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We report experimental and numerical results on noise-enhanced synchronization of two coupled chaotic
oscillators. Enhanced synchronization is achieved through superimposing small-amplitude Gaussian noise on a
common system parameter of the two chaotic oscillators. A resonancelike behavior is found: at an optimum
level of noise, maximum synchronization is attained. The simulations show that the resonance behavior occurs
with both identical and nonidentical oscillators. Noncommon(asymmetric and independent) noise does not
enhance synchronization; common noise seems to enhance synchronization.
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I. INTRODUCTION

Synchronization of chaotic dynamics has been a topic of
extensive research during the past decade. Synchronization
of complex systems is manifested in different forms: identi-
cal [1], phase[2], and generalized[3] synchronization. It has
been shown that the different types can be treated in a unified
framework[4,5].

Noise can play destructive or constructive roles in the
synchronization phenomena of periodic and chaotic oscilla-
tors. Above the identical synchronization threshold, i.e., at
strong-coupling strengths, noise can induce intermittent de-
synchronization[6–8]. In contrast, uncoupled periodic[9,10]
and chaotic[11,12] oscillators can be identically synchro-
nized with common noise; there exists a threshold value of
noise amplitude above which synchronization is obtained. In
a recent Letter, the counterplay of weak coupling and weak
noise has been shown to enhance phase synchronization of
nonidentical chaotic oscillators[13].

In this article, we show the occurrence of resonance be-
havior in the identical synchronization of moderately
coupled chaotic oscillators with the addition of Gaussian
white noise. The applied coupling strength is strong enough
to cause phase synchronization, but weaker than that re-
quired for identical synchronization. It is observed that in
this moderately coupled system both constructive(small
noise amplitudes) and destructive(large noise amplitudes)
effects of noise are important. There exists an optimum level
of noise intensity at which maximum synchronization is at-
tained. Noise-induced resonance effects have also been ob-
served in other scenarios, e.g., in amplification of a sub-
threshold deterministic signal(stochastic resonance), or
noise-induced periodicity(coherence resonance) [14–20].

In this paper, noise-aided synchronization is demonstrated
in experiments with two coupled chaotic electrochemical os-
cillators [21–24]. Noise was added to the system in two dif-
ferent ways:(a) via common external fluctuations in a sys-
tem parameter(circuit potential) which affects the oscillators
equally and(b) via common fluctuations in the coupling
strength of the oscillators. These two types of noise are typi-
cal of realistic physical systems. The extent of synchroniza-

tion is determined as a function of noise intensity for both
types of superimposed noise and their effects are compared.
The experimental findings are supported with numerical
simulations using a chaotic electrodissolution model. More-
over, in the numerical part of the reported results, we com-
pare resonance curves obtained for different levels of hetero-
geneity between the two oscillators and we also compare
three scenarios for superimposed additive noise in an attempt
to elucidate the underlying mechanism of noise-aided syn-
chronization.

II. EXPERIMENTS

A schematic of the electrochemical system is shown in
Fig. 1. A standard electrochemical cell consisting of two
nickel working electrodes(Aldrich, 99.99%+, 1 mm diam),
a Hg/Hg2SO4/cc.K2SO4 reference electrode, and a platinum
mesh counter electrode is used in the experiments[21]. The
distance between the two working electrodes is about 4 mm.
The electrodes are embedded in epoxy and reaction takes

FIG. 1. Schematic of the electrochemical system.
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place only at the ends. The electrodes are held at the applied
potential sVd with a potentiostat(EG&G PAR 273). Zero-
resistance ammeters are used to measure the currents of the
electrodes, and data acquisition is done at 200 Hz. The ex-
periments are carried out in 4.5 M sulfuric acid solution at a
temperature of 11°C.

The two electrodes are connected to the potentiostat
through two individual parallel resistors,R1,2. Small pertur-
bations of the resistors(R1,2=R0+dr1,2, R0=650V, update
frequency 40 Hz, accuracy ±1.17V) and the circuit potential
(V=V0+dV, update frequency 200 Hz, accuracy 0.03 mV)
are carried out, respectively, by a computer-controlled resis-
tor box (EF-499, Elektroflex) and a 16-bit D/A card.

A. Effect of coupling without noise

For comparison, we consider first the identical synchroni-
zation of two chaotic oscillators without noise.(Similar re-
sults under somewhat different conditions can be found in a
previous study[22].) Two chaotic oscillators are coupled
through the perturbation of individual resistors,

drkstd = Kfikstd − kistdlg,

whereK is the coupling strength,ikstd is the current of the
kth electrode, and,kistdl=fi1std+ i2stdg /2 is the mean current,
k=1,2. Theperturbations are constrained to ±100V since
the experimental setup does not allow the implementation of
a wide range of resistor perturbations with high resolution.
We apply conditions(Fig. 2) at which the two electrodes
exhibit low-dimensional chaotic behavior without added
coupling sK=0 MV A−1d [21].

The time series of one of the electrodes and the current
difference between the electrodes are shown in Figs. 2(a) and
2(b), respectively. With increasing coupling strengthK, the
currents become increasingly synchronized[22]. The extent
of identical synchronization is characterized by the synchro-

nization time, tsync: the fraction of time in which the two
currents are synchronized, i.e., the difference between the
currents of the two electrodes, is less than a small value, here
0.05 mA. We have verified that the specific value of this
threshold limit within reasonable values does not affect the
qualitative results. The chosen value corresponds to about
5% of the size of the attractor. Other measures, such as the
standard deviation of the difference between the currents of
the electrodes, also gave similar results. The average syn-
chronization timetsync [Fig. 2(c)] increases withK; the in-
crease becomes small foruKuù0.8 MV A−1.

A time series of current differences atK=−1 MV A−1

shows regions of synchronized behavior and occasional
bursts[see Fig. 2(d)]. The differences between the two sig-
nals are usually larger at the maxima of the individual oscil-
lations.[At other conditions[22], the bursts are smaller; the
bursts in Fig. 2(d) are likely associated with heterogeneity
due to surface properties of the metal and/or less precise
control of the resistors due to low currents.] Since for uKu
ù0.8 MV A−1 further increase intsync is small, we consider
the state atK=−1 MV A−1 to be the experimentally attain-
able maximal synchronization. To test noise-induced syn-
chronization, we picked a base state corresponding to the
situation where the electrodes are synchronized for about
50 % of the time, i.e.,K=s−0.5d to s−0.4d MV A−1. In this
state [the current differences are shown in Figs. 3(b) and
4(b)], not only are the desynchronization amplitudes some-
what larger than atK=−1 MV A−1 (i.e., in each cycle close
to the maximum of the oscillations the differences are
larger), but also there are regions in which the elements are
not synchronized for a few oscillations. We note that in this
base state, due to the moderate coupling, the system is phase-
synchronized; the frequency of the two oscillators is equal.

FIG. 2. Experiments: Chaotic dynamics without added noise.(a)
Time-series data of currents of one of the electrodes.(b) Time-
series data of current differences of two oscillators without coupling
sK=0 MV A−1d. (c) Synchronization timestsyncd as a function of
coupling strength,K. (d) Time series of current difference at
K=−1 MV A−1. V0=1.320 V.

FIG. 3. Experiments: Chaotic dynamics at intermediate coupling
strengthsK=−0.5 MV A−1d with noise on the coupling strength.(a)
The synchronization timestsyncd as a function of noise intensitysDd.
(b) Time-series data of current differences of two oscillators without
noisesD=0 MV A−1d. (c) Time-series data of current differences of
two oscillators at an optimal level of noise intensitysD
=0.05 MV A−1d. (d) Time-series data of current differences of two
oscillators at large noise intensitysD=0.2 MV A−1d. V0=1.320 V.
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B. The effect of noise on the coupling strength

We added Gaussian noise to the coupling strengthsKd,

Kstd = K0 + Dj,

where j is Gaussian noise with zero mean and a standard
deviation of 1.0;D is the noise intensity. The synchroniza-
tion time has a maximum atD=0.05 MV A−1 [Fig. 3(a)]. At
the optimal noise intensity, the oscillators synchronize for
longer times[Fig. 3(c)] than with very small(or without)
noise [Fig. 3(b)] or with too much noise[Fig. 3(d)]. The
increase in synchronization time is small, i.e.,tsync increases
from 60% without noise to 70% at the optimal noise inten-
sity. (The error of these values is estimated to be about ±1%
based on the analysis of segments consisting of the first and
last halves of the data.)

C. The effect of noise on the circuit potential

We have also explored the effect of adding noise to a
common parameter, i.e., the circuit potential

Vstd = V0 + Dj.

With increasing noise intensity we again found an optimal
noise strength at which maximal synchrony occurred[Fig.
4(a)]. With too small [Fig. 4(b)] or too large [Fig. 4(d)]
noise, the two systems are less synchronized than at optimal
noise [Fig. 4(c)]. The synchronization time increases from
about 50% to 70% at optimal noise intensity, i.e., the syn-
chronizing effect of noise is stronger through the circuit po-
tential than through the coupling strength.

III. NUMERICAL RESULTS

To validate the experimental results, numerical simula-
tions were performed using the Koper-Gaspard model[25].

This model reproduces many dynamical features of the cha-
otic behavior of the nickel electrodissolution and is repre-
sented by the following three dimensionless ordinary differ-
ential equations:

C
de

dt
=

V − e

R0
− 120ksedu, s1d

du

dt
= − 1.25d0.5ksedu + 2dsw − ud, s2d

dw

dt
= 1.6ds2 − 3w + ud, s3d

wheree is the double-layer potential,C is the double-layer
capacitance,u andw are the concentrations of electroactive
species in the so-called “surface” and “diffusion” layers,d is
a transport coefficient, andksed is defined as follows:

ksed = 2.5u2 + 0.01expf0.5se− 30dg, s4d

whereu is related to the surface coverage by some(inhibit-
ing) chemical species. The value ofu is approximated by the
sigmoidal function

u = H1 for eø 35,

expf− 0.5se− 35d2g for e. 35.

The dimensionless anodic current is given byikstd=fV
−ekstdg /R0, whereV is the imposed circuit potential(V=V0

in the absence of noise) and R0 is the cell resistance. For
appropriate parameter values, the model system exhibits a
period-doubling route to chaos[25]. We fixed the system
parameters atsV0,R0,d,Cd=s36.7395,0.02,0.11913,1d, re-
spectively, where low-dimensional chaotic behavior in the
anodic currentfikstdg is observed. The simulations were car-
ried out using a second-order Runge-Kutta integrator with a
step sizesh=0.001d; in Sec. III C, a method designed to
solve stochastic differential equations[26] was used to pre-
vent stability problems.

A. The effect of coupling without noise

For two oscillators, Eq.(1) takes the form

Ck
dek

dt
=

V − e

Rk
− 120ksekduk, s5d

where k=1,2. C1,2=C±DC, where DC is a heterogeneity
parameter set to zero unless otherwise noted. As in the ex-
periments, the two chaotic oscillators are coupled through a
perturbation of the individual resistors,

Rkstd = R0 + Kfikst − hd − kist − hdlg, s6d

whereK is the coupling strength(K=K0 in the absence of
noise) and h is the step size of the numerical integrator.
ikstd=fV−ekstdg /Rk is the current of thekth electrode and
kistdl=fi1std+ i2stdg /2 is the mean current,k=1,2. For the
numerical simulations, the two uncoupled oscillatorssRk

=R0d were left to evolve independently and consequently

FIG. 4. Experiments: Chaotic dynamics at intermediate coupling
strength(K=−0.4 MV A−1) with noise on the potential.(a) The
synchronization timestsyncd as a function of noise intensitysDd. (b)
Time-series data of current differences of two oscillators without
noisesD=0 mVd. (c) Time-series data of current differences of two
oscillators at an optimal level of noise intensitysD=20 mVd. (d)
Time-series data of current differences of two oscillators at large
noise intensitysD=30 mVd. V0=1.300 V.
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ikstd=fV−ekstdg /R0. After a sufficiently long time, the cou-
pling was switched “ON”, therefore Eq.(6) should be con-
sidered as a recursive relation that enables one to obtain the
updated current values in terms of the previous ones. These
new current values are subsequently used to calculate the
updated values of functionsek, uk, andwk.

Figures 5(a) and 5(b) show a time series and the differ-
ence between two time series for uncoupled chaotic oscilla-
tors.

The effect of adding coupling is shown in Fig. 5(c). The
extent of synchronization is again characterized by the syn-
chronization time,tsync. The dynamics are considered syn-
chronized if the difference between the currents of the two
electrodes is less than a predetermined value, in this case 6
(dimensionless current units). The extent of synchronization
was also characterized using the standard deviation of the
difference between the currents of the electrodes, and results
similar to those of Fig. 5(c) were obtained. As is evident
from Fig. 5(c), the average synchronization timetsync in-
creases with increasinguKu and identical synchronization oc-
curs for uKu.10−4. To test noise-induced synchronization,
we picked a base state corresponding toK=−1310−6 where

the synchronization was observed for about 50% of the time.
A time series of current differences under these conditions is
shown in Fig. 5(d).

B. The effect of noise on the coupling strength

Gaussian noise was added to the coupling strength,K,

Kstd = K0 + Dj, s7d

wherej is Gaussian noise with zero mean and standard de-
viation of 1.0;D is the noise intensity. The simulation pro-
tocol is similar to the one explained in the previous section
(Sec. III A), the difference being that external noise is super-
imposed. For this set of simulations, the coupling term and
the superimposed noise are switched “ON” simultaneously. It
needs to be clarified that for this noisy system, the algebraic
expressions given by Eq.(6) and(7) are not solved indepen-
dently but contribute to the right-hand side of the differential
equation[Eq. (5)].

We investigated the effect of heterogeneities by system-
atically varying for different levels of heterogeneitiessDCd.
It is evident that the resonance effect diminishes as the het-

FIG. 5. Numerical simulations: Chaotic dynamics without added noise. The system parameters aresV0,R0,d,Cd
=s36.7395,0.02,0.11913,1d. (a) Time-series data of currents of one of the oscillators.(b) Time-series data of current differences of two
oscillators without couplingsK=0d. (c) A running average of the synchronization timestsyncd as a function of coupling strength,K. This
average was calculated for 4000 data points using 50 data points as the length of average.(d) Time series of current difference atsK=−1
310−6d.
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erogeneity between the oscillators is increased. Moreover,
variance calculation of the individual current difference
fis2d− is1dg yields consistent results, as shown in Fig. 6(b).
Figures 6(c)–6(e) show the time series of differences be-
tween the currents of the two oscillators at three distinct
values of D without heterogeneitiessDC=0d. There is an
optimal noise intensity where the oscillators synchronize for
longer times[Fig. 6(d)] than with little noise[Fig. 6(c)] or
with too much noise[Fig. 6(e)]. The synchronization time
increases from 50% without noise to 55% at the optimal
noise intensity.

C. The effect of noise on the circuit potential

Gaussian noise was added to a common parameter,
namely the circuit potential,

Vstd = V0 + Dj. s8d

To reiterate, the simulation protocol is identical to the one
established in Sec. III B.

Figure 7(a) shows resonance curves for different levels of
heterogeneitysDCd. The resonance effect again diminishes
as the heterogeneity is increased. Moreover, variance calcu-
lation of the individual current differencefis2d− is1dg yields
consistent results, as shown in Fig. 7(b). Figures 7(c)–7(e)
show time series of differences between the currents at three
distinct values ofD for DC=0: The optimal noise intensity
case is seen in Fig. 7(d). At the optimal noise intensity, the
synchronization time increases to 70% from 50% without
noise. As in the experimental observations, we find that the
synchronizing effect of noise at optimal intensity is stronger
through the circuit potential than through the coupling
strength.

FIG. 6. Numerical simulations: Chaotic dynamics at intermediate coupling strengthsK=−1310−6d with noise on the coupling strength.
(a) The synchronization timestsyncd as a function of noise intensityD. Superimposed are resonance curves for different levels of asymmetry
between the two electrodes. The curves labeled(A1, A2, A3, A4) correspond to the asymmetry levelsDC=s0,5310−4,5310−3,5
310−2d, respectively. A running average oftsync was computed to suppress local fluctuations and reveal the shape of the resonance curves.
This average was calculated for 4000 data points using 50 data points as the length of average.(b) Variance calculation of the individual
current difference. A running average of the variancessyncwas computed to suppress local fluctuations and reveal the shape of the resonance
curves. This average was calculated for 4000 data points using 50 data points as the length of average.(c) Time-series data of current
differences for two identical oscillatorssDC=0d with very little noisesD<0d. (d) Time-series data of current differences of two oscillators
at an optimal level of noise intensitysD=1.23310−5d. (e) Time-series data of current differences of two oscillators at a large noise intensity
sD=2.8310−5d.
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D. Effect of noise symmetry on system behavior

Common noise on circuit potential is a symmetric,
additive noise; see Eqs.(5) and (8). Common noise on cou-
pling strength is a multiplicative, asymmetric noise; see
Eqs.(5)–(7).

In this section, we explore the differences between sym-
metric and asymmetric noise on the system. For this purpose,
we consider only additive noise. To elucidate the role of
noise in our moderately coupled chaotic system without het-
erogeneitiessDC=0d, we considered three scenarios for the
superimposed additive noise onV: (i) Symmetrical common
noise[added toV as in Eq.(8)]; (ii ) asymmetrical common
noise(V1,2=V0±Dj for the two oscillators, respectively); and
(iii ) independent noise(V1,2=V0±Dj1,2 for the two oscilla-
tors, respectively).

The numerical results of the effect of noise amplitude in
the three scenarios are shown in Fig. 8. The addition of com-
mon(symmetrical) noise results in a resonance curve with an

increase of synchronization time at moderate noise intensi-
ties. When the common noise is added asymmetrically, a
very low level of synchronization is observed, and the syn-
chronization time decreases with increasing noise intensity.
Independent noise is between the symmetric and asymmetric
case; the synchronization timestsync=0.47d is somewhat
smaller than that of the base casestsync=0.5d and it is prac-
tically independent of the noise amplitude in the studied
range.

The resonance effect is produced by the simultaneous
constructive and destructive effects of noise. The symmetric
noise acts as a weak effective coupling[29]. This weak ef-
fective coupling augments the preexisting couplingsKd be-
tween the oscillators, and the synchronization timetsync in-
creases. However, at higher amplitudes of noise the
synchronization degrading effect of noise is observed. When
the noise is asymmetric, it apparently introduces an effective
negative coupling that decreases the preexisting coupling
strength sKd, and therefore the synchronization times

FIG. 7. Numerical simulations: Chaotic dynamics at intermediate coupling strengthsK=−1310−6d with noise on the potential(additive
noise). (a) The synchronization timestsyncd as a function of noise intensitysDd. Superimposed are resonance curves for different levels of
asymmetry between the two electrodes. A running average oftsync was computed to suppress local fluctuations and reveal the shape of the
resonance curves. This average was calculated for 4000 data points using 50 data points as the length of average. The curves labeled(A1,
A2, A3, A4) correspond to asymmetry levelsDC=s0,5310−4,5310−3,5310−2d, respectively.(b) Variance calculation of the individual
current difference. A running average of the variancessyncwas computed to suppress local fluctuations and reveal the shape of the resonance
curves.(c). Time-series data of current differences of two identical oscillatorssDC=0d with very little noisesD<0d. (d) Time-series data of
current differences of two oscillators at an optimal level of noise intensitysD=1.5310−4d. (e) Time-series data of current differences of two
oscillators at a large noise intensitysD=3.5310−4d.

KISS et al. PHYSICAL REVIEW E 70, 026210(2004)

026210-6



tsync decrease. With independent noise, there is no coupling
effect; thus the synchronization properties are practically
unaffected.

IV. DISCUSSION

Our results indicate that two coupled chaotic systems can
exhibit an increased level of synchronization under the influ-
ence of common white noise with a Gaussian distribution.

In uncoupled chaotic systems, noise destroys the global
chaotic character and produces a complicated, noise-driven

behavior characterized by a negative maximal Lyapunov ex-
ponent [11,12,27]. Identical synchronization of two un-
coupled chaotic oscillators thus requires a high level of noise
intensity. In the moderately coupled chaotic system studied
here, however, even small amounts of noise can enhance
synchronization and large amounts of noise destroy synchro-
nization. These two effects produce the resonantlike behavior
seen here in experiments and simulations. In an experimental
system, there is always an intrinsic heterogeneity[24]; we
have shown in simulations that the resonant behavior persists
even for oscillators with heterogeneities. Two different types
of coupling have been considered. The enhancement of col-
lectivity is more pronounced for noise on a common param-
eter (such as environmental fluctuations) than on noise via
coupling strength. The numerical simulations show that the
symmetry of noise is important in noise-aided synchroniza-
tion; asymmetric noise has a degrading effect and indepen-
dent noise has a neutral effect. The coupling effect of com-
mon noise has been pointed out in weakly coupled oscillators
[29] where enhancement of phase synchronization is ob-
served. Here, we have shown that common(symmetric)
noise can play an important role in identical synchronization
of moderately coupled oscillators.

Our results bear a similarity to an important problem in
neuronal spiking: aperiodic perturbations have been shown
to increase the replicability of neuronal spike train profiles
[28]. So just as in the experiments described here, the addi-
tion of a low level of noise can increase correlation between
signals.
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