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Periodic precursors of nonlinear dynamical transitions
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We study the resonant response of a nonlinear system to external periodic perturbations. We show by
numerical simulation that the periodic resonance curve may anticipate the dynamical instability of the unper-
turbed nonlinear periodic system, at parameter values far away from the bifurcation points. In the presence of
noise, the buried intrinsic periodic dynamics can be picked out by analyzing the system’s response to periodic
modulation of appropriate intensity.

DOI: 10.1103/PhysRevE.70.026214 PACS nunm#)er05.45.Xt, 87.17.Nn, 84.35.i

The effects of periodic perturbation on a nonlinear dy-maximum and the minimum of the response amplitude as a
namical system is a long-standing problem and continues téunction of the frequency of the driving sinusoidal signal, for
attract much interest in recent years. The main interest in the given signal amplitude. We demonstrate our idea by study-
periodically driven dynamical system has been focused oing the response of the logistic map and Rossler oscillator
the response of a nonlinear system, which is near the onset ghder additive periodic driving for period-doubling bifurca-
dynamical instabilities, to small periodic perturbations,tions and the coupled logistic maps for Hopf bifurcation. We

small-signal amplification of bifurcating systeffi—3|, peri-  pave also tested other discrete and continuous bifurcating
odic multistability[4,5], control of chaos and spatiotemporal systems and find only the similar results.

patterns by global or local periodic forcifi§-13, and other First we look at the resonant response of a nonlinear sys-
periodic driving induced behaviors in excitable or oscillatory ;o 1\ that undergoes a sequence of period-doubling bifurca-

systems[14,13. All those efforts have been dedicated to tions. We consider the logistic map with weak periodic

understanding how the dynamical features of a nonlinear . .
system change as a function of the amplitude and frequencrglqt)dmmIon described by
of the periodic modulation. Recently the response of a non- Xpep =1 —axﬁ+A sin(27rfn), (1)

linear system to stochastic perturbations has become a sub- _
ject of intense investigation, in particular the stochastic resoWherea is the control parameter of the map aha@andf are

nance and coherence resonafitd. It has been shown that the amplitude and frequency of the periodic perturbation,
the response of a bifurcating system to external noise exhig€spectively. In the absence of periodic driving the period-
its characteristic signatures for each class of dynamical indoubling bifurcations occur at the parameter valuas:
stabilities, which is well displayed by the power spectrum=0.75,a,=1.25,a3=1.368 099, ... . It has been shown that
[17]. It is interesting to note that the relationship of the near but before the bifurcation points, noise with appropriate
power spectrum to the dynamics was discussed in [R&f.  intensity can inducé-like peaks in the power spectrum that
This paper addresses the issue of periodic precursors @brresponds to the bifurcated dynamics, and thus precludes
nonlinear instabilities and studies the response of a nonlinedhe occurrence of the dynamical instability. In Figajlwe
periodic system to weak periodic modulation in the absencshow the relative amplitude as a function of the system con-
or the presence of noise, over the whole parameter range. Winl parametem, and the frequency of periodic perturbation
focus our attention to the signature of dynamical instabilityf. The relative amplitude is defined by the difference be-
as revealed by the response of the nonlinear system to vetyween the maximum and minimum of the dynamical variable
weak periodic perturbation signals, at parameter values thavaluated in a period of time. That AX=Xax— Xmin Where
is not near the onset of the bifurcation points of the unperx,,=maxx,,1<n<T}, and X,,=min{x,,1<n<T} (here
turbed system. It is noted that when the system is near th€ is an arbitrary large number of iteration stgp$he re-
onset of dynamical instabilities, the theoretical analysis issponse curves are uniformly shifted up for consecutive val-
greatly simplified. Our interest is how to detect the possibleues of the control parameters so that of the resonant levels
dynamical instability by just evaluating the system’s re-can be appreciated clearly. One of the most interesting ob-
sponse to the very weak sinusoidal perturbations. Our apservations is that the response curve reveals the dynamical
proach involves the direct measurement of the amplitude ofransition in between the successive bifurcation points,
the periodically driven system when the control parametekvhere an unperturbed system shows only the simple mono-
varies, and therefore this method provides real-time evolutonic oscillation behavior. For example, on the parameter
tion of the dynamical features of the unperturbed system anihterval 0.75<a<1.25 the resonance amplitude already
to uncover the key factors that control system dynamics in &hows a resonance curve with two peaksatl.0023, an-
real, unknown system. ticipating the occurrence of period-4 cycle. It is noted that
To quantify the resonant response of a nonlinear system tthe signature appears at a parameter value that is far from the
periodic perturbation we calculate the difference between theynamical instability of the unperturbed system. The dis-
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FIG. 2. (Color online Precursors of Hopf bifurcation in the
06 | coupled logistic mapga) Signature of dynamical transition from a
period-2 cycle to two limit cycles as displayed by the relative am-
£05 1 plitude as a function of driving frequency. The amplitude of the
8% \ periodic modulation isA=10"° (from bottom to topa=0.19-0.25.
04 1 4 | (b) The variation of the resonant frequencies as a function of the
03 | \‘ control parameten. (c) Typical resonance curves as the control
' parameter crosses the bifurcation po{ffom bottom to top:a
0.2 ‘ ‘ ‘ =0.38-0.44. The relative amplitude is defined BYX=Xmax—Xmin-
1 105 11 115 12 125
(c) a

control parameter of an unknown dynamical system, where

FIG. 1. (Color onling Precursors of period-doubling bifurcation the onset of a particular instability occurs. Figute)lshows
in the logistic map. The variation of resonance response curve i§1€ variation of the resonant response curve as the control
plotted as a function of the frequency of periodic perturbation,Parameter crosses over the period-doubling bifurcation point.
at a constant strength of perturbation fixed &=107, It can be seen that the control parametds slightly larger
for different control parametergfrom bottom to top: (a) a  than a=1.25, small spikes appear &tkw,k=0,1,2,....
=0.96, 0.98, 1.0, 1.02, 1.04, 1.06, anth) a=1.241, 1.144, The resonant response curve shows strong fluctuation when
1.2471, 1.2501, 1.2531, 1.2561, 1.259d). The shift of the fre-  the control parameter is very near to the bifurcation point,
quencies corresponding to the resonance peaks as a function of tihich can be regarded as a signal of dynamical instability.
control parametea. The amplitude of periodic driving i&=1075. As the parameter continues to increase, thike spikes
grow into bell-shaped peaks which will be replaced by a
tance to the bifurcation point may be appreciated by thesmooth curve with slight modulation to signify the next dy-
height and width of the peak because the shape of the penmramical transition. This precursor scenario repeats itself for
odic precursor becomes @& function as the parameter ap- each of the consecutive period-doubling bifurcation inter-
proaches the instability point. In Fig(d we display the vals. It is also interesting to note that the characteristic fea-
change of the positions of the maxima in the resonant curvéure of conventional periodic resonance patterns observed in
as the parameter is varied. It is seen that the frequencies linear system that is characterized by the unimodal reso-
corresponding to the resonance peaks starba0.5 and nance at the natural frequency is not observed in the nonlin-
settle down at the frequencies of the bifurcated cycles, thadar dynamical system. It should be stressed that the weak
is, »=1/4 andw=3/4. It isinteresting to note that our ap- periodic perturbation only generates small sinusoidal modu-
proach can also be used to determine the precise value of thetion of the periodic motion of the original system. The time
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FIG. 3. (Color onling Precursors of period-doubling bifurcation
in the Rossler oscillator. The amplitude of sinusoidal modula  FiG, 4. (Color onling Precursors of period-doubling bifurcation
tion is A=10" The variation of the resonant response curvein the logistic map, in the presence of noise. The uniform noise
as a function of a driving frequency for(a ¢  -1<g <1 with strengttD=3% 10°®is used. The other parameters

=1.101, 1.301, 1.501, 1.701, 1.901, 2.101, and 2.301,(knd are the same gg) in Fig. 1 and(b) in Fig. 2. The relative amplitude
=2.8101, 2.8201, 2.8301, 2.8401, 2.8501, 2.8601, and 2.8701. s described byAX=Xmax—Xmin

peak for the period-2 oscillation. It is seen thataat0.225

evolution of the dynamical variable for parameter0.96 . :
anda=1.06, for instance, shows no appreciable difference i€ ¢entral peak located &t 1/2begins to deform and gives
rise to two peaks on each side of the central peak. As the

the frequency of their modulated motion although the ampli-

tude of the modulated cycle changes with the control paramE)a-r ameter is further increased, those four peaks turn into
etera. This is to say, the direct measurement of the time5—I|ke spikes, symmetrically distributed with respect to the

. : A - : . ~original peak. As the parametarapproaches the dynamical
series gives no indicator of the ongoing dynamical transition g P P bp y

ider the eff ¢ period b transition point the resonance peaks become sharper and sud-
. We now tum to consider the effect of periodic pertur a'denly disappear when the bifurcation point is crossed, see
tion on a system that is near the onset of Hopf blfurcat|on.AsFig_ 2b). Slightly after the Hopf bifurcation, small spikes

an 'example of a discrete system, we consider the couplegploear af=0, , and 2, which is a signature of the onset
logistic maps{19)], of the dynamical instability for a general nonlinear system

Xoa1= 1 —ax, + e(y, - X,) + A sin(27fn), 2) under weak periodic modula_ltion... o
To demonstrate the applicability of a periodic precursor
= 1—ax + e(x - y) 3) for a flow system we studied a periodically modulated
Yne1 = %o ¥ €0 T Y, Rossler system described by
wheree i§ the c;oupling strength. It is known that fer 0.4, X=-y—z+A sin2mrft), (4)
a Hopf bifurcation occurs at,=0.409 88, at which the char-
acteristic multipliers of the period-2 orbit cross the unit circle G —
. : <0 ) y=x+ay, (5)
corresponding to the birth of an invariant curve or torus in
the phase space of the system. Figu@displays the change 7=b+2(x-0), 6)

of resonant response curve with control paramate®ince
the transition is from period 2 to two limit cycles through where the parameteesandb are fixed ae=b=0.2, andc is
Hopf bifurcation, the resonance curve is characterized by onthe system control parameter. We calculate the relative am-
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plitude defined byAX=XmnaxXminn With Xmax=maxx(t),0  4(a) and the Hopf bifurcation from period-2 cycle to two
<t<T} and X,,=min{x(t),0<t<T}. Figure 3 shows the limit cycles in the coupled logistic maps, see Figby The
typ|ca| resonance curves Corresponding to the perioddata shown in Flg 4 are the mean resonance curves ave_rag_ed
doubling bifurcation from period-2 to period-4 cycles. We Over 400 sample runs. As can be seen, the weak periodic
find qualitatively equivalent behavior as in the logistic map.driving can still pick out the dynamical transition points, as

As for the Hopf bifurcation we studied a normal form equa_displayed by the resonant response curves. If we look at the
tion for Hopf bifurcation given by time evolution of the dynamical variables, we find the

strongly fluctuated periodic bands, with the periodic signal

Xx=-y+(a-x*=y)x+A sin2xft), (7)  completely buried by the noise. Nevertheless, it is still pos-
sible to extract the noise-contaminated deterministic dynam-
y=x+(@a-x*-yy, (8) ics from the analysis of the resonance response properties.

) ) . In summary, we have studied the resonance response of
where the Hopf bifurcation takes placea&t0. The typical  periodically driven nonlinear dynamical systems. We show
resonance curve is a small precursor bump that grows cofinat the response of the system to the weak periodic pertur-
tinuously from zero height for the parameteris sufficiently  pation can be used to predict the dynamical instability long
far away from the dynamical instability to@function atthe  pefore the system undergoes the dynamical transition. Since
parameter value slightly before the Hopf bifurcation point,the amplitude of periodic modulation is very small the sys-
with the maximum of the peak always located at the fré<emys dynamical variables do not deviate very much from
quency of the limit cycle born from the Hopf bifurcation, in  their nominal values, which may find important applications
contrast to the one-bump resonance curve for periody, physiological systems where the detection of the onset of
doubling bifurcation which is centered d&=m. We have  gome pathological events is highly desired by using of some
tested our approach on other flow systems such as Lorengeans that does not provoke substantial changes in the origi-
oscillator and the Morris-Lucar neuron model. We find thisp 4 unperturbed system. We also show that our approach is

resonance picture a common precursor of the Hopf bifurcaropyst in the presence of weak external noise. We find that

tion.

for certain level of noisy perturbation, the dynamical transi-

To test the robustness of periodic precursors in the presion may be detected by increasing accordingly the strength
ence of noise, we study the response of the logistic map tgf periodic modulation. However, caution must be taken be-
the simultaneous additive periodic and stochastic perturbasg;se when periodic or stochastic perturbations are strong
tions. We find that since the strength of the noise is not t0Qnough, the external driving induced effects may occur, re-
much stronger than that of the periodic perturbation, the dy'sulting in novel dynamical properties. Within the limit of

namical transition can be detected. Figure 4 shows the evumg|| driving, our results are not dependent on the amplitude
lution of resonance curve under an extra additive of noise iRy tne periodic perturbation.

addition to periodic modulation. Here the control parameter
is chosen to be in the period-2 to period-4 range of the This research was supported in part by Grant No. 2115-
period-doubling bifurcation in logistic maps as shown in Fig.31930 from CONACyT.
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