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Turbulence near cyclic fold bifurcations in birhythmic media
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We show that at the onset of a cyclic fold bifurcation, a birhythmic medium composed of glycolytic
oscillators displays turbulent dynamics. By computing the largest Lyapunov exponent, the spatial correlation
function, and the average transient lifetime, we classify it as weak turbulence of a transient nature. Virtual
heterogeneities generating unstable fast oscillations account for the transient turbulence. In the presence of a
wave number instability, unstable oscillations can be reinjected, leading to stationary turbulence. We also find
similar turbulence in a cell cycle model. These findings suggest that weak turbulence may be universal in
biochemical birhythmic media exhibiting cyclic fold bifurcations.
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I. INTRODUCTION ating unstable oscillations can lead to a peculiar turbulence,

intermittency of small- and large-amplitude oscillations. We

In studies of chemical turbulence in reaction diffusionwill first compute complex spatiotemporal behavior in a bi-

systems near a Hopf bifurcation, a reduction of the model tghythmic medium composed of glycolytic oscillators. By cal-
the complex Ginzburg-Landau equati@®GLE) is very use-  culating the maximal Lyapunov exponent, the spatial corre-

ful [1,2]. First, it allows one to determine a parameter set injation function, and the average transient lifetime, we will
the model leading to turbulence without carrying out exten-provide evidence that this behavior is weak transient turbu-
sive simulationd3]. Second, the detailed knowledge of the |ence. In the presence of a wave number instability, transient
CGLE’s dynamics can be very helpf{#-8|, because math- turbulence may become stationary. Mathematically, the insta-

ematical models from different disciplines displaying dy- bility of the faster oscillations is a result of a CF bifurcation
namics near a Hopf bifurcation obey the same qualitativejriven by the terms representing enzymatic regulations, sug-
dynamics of the CGLE9]. gesting that weak turbulence may be common in biochemical

However, the CGLE alone is insufficient for a qualitative birhythmic media exhibiting CF bifurcations. As further evi-
description of realistic models in a neighborhood of a Hopfdence, we demonstrate weak turbulence in a cell cycle
bifurcation, when other bifurcations occur nearf#0,11.  model. A biological system where weak turbulence might

For example, near a supercritical Hopf bifurcation point, anpossibly be found is presented in the closing section.
other stable limit cycle may exist, so that, depending on ini-

tial conditions, oscillations with two different frequencies
and amplitudes are possible. Such a situation, called birhyth- Il. BIRHYTHMIC MEDIUM OF GLYCOLYTIC

micity, is a characteristic feature of a number of well-known OSCILLATORS

models of biochemical oscillationgl4,15. For these sys-

tems, the CGLE cannot be used without appropriate modifi- Let us introduce a birythmic medium composed of glyco-
cations. Often, the best way to approach these problems is Bytic oscillators:

simulations of the original model41,12.

To the best of our knowledge, little is known about turbu- do =p+ oy _ op+D,Aa, (1)
lence in birhythmic media. Intuitively, in a regime of strong dt K"+ 5"
wave number instability, birhythmicity should not be a fac- y
tor. Therefore, turbulence in homogeneous birhythmic media dy Qo
and in coupled limit cycle oscillators should have similar ot Qe key - KN+ +DAY, (2)
characteristics. In the absence of wave number instability,
high-frequency oscillations are supposed to suppress slow a(l+a)(1+7y)?
oscillations and restore uniform oscillations. But at the onset ¢= > 5.
of a cyclic fold (CF) bifurcation in birhythmic media of a L+(1+a)(1+7)

biochemical origin, high-frequency oscillations may be un- | Egs.(1) and(2), a and y represent dimensionless sub-
stable. Thus, a complete suppression of slow oscillationgtrate and product concentrations of glycolytic reactidts;
may not be achieved in these systems. On the contrary, { ,, oi, 0, ks L, andQ are parameter&ll=0). For conve-
unstable qscillations emerge persistently, complex spatiotenyience we assum@=1 throughout this papeb,, andD,
poral motions are possible. _ are diffusion constants for the substrate and product. We de-
The goal of this work is to show that near cyclic fold fine time and space units in Eq4) and(2) in sec and cm,
bifurcations in birhythmic media, virtual heterogeneities cre-yegpectively. Whe,=0, D=0, ando;=0, Egs.(1) and(2)
are called the glycolytic oscillatdrl4]. The terma;y"/(K"
+9") represents substrate recycling that drives birhythmicity.
*Electronic address: dbattogt@vt.edu Recently, in Ref[16], Egs.(1) and(2) were shown to sup-
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O T ¢;=0. Hence, the parameter region we are interested in is
HB deep inside the Benjamin-Feir stability region given by 1

e ® o] +¢,¢,>0. Although the CGLE is valid only near thidB

40— point, it is likely that the uniform oscillations will remain

3 % cF stable until the the next bifurcation in the system—i@F?

- o - in Fig. 1 [9]. Next, consider the uniform oscillations with

. * low frequencies. Unlike the case of fast oscillations, no ana-

201 T lytic approach is available in this case. Note that oscillations

TR T shown by solid circles and diamonds in Fig. 1 occur at the

0.8 1 1.2 same parameters. Therefore, it is rather unlikely that the slow

o, (s'l) oscillations undergo wave number instability, contrary to the

fast ones. Thus, we can assume that uniform, slow oscilla-

tions are also stable.

It is known that strong perturbations can switch oscilla-
tions from one stable orbit to another in the glycolytic model
with substrate recycling14]. Therefore, even if both uni-

) ) _ . form oscillations in Eqs(1) and(2) are stable against wave
port multiple wave fronts. Our concern in this paper is @,,mper instability, strong perturbations can excite the system
different parameter region where irregular spatiotemporaly gyitching the oscillations. This kind of excitability, how-
motions develop. , ever, will not lead to turbulence; in the parameter interval

A phase plane analysis of Eqd) and(2) shows that the [0icrt, 01 cr2l, the fast oscillations will suppress the slow
mechamsm of blrhyt_hm|C|ty is two regions of negative slopegnes as time progresses. But fof— o, cr1| <1 where the
n the prpduc_t nu_IIcIme[_14]. A convenient way to lllustrate ¢ ot oscillations become unstable, it is apparent that a com-
birhythmicity is with a bifurcation d'ag“.im- W(.a used a V\{e“' plete suppression of slow oscillations is impossible. Here,
known software packageuTo [17] for bifurcation analysis o556 of complex interactions between stable, slow and
of the local model[D,=D,=0 in Egs.(1) and (2)]. Solid unstable, fast oscillations, interesting spatiotemporal dynam-

lines in Fig. 1 show stable steady states, and dashed Iinq s might develop. Therefore, we carried out a detailed nu-
show unstable steady states. Stable limit cycles are shown Werical study in the neighborhood GfFL.

solid symbols, unstable limit cycles by open circles. Solid

circles represent small-amplitude oscillations with high fre-

guencies. Large-amplitude oscillations with lower frequen- Ill. WEAK TURBULENCE IN A BIRHYTHMIC MEDIUM
cies are shown by solid diamonds in Fig. 1. A Hopf bifurca- OF GLYCOLYTIC OSCILLATORS

tion point HB 1S _Iocated alorj o~ 1.28_2._There are wo CF For numerical integrations of Egél) and(2) in one spa-
bifurcations in Fig. 1, where stable limit cycles are replaced[ialI

. . dimension, we used the fourth-order Runge-Kutta
by unstable ones. Between these two CF points, which OCCUL thod. Diffusion terms were approximated by the finite-
at oj cp1=1.077 ando; cp2=~1.183, two stable limit cycles ) P y

coexist. Therefore, depending on initial conditions, one Ofdlfference method. Numerical parameters &0.005 cm

the limit cycles will be selected in simulations of the glyco- and at=0.05 s. The system size is definediaiox, where
; cy . . 9YCO- \ is the number of spatial grid points. In this paper we
lytic oscillator with substrate recycling.

A general mechanism of turbulence in oscillatory reactio present results for periodic boundary conditions, but we also
) . i . atory 1M ested the main results with no-flux boundary conditions. We
diffusion systems is wave number instability—i.e., instabilit

of uniform oscillations against phaselike fluctuatigd In Y also tested selected examples with smaller values«aind
Egs.(1) and(2), there are two different uniform oscillations A for fixed|. Our simulations show that Eqel) and(2) are

that miaht underao wave number instability. We want tosensitive to initial conditions. By choosing initial conditions
rovidegevidencegthat these oscillations arg. stable a ainagtS small perturbations of uniform, slow oscillations with
phaselike fluctuations for the parameters in Fia. 1 Fo? th§ rge amplitudes, we found that these oscillations are stable
p ) - € paran g. - . Yor oy < oj cpz. But near and to the left oEF, uniform, fast
fast, uniform oscillations which originate from the Hopf bi- o .
. . T - ... oscillations with small amplitudes are found to be unstable.
furcation point shown by solid circles in Fig. 1, the stability

" . . They spiral out from unstable orbits towards the orbit of
Ccogfglon can be obtained by reducing E¢.and(2) to the stable, large-amplitude oscillations. For strong perturbations

near theCF! bifurcation point, we found spatiotemporal ir-
A - _ : 2 - regular motions in Eqq1) and(2).
A= (LticgA=(L+icAA+ (L +icPaA.  (3) Figure 2 shows a gray scale plot of spatiotemporal dy-
In Eqg. (3), Ais the complex amplitude, arg, c,, andc, are  namics in Eqs(1) and (2). Oscillations between the white
real parameters. The CGLE has a uniform oscillatory soluand black colors show large-amplitude oscillations displayed
tion, A=exdi(cy—c,)t], which is stable if the condition 1 by y(x,t). There are also oscillations with higher frequency
+¢4C,>0 holds. In the Appendix, we calculated, c;, and  and smaller amplitude in Fig. 2. Because the latter ones are
¢, corresponding to Eggl) and (2). Our results show that unstable, they cannot suppress large-amplitude domains. Al-
the uniform oscillations are stable for the parameters used ithough uniform, large-amplitude oscillations are stable
Fig. 1, or anyD,>0 andD,>0. ForD,=D, we find that against small fluctuations, phase slips created by strong ini-

FIG. 1. A bifurcation diagram of Eqgl) and(2). HB marks a
Hopf bifurcation pointCF*2 mark cyclic fold bifurcations. Param-
eters arev=0.25 s%, n=4, K=11.5, =11 s, k;=0.05 s, and
L=3400 000.
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FIG. 4. A phase plane view. The outer cycle shows the orbit of

stable uniform oscillations with a periog=300 s. The inner cycle

shows the orbit of small-amplitude, fast oscillations with a period
FIG. 2. Space-time pattern of in a weak turbulent regime of  7=290 s ats;=1.08 s*. With the decrease of;, the inner cycle

Egs. (1) and(2). The space and time spans &rel.75 cm andT  disappears, but it still can attract neighboring trajectories, creating a

=5X10%s. The pattern was obtained by recordig{g) with a time  virtual, chaotic heterogeneity in Eq&l) and (2). The solid lines

interval 7=5's.D,=D,=1x10° cn?/s ando;=1.065 §*. Other  show spatial distributions of oscillators projected onto the phase

parameters are the same as in Fig. 1. plane at two different time moments. Parameters are the same as in

Fig. 2.

tial perturbations cannot be eliminated as time progresses. As

a result, spati_ally n_onuniform distribytions of concentrationsa|so found no significant variations of and )\Ir;\:x with

are seen at given tl_me_ mo_ments, Fig. 3. On_the phase planghanges ofo, and |. The small values ofc and )\Ir%ax>0

these nonuniform distributions generate motions attracted b vap

unstable orbits around the inner cycle shown in Fig. 4. W

space

guggest that spatiotemporal irregular motions shown in

found th h ble orbi K virtual h 6]:ig. 2—4 can be characterized as weak turbulence.
ound that such unstable orbits act as a weak, virtual hetero-“\v. t5und that in Eqs(1) and (2), stationary irregular

gen.ﬁ'ti/. emerbg|?g_ ratﬂdpmly. They car;]not er:.traln the t;UIbl?notions can develop only for certain initial conditions and
oscilialions, but In their presence, phase Slips canno gystem sizes. In simulations with different initial conditions

:grr?sm;é?/g.lolgswad, persistent spatiotemporal irregular MO3nd system sizes, we observed sudden collapses of the tur-

. : . N bulent dynamics. The collapse of turbulence in EG$.and

To characterlzg the irregular motions in Fig. Zr;,;’)ye galcu—(z) means a complete suppression of small-amplitude oscil-
lated the maximum Lyapunov exponeniys, N |ationg Thus, we defined the transient lifetime of turbulence,
2N-dimensional phase spa2f]. First we made a very long t,, as the time interval from initial conditions to the moment
run of Egs.(1) and (2) to confirm that the turbulence is \yhen 4l oscillators come within a distandeof the orbit of
stationary. Then, by using the same initial conditions, Wegyape - slow, large-amplitude oscillations. In our simulations
S'”.‘“'ated Eg(s(l) am_j (2) and its linear system for COMPU- 6 ,5ed=0.03. Following Ref[13], we plot an average
tation of \iey for T,=2x10° s. We found that the largest yangient lifetimet, versus the system sizen Fig. 6. Here,

a
: P ax__ 3

Lyaponov exponent is positive and smallysi=2x 10" ;0 solid circle is an average of 20 simulations with differ-

ent initial conditions. Figure 6 shows that, as the system size

We also calculated a two-point correlation functi@itx)
={y(Xg,t) Y(X+X,1)), where(- --) stands for an average over increasest, grows exponentially.
space and timg19]. Figure 5 shows thaC(x)~const at For some initial conditions, whehis close to 2 cm, the
small values ofx, indicating strong local coupling and an turbulent solution does not collapse. The inset in Fig. 6
absence of short waves. A power-law decay of the correlatioghows the number of cases, among 20 different simulations,
function at intermediate values afimplies the presence of when a collapse of turbulence has not occurredbyL(° s.
chaotic motions. We found that the slopexs--0.15. We  (These cases were not included in calculations of the solid
circles in Fig. 6) We continued two cases in the inget |

80 T I T I T I
T T TTTT III T LILILIL IIII
60 56 —
A
° B
] -
P v
40
44 —
1 I 1 I 1 I 1 L1111 III 1 1 111 II
0 0.5 1 1.5 102 10" 10°
x (cm) x (cm)
FIG. 3. Snapshots of spatial distributions @fat two different FIG. 5. Alog-log plot of the spatial correlation function. Param-
time moments. Parameters are the same as in Fig. 2. eters are the same as in Fig. 2.

026212-3



D. BATTOGTOKH AND J. J. TYSON PHYSICAL REVIEW E70, 026212(2004)

10° T T T T onset of a CF bifurcation are the instabilities leading to these
structures. The cellular structures in Fig. 7 are breathing be-
cause of the unstable oscillations. Numerical results show
that as the system size increases, the cells breath coherently.

A collapse of turbulence can be prevented if there is a
reinjection mechanism for the unstable oscillations generated
by the virtual heterogeneities. Naturally, wave number insta-
bility can be such a mechanism. Using our calculations in the
Appendix, we simulated Eqql) and (2) for parameters
when the corresponding CGLE displays phase instability and
1(em) found stationary weak turbulence fr—o; cp| <1.
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FIG. 6. Average transient lifetime versus the system size. The
inset shows the cases when a collapse of turbulence has not 0C-1\/ WEAK TURBULENCE IN A CELL CYCLE MODEL
curred byT=10° s. Parameters are the same as in Fig. 2.

In Sec. Ill, we demonstrated that tl& bifurcation point
=1.75 cm up to T=1C s and did not observe a collapse of is crucial for turbulence in Eq$l) and(2). Mathematically,
motions near the inner cycle in Fig. 4. the term representing substrate recycling drives CF bifurca-

Numerical experiments indicate that if virtual heterogene-tions. In models of biochemical oscillations, terms represent-
ities reside sufficiently far from each other, a stationary pating enzymatic activities naturally arise. As an enzyme can
tern is possible in the intervat € [1.055,1.07% Figure 7  quickly switch from being active to inactive and back again,
gives an example of such a pattern. Here virtual heterogenddeal conditions for CF bifurcations exist in these models.
ities are located from each other by distances between 0.Bherefore, other biochemical reaction diffusion models may
and 1 cm. Note that these quasiperiodic structures are nefso display the weak turbulence discussed in the previous
related to a Turing instability, which emerges due to differ-section. As an example, consider a three-variable model of
ences in diffusion coefficients. Unstable oscillations at thethe budding yeast cell cycle:

dX
ot =m(ky + koT) = (kg + KsY + ksZ) X + DyAX, (4)
dy +k;2)(1-Y + kgX)Y
_:(kﬁ 72)( ) (kem+KkoX) +DJAY, 5)
dt ‘]1 + 1 _Y Jl + Y
dz
i (ko + ki2X) —kipZ + DZAZ, (6)
T=G(X,P,J,,J,), (7)
2ad
G(a,b,c,d) = a (8

b-a+bc+ad+V(b-a+bc+ad?-4adb-a)’

where the transcription factof for X is given by the which will be used as a primary bifurcation parameter. Equa-
Goldbeter-Koshland functio® [14]. X, Y, andZ are dimen-  tions (4)—«8) display CF bifurcations as shown in Fig. 8. For
sionless variables am is a dimensionless parameter. Time smallm, Egs.(4)—8) also display saddle node bifurcations, a
and space units in Eq$4)—(8) are given in min and cm, feature universal in cell cycle moddl$5,20. Here, our con-
respectively. cern is the neighborhood @F! in Fig. 8. It is worth men-
WhenDy=Dy=D,=0, Egs.(4)<8) are a reduced version tioning that with the increase of paramekgy the CF* bifur-
of a budding yeast cell cycle modg0,21]. Here, X repre-  cation point shifts to largem, and the distance between the
sents the concentration of cyclin-dependent protein kinasdght saddle node bifurcation and ti&F bifurcation points
(CDK): Y andZ are concentrations of two different anaphaseincreaseg21].
promoting complexesAPC), APC/Cdhl and APC/Cdc20, There are no experimental measurements of diffusion co-
respectively. In Eqg4) and(5), mrepresents the cell's mass, efficients for CDK and APC factors. But it is known that the
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FIG. 7. Breathing periodic structurels=3.5 cm; other param- FIG. 9. Turbulence in a cell cycle model. Space time ployof
eters, as well as the time and space spans, are the same as in Figfiéld in Egs.(4)—8). The space and time spans &re1.28 cm and
T=2500 min. The pattern was obtained by recordif{g) with a

diffusion coefficient of average-sized proteins in cytoplasmiime interval7=5 min.

is approximately 10'cn?/min or smaller[22,23. As our  yyeak turbulencéintermittency of large- and small-amplitude
goal is a demonstration of weak turbulence in a representassciljationy. We provided evidence that unstable oscillations
tive model of biochemical oscillations, we chooBg, Dy,  near cyclic fold bifurcations are the mechanism of transient
andDz arbitrarily, subject to this upper bond. For simplicity, turbulence in birhythmic media. In the presence of wave
we assumed=0. number instability, weak turbulence is stationary.

For simulations of Eq94)—<(8) we used the same method  Recently, Stichet al. [24,25 proposed an amplitude
as in the previous section witbt=0.05 min,5=0.005 cm. model for birhythmic media. An interesting question is
We found numerically that for strong perturbations, Egs.whether the weak turbulence we discussed in this paper can
(4)—(8) display weak turbulence, Fig. 9. Typically, fdy be found in their model? First, let us mention two important
<Dy, we found transient, weak turbulence. Wheg<Dy,  differences between our models and the amplitude model of
numerical experiments indicate stationary turbulence. For inbirhythmic media. In our case, a cyclic fold bifurcation is
stance, we simulated Eq&4)—8) up to T=10" min for m crucial for turbulence, but the amplitude model describes a
=3, Dy=6x10" cm?/min, Dy=10"* cm?/min, D,=0, and  pitchfork bifurcation of limit cycles. Second, both fast and
[=1.28 cm and found stationary turbulence for a number oflow oscillations in the amplitude equation are smooth, but
different initial conditions. There were no qualitative in our case, the slow oscillations are strongly anharmonic.
changes in the weak turbulence when @E! point is lo-  Besides these differences, it is well known that if phase slips
cated away from the saddle node bifurcation, indicating thatevelop, the CGLE generates defef@§]. Thus, these facts
for the origin of weak turbulence in Eq&})—(8), the saddle indicate that instead of intermittency of small- and large-
node bifurcation point is not important. amplitude oscillations, defect turbulence is likely in the am-
plitude model of birhythmic media. On the other hand, as far
as generic patterns in birhythmic media are concern, the cell
cycle model displays target patterns reminiscent of autono-
_ i . mous pacemakers found in the amplitude md@dl,25.

We have shown in this paper that two representative T4 gate, there is no experimental evidence of weak turbu-
mathematical models of biochemical oscillations exhibiting|ence in glycolysis or in the cell cycle. Our results are pure

birhythmicity—glycolytic and cell cycle models—display theoretical predictions of mathematical models. The system
sizes we simulated are much larger than the typical size of a
0.81- . . X
pected in yeasts. Interestingly, some slime molds grow as
i HE i syncytial plasmodigmany nuclei in a common cytoplasmic

yeast cell(10°2 cm). Therefore, weak turbulence is not ex-
e pool) that are many times larger than a typical yeast cell;

V. DISCUSSION

< o4l e i cells 15 cm in diameter can be grown in the laboraf@¥j.
et . Waves of nuclear division are observed in these multinucle-
,_f:__CF1~=::°°°° - ate plasmodig28,29, a_n(_j as we have shown, it is possible
— So00sg that these waves exhibit weak turbulence. Note that weak
0 T é - “J{"‘ . turbulence in the cell cycle would mean irregular oscillations
m of CDK. But for a normal cell cycle, large-amplitude oscil-

FIG. 8. Bifurcation diagram of a cell cycle model. Rate con- lations of CDK are essential; CDK activity must drop below
stantsk; are in units mint, k;=0.002,k,=0.053,k;=0.01, k,=2, a certain threshold for nuclei to exit mitosis and divide.
ks=0.05, ks=0.04, k;=1.5, kg=0.19, ke=0.64, k;y=0.005, k;;  Therefore, hypothetically, weak turbulence in syncytial plas-
=0.07, andk;,=0.08. Other parameters aR=0.15,J,=0.05,J,  modia might lead to mitotic arrest of certain nuclei in the
=0.01. plasmodium.
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Our argument for the stability of fast oscillations against ks
wave number instability is valid only close to the Hopf bi- u=| " 1+i 2
0~ 1

furcation point. Therefore, near the onset of a cyclic fold ' (A9)
bifurcation, a more quantitative characterization of both fast 1
and slow oscillations against wave number instability is
highly desirable. Another problem for the future is to simu- R Y A
late wave morphologies in two spatial dimensig8#]. Up = 5|1 E,l TV (A10)
APPENDIX: COEFFICIENTS OF THE CGLE FOR A We find, further,
GLYCOLYTIC MODEL WITH SUBSTRATE INHIBITION 4K4')’80'i 0 -1
= 2 Yo%er (A11)
In this appendix, following standard procedures in Ref. SR !

[1], we will calculate coefficients of CGLE for the glycolytic
model. For a convenience we assu@e1 in Egs.(1)—3).
First, let us find uniform steady-state solutiamgand vy:

Let us first find ¢y in the CGLE. It is given byc,
=Im\,/Re\,, where

= ulks (A1) N =Ug Liug= 2K (A12)
Yo = MiKs, 1= Up L1lp= (K4+ yg)zal,cr-
_ K4(=2u+ o) + y3(- 2(u+ o)) + 0) We see thal, is a real number; thereforez=0. Now fol-
o= 2 lowing again[1], we findc;:

\/ 2 =1 2 22 D, O
- 4&%+ 4Loab + (1 + y)%0%b D= , (A13)

- = . (A2) 0 D,

(1+yC

wherea=K*u+y3(u+op), b=(K4*+8), andE=2[K4(u-0) d’ +id” = uy Dug, (A14)

+y5(u+a,—a)]. Next we perform a linear stability analysis
of (ag, vo) against small fluctuationda;, 5y exp(igx+i\t). o =d'/d’ = /ﬁ(Da— DZ> (A15)
At the critical wave numbegq., =0, we obtain the character- ! ks\D,+D, '

istic equation . . . . .
g The calculation ot is a little more tedious. We need to find

A2+ (ag +a, + kg +aks=0. (A3)  [1]
In Eqg. (A3), a; anda, are given by V,=V_=- (Lo— 2\g) ™M qugu, (Al16)
= o(1+y0)’[L +2Lag+ (1 + ap)*(1 + y)*] (Ad) Vo= - 2Ly "M guglo, (A17)
[L+(1+a*(1+y)P ’
AK*oi  20Lag(1+ag)(1 + ) ’ i T I? - b e e
BT K 2 [L+ (L +agAl+ 2R (A9) = o Moo 2o Mot = o ot to u?Als)

Let us define a critical value for the bifurcation parameter

=0, ¢ Such that he parametet, in the CGLE is given by,=g"/g’. We find

thatc,=9"/9’, where

ata+k=0. (A8 g = - 3fkym,o(2m,z — m,,) + &y (2m,z— m,,)(m2 - m,
Equation(A6) is the condition for a Hopf bifurcation where +my) - kN2, = 3n,9)] + 3a3(n 2= N2, +Na=na)},
the characteristic equation has pure imaginary solutidgs, v “ e (AL9)

=+i \a.lks
Let u be defined byu=(0,-0; )/ i . We develop the

Jacobian matridt. of Egs.(1)—(3) in powers ofu: ~
gs.()~3) in p K § = \/aﬁl{lolémazhalks(mmazz— 14m,m, ,+m,,’

+10m,2m,2 + 9kn,3) + & 4(m,2 — m, , + m.2)?

+3Ky(Nyy2 = 20,2, + 30,3) I} (A20)

L=Lo+uly+ ---. (A7)
At w=0 the Jacobian is given by

- a

La=
0 a —ki—a

: (A8) In the above expressions,

2
ma2:<(72¢(a2,7)) | mgf(a ¢(a,7)) |
dar dady

We find the rightu, and leftu, eigenvectors ot corre-

sponding to\g: %% g Yo
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_ 203K%5 - 5K ) oier (azqs(a. w)

B (K*+ 99)° IV agro
n3:(&3¢(a,7)> o :<&3¢(a,7)>

“ da’ “0*70, “r daldy ao%'
_ <ﬂ3¢(a, 7)) e (33¢(a, y))

“ 90V ) oy, Y gy

To save space we do not present here cumbersome expr
sions for these derivatives.

PHYSICAL REVIEW E 70, 026212(2004)

For parameters in Fig. 1 we find thaf.=1.282 andc,
~2.21. From Eq(A15) we see that iD,=D,, ¢;=0. There-
fore, 1+c,c,>0 for parameters used in this paperDif=0,
Eqg. (A15) gives the minimal value,;=-0.47. In this case,
1+c4c,=-0.03; therefore, wave number instability is pos-
sible. However, turbulence must be weak as the parameters
are very close to the stability condition tg,>0 [2]. A
stronger wave number instability is possible—for example,
for w=0.28s' K=12, D,=5x10"cm?/s, D,=1
e§107° cn?/s, and other parameters are the same as in Fig. 1.
In this case, we find that; .,~1.095 and 1€,c,=-0.416.
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