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Using a class of exactly solvable models based on the pairing interaction, we show that it is possible to
construct integrable Hamiltonians with a Wigner distribution of nearest-neighbor level spacings. However,
these Hamiltonians involve many-body interactions and the addition of a small integrable perturbation very
quickly leads the system to a Poisson distribution. Besides this exceptional case, we show that the accumulated
distribution of an ensemble of random integrable two-body pairing Hamiltonians is in perfect agreement with
the Poisson limit. These numerical results for quantum integrable Hamiltonians provide a further empirical
confirmation of the work of Berry and Tabor in the semiclassical limit.
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The concept of quantum chaos still lacks a clear defini-
tion. The main ideas in this field have been obtained using
the semiclassical approximation for quantum systems having
a classical analog. In a seminal paper, Bohigaset al. [1]
conjectured that the fluctuation properties of generic quan-
tum systems, which in the classical limit are fully chaotic,
coincide with those of random matrix theory(RMT). This
conjecture is strongly supported by experimental data, nu-
merical calculations, and analytical work based on semiclas-
sical arguments. For a generic quantum integrable system,
Berry and Tabor[2] showed that under very general condi-
tions the spectral fluctuations in the semiclassical limit are
well described by the Poisson statistics; i.e., the successive
energy levels are uncorrelated.

The analysis of spectral fluctuations provides an essential
tool in the study of quantum chaos. Moreover, as RMT was
introduced to explain the fluctuation properties of many-
body systems like the atomic nucleus, it is usually consid-
ered that the level statistics establishes a link between many-
body systems and the semiclassical picture. Actually, if the
semiclassical limit is not valid, comparison of the system
spectral fluctuations with those predicted by RMT is the
main criterion to decide whether the system dynamic is regu-
lar or chaotic. When spectral fluctuations fall very near the
RMT predictions the quantum system is considered fully
chaotic. On the contrary, if they follow closely enough the
Poisson statistic, the system is considered regular. Therefore,
the concepts of chaotic and regular quantum systems are not
well established since they rely on results that have only
been checked in the semiclassical limit.

The concept of integrability in classical mechanics was
well defined after the work of Liouville in the 19th century.
A classical Hamiltonian system is integrable if it has a com-
plete set of independent integrals of motion commuting with
respect to the Poisson brackets. The total number of integrals
of motion should be half of the dimension of the phase space
to assure completeness. In quantum mechanics, the concept
of integrability is usually derived from an extension of the
Liouville definition. A quantum system is said to be inte-
grable if it is possible to define a complete set of Hermitian
operators, the integrals of motion, which commute among
each other. However, this definition has some deficiencies

and ambiguities. Various attempts to clarify the characteris-
tics of these integrals of motions—mainly, their functional
independene—have not produced irrefutable answers(see,
for instance,[3–5] and references therein). In this work we
shall use the following definition:a quantum system is said
to be integrable if a set of as many commuting Hermitian
operators as quantum degrees of freedom can be explicitly
given, and the Hamiltonian can be expressed as a function of
these operators[4]. This criterion, relying in the algebraic
structure of quantum mechanics, does not directly refer to
classical mechanics. Since this definition requires that a
“complete” set of quantum integrals of motion be explicitly
given, it assures the existence of a common basis of eigen-
states labeled by the eigenvalues of the integrals of motion.
Moreover, the system is exactly solvable if the complete set
of eigenstates can be found by algebraic methods. In this
sense, the previous definition of quantum integrability is
closely related to exact solvability. We will use this criterion
to test some accepted properties of quantum integrable sys-
tems, like the Berry-Tabor conjecture, without taking into
account the classical limit.

The level statistics of quantum integrable models has been
analyzed in condensed-matter physics as well as in nuclear
physics. Poilblancet al. [6] studied spectral fluctuations by
finding the energy spectrum for several one-dimensional fi-
nite lattice models, like the Heisenberg model, thet-J model,
and the Hubbard model. Alhassid and Novoselsky[7] studied
the quantal fluctuations displayed by the energy levels in the
interacting boson model of nuclei. Recently, the realization
of a Poisson distribution has been suggested as a detector of
new integrable quantum chiral Potts models[8]. In each
case, the integrable Hamiltonian is parameter independent or
it depends on a single free parameter like in the Hubbard
model (the on-site repulsion U). The study of spectral fluc-
tuations has been carried out diagonalizing a definite Hamil-
tonian in the largest possible Hilbert space. In all cases of
integrable quantum models, it was verified that the histogram
of the near-neighbor level spacing could be well fitted by a
Poisson distribution. These results provide numerical support
for the Berry-Tabor semiclassical demonstration[6–8], but
the quality of the statistics is poor due to the small number of
energy levels entering in the histogram. This is in contrast
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with numerical testing of the Bohigas-Giannoni-Schmit[1]
conjecture, assigning a Wigner distribution to any noninte-
grable quantum Hamiltonian, in which large ensembles of
two-body random Hamiltonians were considered(for a re-
view see[9]). More recently, Benetet al. [10] have studied
an ensemble of integrable bosonic Hamiltonians whose
members display GOE- or GUE-like spectra with probability
1. This anomalous behavior can be explained in terms of
semiclassical mechanics. Despite the fact that the systems
under consideration were integrable(in the semiclassical
sense), the periodic orbits that fulfill the Einstein-Brillouin-
Keller (EBK) quatization condition explore huge regions of
phase space; i.e., they mimic a typical chaotic motion. Thus,
it is reasonable to find random matrix spectral fluctuations.
Therefore, the whole ensemble can be considered an anoma-
lous exception of the Berry-Tabor conjecture.

Trying to get more insight into these ideas, we study the
level statistic of a class of quantum integrable models: the
Richardson-Gaudin models. They are based on the pairing
interaction[11] and have a large number of free parameters
which can be selected randomly. In particular, we will study
the rational model for which the quantum invariants have the
form

Ri = Ki
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wherei labels theV levels of a single-particle basis,hi areV
free real parameters, andg is the paring strength. The opera-
tors K+,K−, andK0 are the SUs2d generators of the pair al-
gebra in leveli:
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ī

†
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The operatorKi
+ creates a pair of particles in time reversal

states in the double-degenerated leveli. The three generators
close the commutation algebra sus2d:
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Based on this commutation algebra, it is straightforward
to check that the operators(1) commute with one another for
arbitrary values ofg and the set ofV parametersh. The
rational model, as well as other models, is fully integrable
and exactly solvable(for the exact eigenstates of these mod-
els see[11]).

Once the free parameters inside theRi operators are fixed,
it is possible to find their complete set of common eigenval-
uesr i

a and eigenvectorsucal. Any function of theRi opera-
tors defines a valid integrable Hamiltonian. In particular, lin-
ear combinations of theRi operators produce quite general
pairing Hamiltonians
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Contrary to most of the integrable Hamiltonians cited
above, this class of integrable Hamiltonians depends on
s2V+1d free, real, and independent parameters; combina-
tions of higher-rank quantum invariants would give larger
sets of free parameters. Within this very large parameter
space it is worth exploring the possibility of finding chaotic
spectra, contradicting the Berry-Tabor hypothesis. Therefore
the usual distinction between chaos and regularity by means
spectral statistics would become doubtful.

To shed some light on this question we have tried to fit
several chaotic spectra using the class of Hamiltonians(4)
for different values ofV and different particle pair numbers
N. These chaotic spectra were obtained by diagonalizing a
random matrix with the appropriate dimension. The dimen-
sion of the Hilbert space for a system withV levels andN
fermion pairs is given by

D = SV

N
D .

Thus, it is usually much larger than the number of Hamil-
tonian parameters 2V+1; therefore, it is impossible to obtain
an exact replica of the actual random matrix spectrum, and
we can only get an approximation to this spectrum. In all the
cases the best parameter set leads to a Hamiltonian whose
spectrum shows Poisson level fluctuations, as predicted by
Berry and Tabor.

Nevertheless, as we have commented above, it is still pos-
sible to consider more general Hamiltonians using theRi
operators. These Hamiltonians involve many-body forces
represented by combinations of higher-rankR operators.
Knowing the dimensionD of the Hilbert space for a system
with V levels andN fermion pairs, we propose the following
class of integrable Hamiltonians with many body forces:

H = o
i1.i2.¯.iN

«i1,i2,. . .,iN
Ri1

Ri2
¯ RiN

. s5d

If we fix the hi parameters and the value ofg inside theRi
operators entering in Eq.(5), the number of free parameters
«i1,i2,. . .,iN

in the Hamiltonian is precisely equal to the dimen-
sion of the Hilbert spaceD. Therefore, thed eigenvalues of a
nonintegrable pairing Hamiltonian with a typical chaotic
spectrum can be exactly fitted with the Hamiltonian(5) by
solving a linear set of equations for theD unknowns
«i1,i2,. . .,iN

.
We have considered several cases withsV ,Nd=s10,6d,

s11,6d, s12,6d, ands13,6d; the corresponding dimensions of
the Hamiltonian matrices areD=210, 462, 924, and 1716,
respectively. In each case we have been able to fit a chaotic
spectra with the appropriate dimensionality obtaining an ex-
ception to the Berry-Tabor result. In other words, we have
been able to obtain spectral fluctuations of Wigner-Dyson
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type at all energy scales for quantum integrable Hamilto-
nians. Actually, exceptions to this rule were already known:
for example, Crehan[12] proved that any spectral sequence
obeying a certain growth restriction is the quantum spectrum
of an equivalence class of classically integrable nonlinear
oscillators. Our result, however, is quite more enlightening
because it provides an example of a full and realistic quan-
tum system where the semiclassical result of Berry and Tabor
does not apply.

Our findings raise the question of how stable are these
solutions against small perturbations of the Hamiltonian pa-
rameters within the parameter space and whether finite-size
effects may affect these properties. To study these two points
the Hamiltonians obtained in the previous fit are perturbed as
follows. Each parameter«i1,i2,. . .,iN

in Eq. (5) is replaced by

« → «8 = «s1 + fld, s6d

wherel stands for the perturbation strength andf is a phase
chosen at random. Notice that the new Hamiltonian is also a
combination ofRi operators and therefore is integrable.

Before we proceed to analyze the spectral fluctuations of
the perturbed Hamiltonians, their spectra must be unfolded.
For any quantum system the level densityrsEd can be sepa-

rated into a smooth partrsEd and a fluctuating partrsEd̃. The
former gives the main trend of the level density and the later
characterizes the spectral fluctuations. Similarly, the cumula-
tive level density, which gives the true number of levels up to
energyE,

NsEd =E
−`

E

dE8rsE8d, s7d

can be separated into a smooth partrsEd and a fluctuating

rsEd̃ part, i.e.,

NsEd = NsEd + NsEd˜ . s8d

Actually, level fluctuation amplitudes are modulated by the
value of the mean level densityrsEd; therefore, to compare
the fluctuations of different systems or even the fluctuations
of different parts of the same spectrum, the level density
smooth behavior must be removed. This is done by means of
a transformation, called unfolding[13], which consists of
mapping the energy levelsEi onto dimensionlesszi =NsEd.
Then, the nearest-neighbor spacing sequence is defined by

si = zi+1 − zi, i = 1, . . . ,N − 1. s9d

For the unfolded levelsr̄sed=1 andksl=1. In general this is
a difficult task for systems where an analytical expression for
the mean level density is not known. This is the case of the
Hamiltonian ensembles introduced in the present paper.
Therefore, in order to obtain a good approximation toNsEd
we have performed a least-squares fit to the Chebyshev poly-
nomials.

The spectral properties of the perturbed Hamiltonians can
be analyzed by means of different statistics. The most simple
is the nearest-neighbor spacing distributionPssd. It allows us
to quantify the chaoticity of the system in terms of a single
parameterv by fitting the Pssd histogram to the Brody dis-

tribution Pss,vd [14] using a least-squares method. The re-
sulting distribution interpolates between the Poisson limit
sv=0d and the Wigner limitsv=1d. It would be also possible
to analyze the behavior of the eigenstates as a function of the
perturbation strength. This could be done calculating the in-
formation entropyIH or the localization lengthlH [15]. How-
ever, we can advance that the Hamiltonian eigenstates will
remain unaltered under the influence of the perturbation(6)
which is defined on the coefficients of the combination of
integrals of motion but does not modify them. Actually, for
any integrable system the eigenstates are completely defined
by the quantum integrals of motion, and the Hamiltonian can
be expressed as a function of these operators. Therefore, all
Hamiltonians obtained using different functions of a given
complete set of integrals of motion will have the same eigen-
states.

Figure 1 displays in a semilogarithmic scale the Brody
parameterv as a function of the perturbation strengthl for
the four sV ,Nd examples we have considered before. In all
cases a very small perturbation is enough to drive the system
to the Poisson limit. For the smallest system we considered
sD=210d a perturbationl,10−5 is enough to obtain Poisso-
nian spectral fluctuations, while for the largest systemsD
=1716d three orders of magnitude less are required. Clearly,
the trend is that larger systems require smaller perturbations.

In the light of these results we conclude that it is neces-
sary to consider integrable Hamiltonians with many-body in-
teractions in order to obtain a chaoticlike energy spectrum.
However, small perturbations within the integrable space of
parameters restore the Poissonian-like spectrum. We conjec-
ture that for very largeV and N values a chaotic spectra
would correspond to isolated points in the parameter space
and that a infinitesimal perturbation within this space would
immediately drive the system to a Poisson distribution.

In some cases it is possible to introduce a suitable random
matrix model that describes the behavior of spectral fluctua-
tions as the system evolves through parameter space. This
has already been done for the metal-insulator transition or for
the order-disorder transition in quantum Hall systems[16].
However, in the present case, this approach seems to be more

FIG. 1. Variation of the Brody parameterv as a function of the
perturbation strengthl for sV ,Nd=s10,6d, s11,6d, s12,6d, and
s13,6d.
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complicated since the “Wigner phase” corresponds to iso-
lated points in parameter space.

In view of the previous results, one would expect that a
more physically sound family of pairing Hamiltonians with
two-body forces like Eq.(4) should give rise to a clean Pois-
son level statistics. In order to verify the correctness of this
statement we have studied an ensemble of Hamiltonians(4),
which we shall call a “two-body pairing random ensemble”
(TBPRE). We selected the case ofsV ,Nd=s13,6d, corre-
sponding to largest dimensionD=1716. For the sake of sim-
plicity, the hi parameters and the strengthg were given fix
values and the«i coefficients were selected randomly. The
quantum invariantsRi (1) are independent of the«i param-
eters and, thus, their corresponding eigenvalues stay the
same for the whole ensemble. In our calculations we have
used 200 ensemble members.

The short- and long-range spectral correlations of this en-
semble have been analyzed by means of the usual level sta-
tistics distributionPssd and by the rigidityD3sLd, respec-
tively. In the Poisson limit, characteristic of a regular system,
the nearest-neighbor spacing distribution behaves as
PPoissonssd=exps−sd and D3

PoissonsLd=L /15. Figure 2 com-
pares the nearest-neighbor distributionPssd, calculated nu-

merically for our ensemble with the expected Poisson limit.
We present the results in normal as well as in semilogarith-
mic scales to enlarge the small spacing region, which has
been shown to present some deviations from the Poisson
limit [17]. It can be seen that the histogram and the theoret-
ical curve match perfectly. Figure 3 shows the calculated
D3sLd and compares it to the Poisson limitL /15. The agree-
ment is almost perfect up toL.40; for largerL values the
D3 shows a slight upbending from the Poisson straight line.
The calculation of the rigidity is quite sensitive to the unfold-
ing procedure. When the mean level density is not accurately
enough known, the unfolding method will introduce accumu-
lated errors that eventually give rise to a spurious increase of
theD3sLd for largeL values[18]. The results shown in these
two figures make it possible to conclude that the TBPRE
spectral fluctuations are very well described by the Poisson
statistic. Actually, Figs. 2 and 3 constitute the most precise
numerical verification of the Berry-Tabor theoretical proof
due to the fact that we were able to accumulate statistics by
using an ensemble of random integrable Hamiltonians
(TBPRE), which, to the best of our knowledge, it would not
be possible for any other integrable model.

To support in a more precise way this conclusion we con-
sider again thepssd statistics. As this statistics is less sensi-
tive to the unfolding procedure than theD3, small deviations
from the theoretical Poisson prediction can be connected to
the actual characteristics of the system dynamics. To avoid
any effects related to the bin size in thePssd histogram, we
will use the accumulated nearest-neighbor spacing distribu-
tion Issd=e0

sPss8dds8, which in Poisson limit is given by
IPoissonssd=1−exps−sd. We define a “distance” between the
calculatednssd distribution and the Poisson limit as

d2 =E
0

`

unssd − nPoissonssdu2ds. s10d

We consider four TBPRE withsV ,Nd=s11,6d, s12,6d,
s13,6d, and s14,6d. The matrix dimensions for these en-
sembles areD=462, 924, 1716, and 3003, respectively. In

FIG. 2. Nearest-neighbor spacing distributionPssd for 200 TB-
PRE members. The dashed curve corresponds to the Poisson limit.

FIG. 3. D3sLd statistic calculated for 200
TBPRE members. The dashed line represents the Poisson values.

FIG. 4. Logarithmic plot of the average quadratic distanced
between the accumulated nearest spacing distribution obtained from
the 200 TBPRE members and the Poisson limit, given by
nPoissonssd=1−exps−sd.
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order to have approximately 23105 spacings in each of the
four ensembles, different numbers of members were chosen
for each one of them. Figure 4 shows the logarithm of the
average distanced as a function of the matrix dimensionality
D. The most relevant observed feature is thatd decreases by
an order of magnitude as the dimensionality increases from
D=462 toD=3003. Moreover, the smooth and monotonous
decrease of this function suggests that it goes to zero in the
large-D limit.

Summarizing, the use of a family of fully integrable and
exactly solvable pairing models with a large number of free
parameter which can be selected at random allowed us to

perform several stringent tests of the Berry-Tabor semiclas-
sical proof. Based on the numerical results obtained, we con-
clude that quantum integrable systems indeed follow a Pois-
son distribution of nearest-neighbor level spacings for large
enough systems. Exceptions to this rule can be found, but we
showed that they are isolated solutions of high-rank Hamil-
tonians and that they quickly decay to a Poisson distribution
with an infinitesimal integrable perturbation.
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