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We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We
search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite
chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a
localization criterion based on the information entropy and verify numerically that such localized excitations
exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the
linear chain. We predict a mimium value for the Morse paraméter 2.25 (the only parameter of our
normalized modg] in agreement with the numerical calculatio@ estimate for the biological value js
=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the sub-
group and we calculate an energy threshold in agreement with the numerical calculations.
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[. INTRODUCTION exit the dispersive band For supercritical values of the
) ] ) Morse parameter, we use canonical perturbation theory to
A plethora of chemical processes involving the DNA mac-g g yate the frequency shifts and we predict a threshold en-

romolecule are knowi1-3], for example, the existence of arqy for localization in agreement with the numerical calcu-
denaturation bubbles containing a few broken H bonds, angtions.

the transcription process triggered by the bonding of the bio-
chemical complex to a specific region of the DNthe SO- 4y {0 introduce the Peyrard-BishgpB) model [4] for a

called TATA box. The oscillator-chain model for DNA4] DNA macromolecule is by the Lagrangian
was first proposed to study the thermal denaturation of the

For the normalizations that follow, the most convenient

DNA macromolecule, i.e., the separation of the two strands. N'm P k

The dynamics of this model was first approximated with soli- ~ Les= 2 E(ui +o7) - E(UH:L —u)?- E(Ui+l —v)?

ton techniqueg5—8]. Our motivation for the present work =1

was to study this model with methods of finite-dimensional -D[expa(v; - u) - 1%, (1)

dynamical systems, which could later be extended to a real-

istic model of DNA without translation symmetry. In this Where u; and v; denote the relative displacements of the
work we consider a finite chain df oscillators with initial  hucleotidic bases at sitésand j of each DNA strand. The

condition restricted to a small group pfN of consecutive numberN denotes the number of sites in each strand of the

oscillators. We define a localized motion as one in which thd®NA and can be as large a~10°. For practical reasons
amplitude of oscillation is small outside a grouprgf, os-  We perform our numerical experiments with up Ne=500.
cillators for all times, withn<n,.,<N, and we introduce a 1ne masses of the bases have a common valuthe con-
numerical criterion to quantify localization based on the in-stantk is the: longitudinal elastic c.onstant,.a.nd the parameters
formation entropy. We use the correspondence conjectur® @nda define the Morse potential describing the transverse
(CC) of Flachet al. [9,10] that the nonlinear dynamics of the H bonds linking the two chains. Th_e experlm(_antal vaIL_Jes for
isolated group of oscillators must have frequencies inside theseé parameters have been discussed in the literature
the reactive band of the linearized chain for localization to be[3’13_1§5: the mass of the base pairs is about 300 a.m.u.
possible. Within this conjecture, we show that there is & 5-0102°kg and the linear spring constant is 0.04 e¥/A
minimum value for the Morse parameigne only parameter The hydrc_>9en bond is modeled by the Morse potential with
of the mode) for a localized excitation to be possible. The @=4.45 A%, and forD we take an average of the value for
predicted valugu=2.25 agrees with our numerical calcula- the guanine-citosingG-C) base pair and the value for the
tions. Last, since the linear frequencies of the isolategs-  thymine-adenine, A-T base paid,=0.04 eV[13].

tem lie in the dispersive band, an immediate consequence of By means of a rotation of coordinates defined by

the CC is that there must be a critical nonzero energy for =
localization(namely, for at least one of thefrequencies to X = (U +viN2,

yi=(u - Ui)/\‘E, (2

*Electronic address: deluca@df.ufscar.br the PB Lagrangiail) is split into the sum_pg=Ly+Ly, with
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N time into a single localized structure, a chaotic breather
Ly = > m¥/2 = k(.1 — X)%2, (3)  (CB). Over longer times the CB is found to break up, with

i=1 energy transferred to lower-frequency modes. Recently, there
has been another set of studies of the discretized Klein-
Gordon equation, from the perspective of studying the sta-
bility of breathers, which are chosen as the initial conditions
[24,25. For a more comprehensive discussion of the exten-
sive research on the dynamics of oscillator chains, see, for

depending only on thg coordinates, and withy depending
only on they coordinates as

N

1 . k — —
Ly= 2> ~my - 5(yi+l_ y))? - Dlexp(- v2ay,) - 1]°.

i-1 2
(4)

The LagrangiarlLy can be normalized by introducing a di-
mensionless time parameter \k/mtand dimensionless co-
ordinates¢, = \@ayi. The above scalings bring, of Eq. (4)
to the normal formLy=KkL/2a?, with

N1, w2
L=2 8- (-7 - lexp-6-17 (5
i=1
where the overdot denotes the derivative with respeect. to
Our normalization differs from that d8], and it was chosen
such that the quartic approximation to E4) has the form of
the Klein-Gordon oscillator chain studied ii1,12. We

henceforth study a chain & sites with periodic boundary

example, Ref[12].

The study of soliton solutions of the nonlinear partial dif-
ferential equations obtained by multiple-scale expansions
constitutes at present the main line of study of the nonlinear
dynamics of DNA modelg5,6,8. Even though the use of
modulation equations and soliton theory does furnish inter-
esting results, we made the choice here to follow a different
approach, based on normal form methods for low-
dimensional Hamiltonian dynamical systems. The reason for
this choice is that, as is well known, multiple-scale expan-
sions are valid only for initial data varying slowly in real
space and quasimonochromatic in Fourier space, while here
we are interested in the evolution of initial excitations
strongly localized in real spacédelocalized in Fourier
spacé. Moreover, the method used here displays the further
advantage that it could be suitably extended to inhomoge-

conditions described by the Lagrangid, a dynamical sys-

tem depending on the single parametée= 4Da?/k (hence-
forth called the Morse paramejetUsing the values in the
literature[13—15, we estimate a realistic biological value for
u to be u=6.3, and the scaling factors for the units of time

and energy to be 9'8192 s and 2.010° eV, respectively. In what follows we reconsider the correspondence conjec-
For small amplitudes, the normal mode frequency spec:

. ture of Refs.[9,1Q in the light of canonical perturbation
trum of Eq.(5) is [12] theory. With reference to the systei), let us initially dis-
(6) place from the equilibrium positio§=0 only a finite number
n<<N of consecutive particles. For such initial datum, instead

where k=(jm/N), j=1,... N. The range of normal mode of studying the dynamics of the full chain, involving a large
frequenciesu< w<\u?+4 constitutes the dispersive band, number of degrees of freedom, we study the dynamics of the
while the two relations & o< u andw> \u?+4 define the  subsystem defined by the Lagrangid@, with the sum re-
lower and upper reactive bands, respectively. One expectsricted to the sites corresponding to the degrees of freedom
that localized motions of the chain with frequency compo-initially excited, and with fixed end boundary conditions for
nents inside the dispersive band will give rise to quasinormathe next neighbors. Such andegree of freedom subsystem
mode excitations, which are typically delocalized in spaceis thought of as isolated and having energy This sub-
In such a way the localized state loses its energy in the forngystem can be regarded as a perturbationnofinearly
of radiation and spreads out. In contrast, localized excitationsoupled oscillators, whose normal mode frequencies
displaying only frequency components inside the two reacw,, ... ,w, are shown to lie inside the dispersive band of the
tive bands are expected to preserve localization for londargerN chain. For sufficiently low energies, the dynamics is
times. quasilinear and its frequency spectrum is close to the normal

There is a large body of studies of one-dimensionalmode frequencies, ...,w, According to the CC, if one
chains, investigating the energy interchange among the “linuses such initial conditions for the larger lattice, the normal
earized” system modd46-23. For initial energy in a few modes of the larger chain are excited and the initial excita-
low-frequency modes, one of ¢3.D.L.)) has developed the- tion will spread out, which is what we observe numerically.
oretical descriptions for energy spreading among moded)ith increasing energy, the effect of nonlinearity becomes
valid in various energy ranges, which were compared to nuprominent, and the frequency spectrum is modified. In the
merical results for the Fermi-Pasta-Ulaii=PU) chain  absence of resonances of third and fourth odédeast in
[16—18 and for the Klein-Gordon chaifi12]. If the energy is  the harmonic spectrum of the subsystem, the modes preserve
initially placed in high-frequency modes, the dynamics istheir identity and we can follow their frequency shifts inside
transiently mediated by the formation of unstable nonlineathe dispersive band. According to the CC, one has localiza-
structures[20-23. The mode energy is found to distribute tion for the initial data at a given energy when the frequen-
itself first into a number of structures, localized in spacecies of the corresponding motion of the subsystem are out-
each consisting of a few oscillators, which coalesce oveside the dispersive band. Of course this can happen only if

neous chain models describing a realistic DNA molecule.

Il. THE CORRESPONDENCE CONJECTURE
REVISITED

w(K) =V u?+ 4 sirk(k/2),

026213-2



ENERGY LOCALIZATION IN THE PEYRARD-BISHORP.. PHYSICAL REVIEW E 70, 026213(2004)

the energy(i.e., the nonlinearityis high enough.
The conditions required on the frequency spectrum for
multiperiodic oscillations are much more restrictive and the 146 ]

localization properties of such states can be very waak 144 ]

For this reason, we restrict the analysisperiodic oscilla- 142

tions only, which amounts to looking for periodic orbits of 1101

the subsystem whose frequency and harmonics lie outsidiyy, :::E

the dispersive band. This analysis is detailed below. 1.08]

1.02 ]

1.00 -

A. Analysis of the finite subsystems 0.98 ]

For the theoretical analysis we consider localized excita- :::

tions where the amplitude of oscillation is small for sites 092 ]
outside a group of 1-+2modes, sayi| >r (ouri runs in both = x & & o

negative and positive directions and the central particie is E

=0). Under this conjecture the dynamics for sites on the

right-hand side of the grou@>r) can be approximated by a FIG. 1. Frequency of the nonlinear 1 system divided /oy
linear chain driven by the given oscillation of oscillator (w/u), plotted as a function of the energy fpr=2 (dashed ling
(while the same can be said of the oscillators on the left-han@=2.25(solid line), and 4=2.5 (dotted ling. The horizontal solid
side,i <-r). The equation of motion for the linearized chain line is w/u=1. Notice that atu=2.25 the frequency line is only
can be derived from the Lagrangidh) by expanding the tangent to the critical line. Arbitrary units.

exponential

1 u?
; . H=2p?+ &+ lexp- &) - 112 (10
§= Gt & - (2+pdE, i>T, (7) 2 ° 2 ?
The frequency of oscillation for the periodic motion of the

where the above linearization holds only for the OSCi”atorSHamiltonian 10) can be determined by a simple quadrature
outside the subgroup, which are supposed to oscillate with . any ener(gy)by the formula y pieq

small amplitude(i>r). The coordinatet, (t) of oscillatorr
entering into Eq.(7) must be givena priori as a known [ & max dé, -1
forcing term. To solve Eq.7) by Fourier transform we define W= f , R 5
the two-component vector emin V2E = 2&5 - uexp(- &) — 1]

(11)
Xis1 = (X‘+1(w) ) (8) In Fig. 1 we plot this frequency as a function of the energy
Xi(w) for several values of the parameterto illustrate that it is

_ o always inside the radiation band far<2.25 at any energy.
It can be shown with the help of E() that x;., satisfies the  This is then the minimum value for the parameter where

linear matrix iteration law localization is possible, as predicted by the correspondence
conjecture for the simple 1 system. It turns out that the bio-
(02-0?) -1 logical value isu=6.3>2.25, in agreement with this theory.
Xi+1= 1 0 Xi» 9 Another agreement with this simple theory is discussed in

the numerical section, as the numerical searches never found
a localized state withu<2.5.

For supercritical values ofx (u>2.25, the frequency
(11) is in the lower reactive band for a sufficient large en-
ergy. The frequency of small oscillatior{gero energy is
easily obtained by expanding the Hamiltoniglt©) to qua-
dratic order, and is»,=v2+u?> u. The next correction for

where w(2,52+,u2. For example, in the case of a mono-
chromatic forcing,x;.1(w) is nonzero only at a single fre-
guency o, and for the iteration of Eq(9) to produce a
bounded amplitude for sites of largeit is necessary that
(w?-w?)?>4, which is the definition of the reactive band
(@s opp_ozsed to the _radlanon band ~ defined . bysmaII energies can be obtained by expanding the Hamil-
p<w<yuc+4). If the forcing has several large Fourier ; -
i . ) tonian (10) to fourth order in&, as
components, the first large component might be in the lower

reactive bandw < u ), while the other important harmonics 1 1 u? 7u?
could be in the upper reactive band> 4+ u2). HY = Epz + Ewggg - ?§ﬁ+ Efﬁ 12

The first subsystem we consider héheenceforth called
the 1 systemis defined byr=0 and consists of the nonlinear where the superscript and subscriptidmefer to the order of
oscillation of a single particle of coordinaig(t) with fixed  the expansion and to the 1 system, respectively. Introducing
ends(é-1=¢;=0). This nonlinear dynamics can be derived action-angle variables and using standard canonical perturba-
from the Lagrangian(5) and it is also described by the tion theory[26], we find that the normal form of the Hamil-
Hamiltonian tonian(12) up to second order in the action varialdlés
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09 = J-g(u)F? (13) We consider another subsystgienceforth called the 3
! © ' system, consisting of three oscillators along the symmetric
with motion defined by_;=¢,. The Lagrangian equations of mo-
5 tion derived from Eq(5) with the conditioné_;=¢; corre-
_ 4u =7 spond to the following two-degrees-of freedom Hamiltonian:
I =5 5 53 (14)
B(M +2) 1 2 1 2 2 2 2 2
=—ps+-p5+ &+ (& - + -&) -
Notice that for supercritical values of (u>2.25), the co- Ho= oPot gPit it (&= &)+ u [exp(- &) = 1

efficient g(u) as defined by Eq(14) is positive[g(u) > 0], 2

such that the nonlinear frequency decreases with increasing + M—[exp(— &) - 1172 (16)
energy. Defining the nonlinear frequency Q/EaH(l“)/aJ, 2

the conditionsH(l“):Ec and Q:aH(l“)/aJ:,u determine the The two frequencies of the quasiperiodic linear motion at
minimum energyE, to be Zero energy are

_wpm i _ A’ +2)? (15) 017 \p2+2-12,
W= Vul+2+ \J’E, (17)

¢ Ag(w)  pA4uP-T7)
The interpretation of Eq(15) is as follows. If the isolated
nonlinear oscillator of the 1 system has an endtgyE,, its ~ Which are inside the dispersive band for gmy
frequency is in the reactive barif < u) and we expect that ~ For small energy subsystems E#6) is a perturbation of
the corresponding typé) initial condition should produce a two harmonic oscillators with frequencies and w, inside
localized excitation, according to the CC. This determinatiorthe dispersive band of the whole linearized chain. To com-
of the critical energy is compared to the numerical results irfPute the leading contribution to the frequency shift of each
the following section, and it turns out to be short by a factoroscillator, we must evaluate the next frequency correction in
of 2. The explanation for this is that the subsystem consistingowers of the actions. One can check that there is no reso-
of a single oscillator loses a significant amount of energy td'@nce up to fourth order involving the linear part of ),
its immediate neighbors, such that one could expect a highd€:» @1/ w,#1/2,1/3.Using canonical perturbation theory
critical energy. It turns out that the valiig= 1 predicted by [26] we can remove the cubic term from Ed.6), average
Eq. (15) is precisely a factor of 2 short of the numerical the_quartlc term, and express the norma] form of the Hamil-
value E,~2 for any value ofu. Our simple theory is then tonian(16) up to second order in the actions as
seen to be in only qualitative agreement with the numerical (4 _ 2 2
calculations. A better approximation should be given by a Hs" (01,30 = 011 + @23~ el = &3~ Cihida, (19
subsystem consisting of three particles with fixed endswhere theJ's are the action variables amyg, c,, andc,, are
which is our next subsystem. given by

o, = 3u[12u°+ (65 - 26(2)u* + (73 - 75/2)” - (42 - 35(2)]
' 640iw}(40? - o)

 3u36uB + 147u’ + 4u* - 27842 - 98]

16w3w3(4w? — 03) (45— w?)

C12

_ 3u12u° + (65 + 26/’ + (73 + 752)u? - (42 + 35/2)]

C . 19
2 640l bk — ) (19
[
The nonlinearly modified frequencies are given by For supercritical values g the coefficients of Eq(19)
are all positive, such that the frequencies of E2Q) are
i decreasing functions of the energy. The two periodic orbits
0, = IH _ w1 = 2C1J; = Crody, branching from the linear modes of E(.8) are obtained by
dJy setting one of the actions of E(L8) to zero. For example,
by substitutingd,=0 into Eq.(18) we obtain
Jd ﬁ |:|(34)(J1, 0) = w]_J]_ - Cl\]i, (21)
O, = —— = wp— 26,y — C1J;. (20 - : :
a4, such that the critical energy predicted by settidg= w is
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2 2 [5
EW = W]~ W :Z—VZ

. 22
¢ 4c, 4c, (22

For the other periodic orbit we substitute=0 into Eq.(18),
yielding

HP(0,3,) = wpd, - €52, (23)
and the critical energy predicted by settiig=p is
2_ 2 [5
ER- Y2 M 272 (24)

4c, 4c,

For values ofu in the interval(2.5< ©<30) one sees that
the values ofc; andc, are close to the limiting values;
=Cp= 1—36 while ¢,, has the limiting values,,~= %. [It is easy
to obtain this limit by settingw,~ w,~u and 4w?-ws
~ 4w3- w2~ 3u? into the formulas of Eq(19).] The limiting
values for the critical energies a@l)=4(2—\s“§)/3~—~0.78
and E?=4(2+2)/3=4.55. The critical energf."=0.78,
obtained for localized excitations generated by 0,agrees

within 25% with the numerical calculations of the next sec-

tion, which determind,.= 0.6. For initial conditions in the 3

PHYSICAL REVIEW E 70, 026213(2004)

i
NI

1 1
B =opl+ 5 (6= 87+ 3 (6= 8

1
+ owlexp- &) - 11 (26)
where we include 50% of the interaction with the oscillator
at each side, such that the sum of tds the constant total
energy. Over short times the instantaneous and average val-
ues are nearly the same. The information entropy is defined
by

N
S=->elne, (27)
i=1

Whereq:Ei/EiN E; are the normalized instantaneous oscilla-
tor energies. In a typical situation where the total energy is
distributed among <N oscillators,r of the g are of order
1/r and the remaining are negligible, such that Exy) pre-
dicts S=In(r). This motivates the definition of
Nosc= exp(S), (28

as the effective number of oscillators sharing the energy. It is

system, the energy leaking out is compensated by a negatiVgsq convenient to define the normalized parameter
interaction energy of the 3 system with the rest, such that the

energy inside the 3 system is actually larger than the total
energy(this explains how we have overestimated the critical
energy. The reason for this better agreement is still that, b
increasing the subsystem size, the interaction energy with t
immediate neighbor@vhatever its signbecomes less impor-
tant. Models with more oscillators in the subgroup shoul
furnish even better approximations, but they are harder t

work out analytically and the corresponding ty@e initial

conditions are computationally more expensive to investi

gate.

Ill. NUMERICAL RESULTS

We present numerical results for the DNA oscillator

Y,
ht

nOSCE NOS(,/N . (29)

The normalized parameter,. varies from 0 to 1, because
ge entropy of Eq(27) is always less than {(IN). The instan-
taneous value of, does not asymptote to 1, due to fluc-

dtuations. To calculate the effect of fluctuations we introduce
& deviationde, from equipartitiong =e+ 8. Substituting this

into Eq. (29), expanding the logarithm function as(in

+oe/e)=oele—-(1/2)(se/e)?, and performing the summa-

tion overi yields

Nosc= %exp{— NEIN(E) - N(80)%/(28} = expl— N(582/(28)}.

(30)

chain, with initial condition in two different types of oscilla- Takinge=1/N and making the assumption of normal statis-
tor groups. All of our numerical integrations were performedtics, that for each normal modée)?=€? (which is true only

with a tenth-order symplectic Runge-Kutta-Nystrom integra-for linearized lattice dynamigswe see thall cancels, giving

tor [27]. The high-order integrator can take very large stepsan asymptotic value,s.=exp—0.5=0.61. This calculation

of about 0.6 of the shortest linear period, and still conservehows that the result does not depend on the number of os-
energy with a precision of I€° even after integration times cjllators if N is large and also shows why the value is differ-

of 10%.

A. Macroscopic quantities

The dynamics of the full chain described by the Lagrang-

ian (5) is described by the following Hamiltonian:
N/2
1 1 1
H= 2 Opi+ (6= 6)7+ S ufexp-§) -1
i==N/
(25

In numerical experiments the instantaneous values obihe

site oscillator energieg;, i=1, ... N, are usually calculated

as

ent from unity. More accurate calculations have been made,
including the nonlinear terms in the oscillator calculation,

yielding [23]

Npse=0.74 (31)

at equipartition of energy among the oscillators. These values
have been checked numerically, giving good agreerj&sijt
Numerical experiments show that for a randomly chosen
localized initial condition the value afi,g; usually starts to
increase and reaches the equipartition vaiye=0.61 in a
time of the order oN, which is the typical spread time. Our
localization criterion is that a state is localized when the
value ofny. is significantly less than the equipartition value
0.61 for more than 39 periodsT; of the fastest linear mode

026213-5



De LUCA et al. PHYSICAL REVIEW E 70, 026213(2004)
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2x10° 4 34
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E 0 20 25 30

FIG. 2. Thax @s a function of the energy for typ@) initial #

conditions atN=100 andu.=6.3. Arbitrary units. The squares rep- £ 3. Numerically calculated critical energy for tyfiginitial
resent numerical calculations and the solid line is a spline;gngitions with N=100 (triangleg, N=200 (starg, and N=500
interpolation. (circles as a function of the energy. Also plotted is the critical

(Ti=2m/ \fm~ 1). For the computationally accessible fi- energy predicted by the 1 systgsquare Arbitrary units.

nite values ofN (of the order of 10§ the smallest value of
Nysc iS Obtained for localization in a single sitBys.=1/N,
which is an extreme value. Given thaj;,=0.61 means eg-
uipartition, our practical criterion i$1,s.< 7. =(20/N) for
t<50N. With this criterion we give the state some room to

breathe, allowing the energy to spread over 20% of the OSt'ually the same type of transition, but the numerical experi-

cillgtors an_d then' to .shrink again to a smaller average Yalue}hent became very time consuming. The question of whether
This practical criterion excludes only very odd Iocallzeq his localization time is either infinite, exponentially long, or
states, that would have sudden delocalization bursts, whic imply a very large value is not addressed in the present

was never observed numerically. In the numerical calcul_a\-Nork_ We have also varied the threshold valuengf,among

tions we use a logarithmic scale for the increasing time, in, valuesp _=0.15,7,=0.2, andy_=25.N and we obtained
the natural units of the Lagrangi@b). The rapid fluctuations o <ame transitioh line. V’Ve used furthe three valued

of the instantaneous values are smoothed by the taking the; 5 N=200 andN=500 and obtained virtually the same

average of the last five Instantaneous valuesigf Wh'(.:h transition lines foru>3. A comprehensive statistical analy-
are evaluated at a rate of 25 points per decade in fahe

every integer value of 25 ()], sis has not been performed due to the very long times for

Our numerical experiments integrate the dynamics of the  eo00+
Lagrangian(5) for a chain of N oscillators with periodic
boundary conditions and we shall use two types of initial
conditions, defined as followsi) Initial conditions produced
by giving a nonzero position and momentum to a single 0S- 4400 4
cillator and a null value for the positions and momenta of all
other oscillatorgthe value o, att=0 is 1). (ii)) Symmetric
initial conditions produced by giving a nonzero value for j
three consecutive oscillators with the symmetry=x; and =
p-1=p; (the value ofny,.att=0 is 3. For example, we have
usedn_ =0.2 and we started sever@bout 50 initial condi-
tions of type(i) with a given energy. For each initial condi-
tion we calculaten,s. along the numerical integration and we
stop the integration at the first time that,. becomes larger 04
than 7, =0.2, defining a delocalization time for that initial — T 1 T v T 1

. . . . . 04 06 0.8 1.0 1.2 14
condition. The maximum value of the delocalization time E
(Tmay @mong the 50 initial conditions of the same energy is
our measure of localization. Typically, for a chain bf FIG. 4. Tax @s a function of the energy for typ@) initial
=100 oscillators, this value is abotif,,=100=N for sub-  conditions atN=100 andu=3.0 (triangle3. Arbitrary units. The
critical energies; then there is a rapid transition where thigsriangles represent the numerical calculations and the solid line is a
value climbs to abov@&,,,,=5000. In practice, it is necessary spline interpolation.

to stop the numerical integration in the supercritical region
wheneverT . reaches a maximum value, and we have used
Tmax=53N as a good computationally accessible large num-
ber (53N=5300 if N=100. We experienced with a much
higher threshold foiT,,, Of about 1008! and obtained vir-

2000
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b I the critical energy determined by the inflection poinfTgf,
0oed o and the theoretical predictions for the 1 system, Ed),

1 ’ versus u. The numerically determined critical energy is
°%7] TTeseressssessneesissittetettttnnnatsenes about twice that predicted for the simple 1 system by pertur-
0.7 \ bation theory. This effect is due to the fact that for tyjpe
0.6 —t initial conditions a substantial part of the energy leaks to the

] - immediate neighbors even when there is localization, such

o’ 05+ that the total energy of the system at localization is signifi-
0.4 cantly larger than the energy of the 1 system.

1 In Fig. 4 we plotT,,,,<53N among 49 typ«(i) initial
031 conditions, as a function of the energy far=3.0 andN
024 =100, illustrating the same jump that is our signature of lo-
01 calization. The critical energy predicted by the inflection

o point of Fig. 4 isE=0.75. In Fig. 5 we plot the critical
0.0 +—y—+1—+1

energy determined by the inflection point of,,, and the
theoretical predictions of the 3 system vergusThe theo-

» retical prediction for the 3 system agrees with the numerical
results within 25%. The approximation is better than in the
case of the 1 system because less energy leaks out of the 3
system. For typgii) initial conditions there is an interaction
term in the total energy that increases the energy inside the 3
system above the total energy, but the predicted energy is

o now only 25% wrong.
some runs. Spot checks for a few cases indicate that the In Fig. 6 we plot the modulus of the complex Fourier

spread from varying\ and 7, is less than some few percent yansform of the coordinate of the central oscillator for an
if >3 andy_<(25/N) For the region 2.5 u <3 there can nitial condition of type(i) of a lattice with=6.3, N=100,
be significant changes in the critical energies determined bynd a subcritical energg=0.1. Notice that the Fourier trans-
the above procedure. This is because close to the critic3drm develops nonzero components inside the conduction
value u=2.25 the localization length becomes long, and in aband 6.3< w< 6.61, as illustrated in the inset to Fig. 6.
lattice with a smallN this localization is confused with eg- In Fig. 7 we plot the Fourier transform of the coordinate
uipartition by our criterion. It is interesting to recall that of the central oscillator for a localized initial condition of
biology chose the safe value pf=6.3 possibly for the same type (i) in a lattice withx=6.3, N=100, and a supercritical
reason. energyE=3.0, which has a primary peak at=6.0<u and

In Fig. 2 we plot the value 0f ;,,,<53N among 49 initial goes to zero already ai=6.25< u, in accordance with the
conditions of typg(i) as a function of the energy fax=6.3.  CC.
Notice the pronounced jump ifi,., Which is a signature of Last, in Fig. 8 we plot the surface of section of the 3
localization. We define the critical energy by the inflection system withu=6.3 at the supercritical enerdg~=3, showing
point of theT,,,, curve, which from Fig. 2 is abolE=2.3.  very little stochasticity, to illustrate that localization has
This same discontinuous behavior By, is observed in the nothing to do with stochasticity within the subgroup, as dis-
numerical calculations for 25 © <30, and in Fig. 3 we plot cussed in Ref[10].

TV T T Y T Y T v T " T T T YT YT 7T "1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

FIG. 5. Numerically calculated critical energy for ty@g initial
conditions withN=100 as a function ofx (triangleg and critical
energy predicted by the 3 systdﬁﬁl) (circles, as a function ofu.
Arbitrary units.

3.04

3.0 - 2o
25 : -
[
104 !
2.0 /
el FIG. 6. Fourier transform of an initial condi-
. " o5 670 585 600 615 630 645 660 675 600 tion of type(i) with E=0.1 (subcritica) for a lat-
2 1.5 o © tice with ©=6.3 andN=100. Plotted is the modu-
(T lus F(w) of the complex Fourier transform. The
. inset magnifies the region near=6.3 to display
1.0 'i. thatF(w) is not zero inside the conduction band.
0.5 - ’: '
0.0 Tt 71T v Tt 1t 1 % o T 1 1 1
4
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1.0 4
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FIG. 7. Fourier transform of an initial condi-
tion of type (i) with E=3.0 for a lattice withu
=6.3 andN=100. Plotted is the modulus(w) of
the complex Fourier transform. The inset magni-
fies the region neanw=6.0 to display the peak of
F(w) at ®=6.0<u. Notice thatF(w) vanishes
abovew=6.25< u.

0.0~y
0 2

IV. DISCUSSIONS AND CONCLUSION

2+

20

for example, to test if one can increase this time arbitrarily.
At a finite N, if the energy of a typéii) initial condition

At a supercritical energy, by searching among 49 initialdoes not localize in the original 3 system, it will leak out to
conditions of type(i), for example, we have found several the other(N/3) 3 systems of the chain. A simple condition

initial conditions that stay localized for more thare Itatural

for these other 3 systems to be “sufficiently linear” is then

units. Using a numerical search that varies the initial condithat the total energy be less thhift./3 (such that the other
tion in the neighborhood of an original localized condition 3 systems display a quasilinear motiomhis intensive con-
[28], in a way that maximizes the localization time, we coulddition E<NE_/3 is important to remember in numerical ex-
easily find other initial conditions that stay localized for a periments with a finite lattice. For example, for a chain of
much larger time, of the order of 10These refined initial
conditions become restricted to narrow domains, and we beexperiments we have always stayed well below this energy.
lieve that the study of time scales for a localized excitation in  The critical value ofu for localization (©=2.25 is in

a chain with a finiteN should start from here in future work, agreement with the numerical calculations, as we never

4.0

40
0.3

02

=0.1

00

&,

0.1

02

0.3

FIG. 8. Surface of section of the symmetric 3 systemuat
=6.3 andeE=3.0, showing little stochasticity. Arbitrary units.

N=100 oscillators, this mearts<26.4 and in our numerical

found localization below.=2.5. In the region 2.5 ©<3.0,

the numerical results indicate that the localization length is
very large, which requires numerical experiments with large
values ofN. The valueuw=6.3 estimated from the biological
measurements is far from the critical and in a region where
localization length is small, such that we predict a robust
localization from the above DNA model. The threshold en-
ergy for localization aj.=6.3 is 2.2 units or 4.% 10 eV
(0.1K&gT at room temperatuje This means that localization

is possible at room temperature, as predicted by our model.
Last, the localization time found numerically is greater than
10° time units or 10’ s, enough for the biochemical mecha-
nisms to operate. Such localization can be related to the
bubbles in DNA and it would be an auxiliary mechanism in
the transcription process.
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