analysis of the four-level laser system lacks
some of the precision of the two-level system. On the other
hand, the SFPO tool does not require the manifold construc-
tionsa priori. Rather, the transport requires a partition of the
basins of attraction in the zero noise case. When noise is
added, the phase space is reconstructed in terms of transport
across the referenced basin boundaries, and thus must con-
tain components of the basin manifolds, regardless of their
dimension.

In terms of model development, much work on noise had
been done on maps in the plane, or two-dimensional flows.

FIG. 12. (Color online) The return map of the fixed points cor-
responding to the periodic orbits and their projected manifolds.
(The x axis has been plotted logarithmically to show more detail.)
The unstable manifolds form the dark solid curve in the middle,
while the stable manifolds are approximated by smaller points. In
addition, the projected regions of transport are overlaid in large
dots. Notice that the transport between the two basins predicted by
the GTM in Sec. V lies close to the period-three saddles(triangles)
on the stable manifold. The other periodic orbits are labeled as
follows: period two, stars; period four, squares; period one, large
dot; period-three node, circles; period-three saddle, triangle. The
value of the standard deviation used wass1=0.04.
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In this paper, we have presented a stochastic experiment as
well as a quantitative model that simulates the stochastic
dynamics. The model is itself a reduction of a previously
more complicated model[24], but nonetheless, captures the
relevant features of the stochastic dynamics. In particular, it
captures the interaction of the stochastic dynamics with the
underlying topology of the model. This quantifies the smooth
change of regular stochastic behavior to a bursting type of
behavior between basins, which appears to be chaoslike in

that there exists a smooth transition from negative to positive
Lyapunov exponents.
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