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Information flow through a chaotic channel: Prediction and postdiction at finite resolution
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We reconsider the persistence of information under the dynamics of the logistic map in order to discuss
communication through a nonlinear channel where the sender can set the initial state of the system with finite
resolution, and the recipient measures it with the same accuracy. We separate out the contributions of global
phase-space shrinkage and local-phase space contraction and expansion to the uncertainty in predicting and
postdicting the state of the system. We determine how the amplification parameter, the time lag, and the
resolution influence the possibility for communication. A novel “clockwork” representation for real numbers is
introduced that allows for a visualization of the flow of information between scales.
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[. INTRODUCTION measuring information to characterize the behavior of cha-
otic systems was realized more that 20 years[dge1qg and

When observing a dynamical system in a given state, ondiscussed in various contexf$7-19; some of the results
can ask several basic questions, two of which are, “Wher@resented here have been either alluded to or derived before,
did it come from?” and “Where is it going?” These questionsespecially in Ref[14]. However, for concrete calculations,
are especially relevant when one wants to communicate most of these references assumed that the system had already
message by setting the initial state of a system, whose stateached a stationary state or attractor, whereas relaxation to
at a later time is then detected by the recipient of the mesthe attractor plays a crucial role in our analysis. Also, previ-
sage. If the final state is completely uncertain, the message @us studies have focused on the case of fully developed
lost—this is often the case in chaotic systems. On the otherthaos atni=4; we discuss the behavior for all regimeseof
hand, if all initial states converge to one final state, the re- When inputs and outputs are measured with finite preci-
cipient cannot determine what message he was to receive-sion, it is useful to have a representation of numbers that
this can occur in dissipative systems. Many nonlinear sysseparates contributions on different scales. We introduce a
tems have elements of both chaos and dissipation; as aepresentation that may be superior to the usual decimal or
example, we choose the logistic méx)=ax(1-x) [1]. We  binary representations in this regard, and use it to visualize
determine the relevance of state space shrinkage and expdhe flow of information between scales.
sion for all values of the amplification parametgrand dis- Section Il provides an overview of information-theoretical
cuss to what extent communication in the sense mentioned &ncepts, and a derivation of equations needed to calculate
possible. Note that using a chaotic channel is not somethinthe relevant quantities for generic maps. In Sec. Ill, we apply
the senderchooseso do—he may be forced to entrust the the formalism to the logistic map. The possibility of trans-
message to an unreliable medium. Communication channefsitting messages by initializing the system is discussed in
are often nonlinear, including optical fibef&,3], neurons Sec. IV. In Sec. V, we introduce tfetockwork representation
[4,5], and sensory cell§g], and understanding the implica- of real numbers and use it to illustrate the dynamics of the
tions of nonlinearities and chaos is important. This distin-logistic map. Section VI summarizes the results.
guishes our perspective from other publications on commu-
nication through chaos such as in R¢i:11], where chaotic
dynamics are used as a tool in order to amplify and transmit
small signals. Since observations on physical systems can only be made

We will show that for very short time intervals between with finite precision, the outcome can be described with a
the initialization and the measurement, the chaotic regimdinite number of digits. Each possible distinct outcofoe
neara=4 allows for optimal communication; for intermedi- elementary eveitcan be assigned a symbol that appears
ate times, the bifurcation points offer the best chances oWith a given probability, and Shannon’s definition of infor-
deciphering the message; and for long times, no informatiomation[20,2] can be applied to these symbols, resulting in
remains except in the bifurcation regime, where one can dissesolution-dependent, but finite, information. Information
tinguish between the branches of the cycle. Under all circumtheory is usually applied to stochastic systems, e.g., Markov
stances, uncertainty about the time at which the system washains. Deterministic chaotic systems with uncertainty in the
initialized leads to additional losses of information. initial condition(such as the logistic mayplisplay a probabil-

The degree to which an observation at one time deterity distribution of outcomes; however, they differ from sto-
mines the result of an observation at a different time is giverchastic dynamics in the treatment of intermediate steps.
by the mutual information between these observations and We divide the space of possible inputs and outpyts
the conditional information between them. The relevance ofe [0, 1] into r nonoverlapping bins of uniform width 1/,

II. INFORMATION-THEORY PERSPECTIVE
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onto an ensemble of outputs that is described by another
distribution. It is necessary to check whether one or the other
requires more information to describe an associated geent
distinct value of input or outpit

Sampling a continuous random variable many times with
resolution 1f is equivalent to generating a histogram with
bins of width 1. It is useful to separate the information
needed to select an element from this histogram into two
contributions: one from treating the function underlying the
probability distribution as continuous ) and another from
the act of separating the input space intbins. Let us say
that we have a probability densipg(x) living on x e [0, 1].
The information of this distribution, according to the usual
definition[20], is

FIG. 1. For two correlated evenksandY, the relations between
the informationl (X), conditional informatior (X|Y), joint informa-
tion 1(X,Y), and mutual information(XY) are illustrated in this
diagram.
le=- f dx pe(x) 10gzpx(X). 3
and assume that measurement precision is independent of the
value[23]. Accordingly, we denote by; the event “a trajec-
tory starts in bini,” and with y; the event “a trajectory ends
in bin j.” If x; is drawn from a probability distributioRy(X),
the information[22] associated wittX is

The discrete probability distribution of the histogram is
Px(x) =px(i/r)/r. The information of events drawn from
this discrete distribution is

1(X) = = X Px(x)log,Px(x) (1) 1=~ 2 Px(x)log2Px(x)
. I
|
the information|(Y) of_th(_e vgriabley can be (_:_alcula_ted z_fdx r [px(X¥)/r llog,l px(¥)/r]
analogously from the distributioRy(y). The conditional in-

formation, which is needed to specify the outcogngiven
the inputx, is

1(Y|X) = ‘E PX(Xi)E Pyix(YjX)10g:Pyix(yjlx),  (2)
i i

=1¢+ log,r. (4)

Replacing the sum by the integral is valid as longg&) is
reasonably smooth over the range of one (wihich is only
roughly valid for the distributions that we discuss in Sec.
where PY‘X(yj|xi) denotes the conditional probability of IB).

occurring given thak; occurred. All other quantitiegnutual If the input is drawn from a known probability distribu-
information 1(XOY), joint information 1(X,Y), and condi- tion py(x), the outputy follows a probability distribution
tional informationl (X|Y)] can be calculated fror(X), 1(Y), py(y) that can be calculated using the rules for transforming
andl (Y| X), using the set-theoretical relations implied by Fig. probability distributiong24], which leads to the Frobenius-
1. In particular, we make use dofY)=1(YOX)+I(Y|X): to  Perron equation,

specify y, we need the mutual informatiok{Y JX), which

represents information abowyt that can be inferred from _ _ dx

knowledge ofx, and the conditional informatioh(Y|X). (e = [py(y(0)dy| O pyly) _Ea dy | x=x PrlXaly).
A bijective mapping between input and outp( com- “

pletely determiney and vice verspis achieved ifl (XOY) (5)

=1(Y)=1(X). Note that I(XOY)<max1(X),I(Y))—if the
space of possible states shrinks when applyind(x), there
can be at most atnjective mapping (x completely deter-
minesy, but not vice versp
We first discussl(Y), then the conditional information
I(Y|X), and consider what processes influence them. We then - _ . _ _
develop a formalism to derive analytic results for functionsB' Conditional information: Local expansion and shrinkage of
that are smooth on scales comparable to the resolution, e.g., phase space
if y(x) is the result of applying the logistic mafix) =ax(1 We now study the conditional informatidiiY|X). While
—x) iteratively for a small number of times. The results for the |ast section dealt with global properties of the map, here
long times are discussed later using a different approach. we are averaging over a local property—given someve
ask, “how much can we know about the output?,” which is
independent of the behavior of the map for other input values
Under any mapping, an ensemble of input values drawrx.
from a given probability distribution is generally mapped Let us denote the local conditional information as

the sum being over alt which map ontoy. Under all one-
dimensional chaotic maps, including the logistic map, two or
more input values are mapped onto the same output, a prop-
erty known adolding.

A. Total information: Global phase-space considerations
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FIG. 2. Assuming small bins, trajectories from within one bin in
x are mapped uniformly onto one or more binsyin

L(Yp) == E Pyix(yj[x)10g2Pyix(yj[). (6)
i

As long as bins are small compared to changeslyhdx,
trajectories starting from points in the intervad,x;+1/r]
are uniformly distributed over an intervi(x;),y(x;)£d/r],
whered=|dy/dx and the sign is given by the sign df/dx.
The uncertainty about the outcome is determined by th
overlap of this interval with the bings sketched in Fig.)2
To account for this, we average over the offget [0, 1]
which specifies wherg(x;) is within a bin.

If a percentag® of a bin is covered with trajectories, the
contribution of that bin to the sum in E@6) is given by
Ip(0)=—(0/d)logy(0/d). Let us look first at the case
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To find the average conditional informatidiY|X), we
can now sum ovex, with d(x)=|dy/dx],

1(Y[X) =~ f Px OO (Y]x)odx. (10

In order to find the conditional information for a higher iter-
ate of a chaotic map, it is necessary to use the full iterated
function to determine the value dfx). An alternative would

be to repeatedly apply the continuous Frobenius-Perron op-
erator on the right-hand side of E@) to an initial probabil-

ity distribution localized in one bin in order to calculate local
conditional information. This gives different results than de-
riving a stochastic transition matrighe discrete Frobenius-
Perron operatgrfor one time step and considering higher
powers of this matrix. The latter approach would blur knowl-
edge about the position of the trajectory over one bin at each
time step, rather than only at the end.

Previous publications [13,14,17,18 studied the
Kolmogorov-Sinai(KS) entropy, which characterizes the in-
formation generation on the attractor in the continuum limit.
It is defined as the maximum over possible input partitions of
the conditional information(X.,1|X,X_1,X2,...) needed to
specifyx,,, givenall past values o%_;. For one-dimensional
chaotic maps, the KS entropy measured in bits is also iden-
éical to the Lyapunov exponentdivided by In 2[25], which
determines the rate at which neighboring trajectories separate
or converge, and which can be calculated using

NMin 2 :f ps(X)log,d(x)dx, (11

where py(x) is the stationary probability distribution on the

0<d<1. In that case, either the covered interval is entirelyattractor. Comparing Eq10) [inserting Egs(7) and(9)] and

within one bin(if o>d)-then the conditional information is

Eq.(11), one can see that the KS entropy is generally smaller

0—or the trajectories are split between two bins, resulting irthan the conditional information on the attractor starting

a nonvanishing conditional information. Averaging ower
gives

1

)

Odo=

2
(@)

d
<I|(YIX)>02J0 [1,(0) +Ip(d-0)]do+ 2N

If 1<d<2, trajectories can be spread out over two or three

bins, depending on the offset,

_J1p(0) +1,(d-0) for o>d-1
"(Y|X)_{|p(o)+|p(1)+|p(d—1—o) for o<d-1.
(8)
Averaging yields
11(Y[X)o = log,d + 9)

2dIn2’

Equation(9) thus has two contributions: a term logarithmic
in d to account for the bins that are fully coverédhich
represents stretching of state spaesd a term from the two
partially covered bins, whose impact decays ad. One can
show that Eq(9) is valid for any value od> 1.

from the stationary probability distribution. This statement
holds as long as the assumptions leading to &) [i.e.,
sufficient resolution, well-behavegy(x)] apply (see also
Ref. [14]).

C. Folding

It is well known that chaotic iterative maps require a fold-
ing mechanism to compensate for stretching of phase space.
For examples, in the case of the logistic map, the two
branches of the parabola map two input points onto the same
output. Clearly, through this process, information about the
original state is lost. In the framework presented so far, this
is not accounted for explicitly; however, it is contained im-
plicitly in the conditional information. For example, when
comparing the identity functiori(x)=x with the shift map
f(x)=2x mod 1(which is chaotic and has foldingboth map

the unit interval uniformly onto itself and thus have the same
global informationl(Y). However, the latter has a larger av-
erage local slope and thus, according to E9), a larger
conditional information, leading to a smaller mutual infor-
mation between input and output. In this case, the uncer-
tainty in the prediction generated through stretching is the
same as that in postdiction through folding: going forward in
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time, one does not know in which of two adjacent bins the
output will be, whereas looking back, one has two possible
input bins that are well separated, one witkt 1/2 and one
with x>1/2.

Ill. APPLICATION TO THE LOGISTIC MAP

A. Basics of the logistic map

We briefly review fundamental properties of the logistic
map f(x)=ax(1-x) when used as an iteration, i.€
=f(x;) (see Ref.[1] for detaily. For a<1, there is one
(stablg fixed point, namelyx,=0. Between Xa<3, the FIG. 3. Conditional, mutual, and total information of input and
only stable fixed point is;=1-1/a. At a=3, this gives way output forr=100 for one time step. Direct simulations of multiple
to a stable 2-cycle. What follows is a succession of bifurcainitial conditions are compared with theory given by E¢fs}) and
tions (n-cycles split into &-cycley at a= 3.4493, 3.543 96, (15).

3.564 38, etc., until the cycles merge into a continuous cha-

otic attractor al~ 3.569 946(see also the bifurcation dia-  The conditional information can be derived from integrat-
gram at the top of Fig. 32The chaotic regime is interrupted ing Eqgs.(7) and(9) over the input space. In the first iterate of
by smaller and larger windows of periodic behavior. &t the logistic map, the derivative is smaller than 1 faz [(1
=4, the chaotic attractor spans the interf@| 1]. -1/a)/2,(1+1/a)/2], and larger in the rest of the domain.

We now apply the formalism developed in Secs. Il A andchoosing boundaries appropriately and making use of the
Il B to the first few iterates of the logistic mafix)=ax(1  symmetry of the system, we obtain
-X), then explain the long-time behavior, and give numerical

1
results on intermediate times.
f px()1(Y]x)dx =

41n2 (14)

B. Short-time behavior fora<1, and

Let us consider the probability distributiom/(y) of the 1
first iterate, starting from a uniform distribution. There are f Py (Y[x)dx = 1
two symmetric branches gf(x), and Eq.(5) gives 0 ain2

a 1 1 X
f (In x+—)dx+f —dx
1 2X 02

1 5
i : L for y<i1 :—[(a+ 1/2)In a+——a} (15)
Pty _ g' for a=1. This agrees well with numerical results for finite
0 for y=- resolution, as seen in Fig. 3. It should be pointed out that

_ . S ~1(Y|X) does not explicitly depend on the resolution, in con-
The information of this distribution can be evaluated usingirast tol (Y).
Egs.(3) and(4) In Fig. 3, 1(Y|X) represents the uncertainty generated by
1(Y)==-1-1/In 2 +loga< 0, stretching and co.mp.ressian)—I(Y) represents the uncer-
tainty through shrinking of phase space; at)—I(YOX) is
(13) the average information necessary to reconstoudtom
knowledge ofy. The mutual informationl(YOX) is the
In contrast, the information of the uniform distribution was amount of information about the initial state retained after
1.(X)=0 and I(X)=log,(r), which means that information the mapping.

I(Y)==1-1/In 2 +loga+ log,r.

about the state of the system was lost—1/In 2=A44 bits The mutual information can be calculated by numerical
for a=4, and more foma<4. integration over Eq(9) for the second and third iteration of
7 T T T T v T T 7 y T T T y T
[ 1007 1007

FIG. 4. Conditional, mutual, and total
information of input and output for
=100 for two and three time steps, com-
pared to results of numerical integration.
I(Y|X) does not depend strongly an
whereas the other quantities include an
additive term of logr.
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the logistic map, and good agreement with simulations is
found, as shown in Fig. 4. For higher iterates, numerical
integration becomes difficult. Numerical integration over the
probability distribution of outputs also becomes less accu-
rate, and the approximation made in E4) becomes visibly
wrong for resolutions as coarse as100.

While Figs. 3 and 4 do not show a clear distinction be-
tween the fixed point/cyclic regime and the chaotic regime,
one can see that conditional informatigne., uncertainty
generated by the dynamjcBicreases witha, whereasl (Y)
develops dips. For example, the dipaat 2 represents rapid [ "
convergence to the fixed point far from the bifurcation points . T
a=1 anda=3. Correspondingly(Y[X) is no longer mono- *
tonic in a—several maxima of conserved information  F|G. 6. The 250th iterate of the logistic map at3.54, as an
emerge. example of the long-time dynamics. The dominant values are the

branches of the 4-cycle; one sees the fractal structure of the basins
C. Long-time behavior of attraction of each branch. Iterates at times 250 fobk indistin-

) ] guishable. The dotted lines indicate input bins at a resolution of
~ For very long times, some simple statements about the 29 that map uniquely onto one branch of the cysiee Sec. Iy.
information in the output can be made: if the map has a

single fixed point0<a<3), I(Y)=0. For a cycle of length
2", y(t) can be defined completely by stating what branch o herefore expect mutual information to be 0 aftdtlog r)

the cycle it is on; the information is thereforebits if the time steps. Note that this affects prediction as well as post-

resolution is fine enough to resolve each branch of the Cydedéction: even though(Y) is not much smaller thah(X) for

and each bran(_:h has an equall_y Iarg_e basin of attraction, 6‘.%:4, in the absence of mutual information, it is as impos-
smaller otherwise. In the chaotic regime, there is a probabil-

ity distribution filling a finite fraction of the interval0, 1] sible to tell where the system came from as where itis going.
: . . Numerical results show that mutual information indeed goes
for most values o0&, and cycles of various lengths in certain

T . ) i ) to O if the attractor is one connected domain. However, it
periodic windows. The contlnL_lous |nfo_rmat|d>g_1V\_/|II there- . takes values o(1) bits for values ofa such that the attrac-
fore be less than 1, and the information at finite resolutio

less than or equal to lgg with visible dips in the periodic or has multiple branches, and the discussion of information
windows. Numerical results of(Y) for r=100 and r in cycles in the the previous paragraph can be applied.

f2 )

ent[12,14, which in this regime is between 0 and 1; one

=10 000 showr) in Fig. _5 d(_amonstrate these features. D. Intermediate times
The mutual information is at most as large as the total . , ,
information, therefore it is 0 foe<3. In the bifurcation Figure 7 shows the mutual information for=1000 at

regime, dynamics are fairly predictable. The basins of attracY20us intermediate time§ measured by scanning input
tion for each branch of the cycle are fractals, reminiscent ofPac€ With a step width small compared to the bin width.
Cantor sets, as shown in Fig. 6. If the bins are small enougfPart from the long-time features explained in Sec. Il C,

such that most bins map exclusively to one branch of £N€ notices several peaks. The narrow pegkg., neara
2"cycle, the mutual information is of orderbits. =2.5 occur when the fixed point is very close to the bound-

In the chaotic regime, information about the original state®y Petween two bins, such that small deviations from the

is lost at a rate approximately equal to the Lyapunov eXpofixed point lead to ambiguities in the outcome. They change
position if the binning is chosen differently.

— I(Y), =10000 V] 7 T T T
18?)=log2r,r=10000 mm f"’

ol — I(Y), =100

- I(X) = log,r, =100
--- I(Y"X), r=100

-
1

W

I [bits]

-

[

_ 3
T
L )
mutual information /(XAY)
W

>

FIG. 5. Informationl(Y) of the output distribution for =100
andr=10 000, fort— o, compared to the input informatiotX). FIG. 7. Mutual information between input and output for differ-
Also plotted is the mutual informatioh(YOX) for r=100 andt ent numbers of iterationg§ for a resolutionr=1000. For smaller
=1000. The persistence of information encoded in the phase of theesolutions, curves look similar, but more jagged. Also, the maxi-
cycles can be seen. mum of the curves has an additive term ofJag
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The wider peaks aa=1, 3, and 3.54 correspond to the postdiction for the recipient, and the relevant quantity is the
bifurcation points. There, the Lyapunov exponent is 0; deviaconditional information of the input(X|Y), which is the
tions from the fixed point or cycle decay like a power law difference between the input informatit{X) and the mutual
rather than exponentially. In the chaotic regime, the mutuainformation!(Y 0X). Surprisingly, for very short times, Figs.
information quickly drops to O, apart from peaks that corre-3 and 4 show that B has the best chances of postdicting the
spond to periodic windowge.g., ata~ 3.83. initial state in the chaotic regime near4—the loss of in-
formation through chaos is not as significant as that through
phase-space shrinking in the lawregime. Note that at least

Since most real-world systems are influenced by noise ine bit is lost: since(x) is symmetric arounck=1/2, it is
addition to their intrinsic dynamics, it is interesting to study impossible to tell whether the system was started on the left
the influence of additive noise on these results. For that puror right branch.
pose, we add a Gaussian random number of variaride For intermediate times, at high chaotic dynamics elimi-
the current value ok at each time step. nates all information about the initial state; so does fast con-

Noise has primarily two effects. First, it decreases mutualergence to a single fixed point for smallAs Fig. 7 shows,
information: the information about the original state onpB’s sjtuation is best ifa is close to one of the bifurcation
scales smaller tham is erased by adding the noise term, andpoints, where convergence follows a power law rather than
iterating the process adds more noise and can propagate tgf exponential.
uncertainty introduced earlier to larger scales. In the limit of very long times, when the system has con-

The second effect is that it increases the space of possibigerged to its attractor, the only regime where information
outputs, i.e., it increasesY): for example, rather than con- about the initial state persists is the bifurcation regime. What
verging onto a single fixed point faa<3, the probability value ofa gives optimal transmission depends on the reso-
distribution fory will have a width of at least-. If this width  |ution: the recipient has to be able to resolve all branches of
is larger than 1v, the system can be found in more than onethe cycle to make full use of the remaining information.
output bin. It may seem counterintuitive to say that this in- In all three time regimes, it is important for the recipient
creases the information containedyinhowever, a measure- to know the precise time at which the system was initialized.
ment now reveals information about the specific realizationThe information required to specify the time lag has to be
of the noise, rather than the initial stat® even the intrinsic included in the conditional informatioh(X|Y). To give a
dynamicsg. simple example: in the long-time regime, if the time is either

For short times and intermediate times, the impact of or t+1 with probability 1/2, an additional bit of informa-
noise depends largely on the ratio®fo the bin width 1f.  tion is required to reconstruct the initial state.

I(Y|X) is reduced and smoothed out; especially the peaks at
branching points for intermediate times disappear. At long
times, the absolute value of matters—if the spread of
around each branch of the cycle is large enough that the In the second scenario, A only wants to déha message
branches overlap, the system can switch between branchahat B can decode with certainty: A chooses the initial state
eliminating the information encoded there. (again with resolution Ir) such that all trajectories from that
state end in one output bin. There are two relevant questions.
(i) What resolution does A and B need to specify at least two
distinct final states?ii) Given a certain resolution, how

We now interpret and expand the results of previous secmany distinct final states exist that can be achieved with
tions with a view to the problem of communication in the certainty by choosing an appropriate initial state? This is a
following scenario: a sender A wants to transmit a messagproblem of prediction on the part of the sender.
to a receiver B by setting the initial state of the logistic map The answers are clearest for long times: as described
with some finite resolution. B receives the state afftitera-  above, the only regime where information persists and com-
tions of the logistic map and interprets it. For what values ofmunication is possible at all is that of cyclic behavior. The
a andt can A expect any degree of transmission, and whasender needs to identify input bins that lie completely in the
resolution do A and B need? basin of attraction of one branch of the cycle, such that each

The scenario may seem contrived; however, setting thénitial value in the bin leads to the same final value. One such
initial state of some physical syste(itke a sheet of paper, or bin should be found for each distinct branch, and the resolu-
a hard disk in the hope that someone will be able to read ittion must be sufficient for the recipient to identify each
is the usual way of transmitting messages over long timesdranch(see Fig. 6 for an example of such a set of hins
Usually people choose systems whose dynamics are somitumerical results show that the latter constraint is weaker
what stable to perturbations and slow compared to thetiime than the first: it is the sender’s resolution that limits commu-
but they may not always have that choice. Let us look at twanication. We find that a resolution of seven bins is sufficient

E. The impact of noise

B. Determining the final state with certainty

IV. COMMUNICATION THROUGH A LOGISTIC MAP
CHANNEL

different communication problems. for the 2-cycle at values ai=3.5; thus, log7~=2.8 bits are
) o needed to specify the input to transfer one bit to the recipi-
A. Reconstructing the initial state ent. For longer cycles, the ratio can be more efficient: 29 bins

In the first scenario, A wants B to know the state that Aare enough to resolve the 4-cycleat 3.54, yielding 4.86
started the system in. The problem is then essentially one dfits of input for 2 bits of output. Aa=3.562, a resolution of
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140
120
51001~
L
T
ok (o8} Cy €3 Cy ...
e FIG. 9. The clockwork representation; each digit represents one
cog.

-
°€

FIG. 8. The number of distinct final states that can be reached 1here are two problems with the usual representations.

with certainty by choosing an appropriate initial state. Both sendefirst, they arediscontinuousa small change on a fine scale
and recipient use=1000. will have no effect at all on coarser scales most of the time,

but a dramatic effect in rare casésuch as when 0.001 is

122 specifies each branch of the 8-cycle, giving 3 bits ofél‘_ddecjt to t0.99}9 This is ?t_necessary iide elzfl‘e;t of L(stitrrl1g
output for 6.93 bits of input(We assume thad is constant dlscretei(ln;?ﬁb reprlesenta lons Ion eag_f_sc?e. egggt.’ ey
and precisely known to the sender and recipjent. 0 not lend themselves to simplé modihication un -

In the short- and intermediate-time regimes, the numbephcatlon: multiplication is basically a convolution of the rep-

of distinct final states that can be reached with certainty infesentations of the wo factors. Whereas multiplication with

creases roughly linearly with resolution. The slope is a func-n_umbers that have a s_lrn_ple_repre_sentat_lon in the _chosen base
tion of botht anda, and its value indicates the amount of 9'V€s @ §h|ft(_e.g., m_ult|pI|cat|on _W'th 10.'” the decimal rep-
information lost in the channel. Figure 8 shows the numbefes’entatlon just shifts the decimal poinall other factors

of distinct states at=1000 for different times and amplifi- |¢ad 1 changes throughout the scales. It may therefore be

cations. Some features are similar to Fig. 7: for longer timesWorthwhile to think about alternative representations for
. o which the information content of various scales is easy to

peaks at the bifurcation points emerge, representing the sloW i

loss of information. Between the bifurcation points, plateausvIsua 12€. . . .

at values of 2 and 4 can be seen ford0. In the chaotic In constructing the representation, we require that ea_lch

regime, the number of predictable final states goes to zerBeal nhumber map onto one member from the representation,
and each member should map onto at most one real number.

with increasing time. ) : . :
The most surprising feature of Fig. 8 is that the curve for(Slnce we want to include the option of representing one r_eal
umber by a set of real or complex numbers, a bijective

t=1 is not monotonic, and even drops below those for IongeF1 N ; I DloAl | s of th
times. The reason is that the first iterate has a slope great@?appmg is not generally possibleAlso, elements of the

than 1 for mostx values at higha, which makes unique representation corresponding to finer scales should not in-
prediction impossible. Further iterations can recompres IUdﬁj th(?[ t;nforma.t]i_ont aihc_oarselr sgales—oth?r\mig they
parts of the state space that were stretched in the first iter vou'd not be specilic o Neir scale. Lne way of achieving

tion, leading to a better match between input and output bindMS IS using pe”_Od'C functions, with the period equal to the
scale to be studied.

V. SCALE-RESOLVING REPRESENTATIONS OF REAL

A. The clockwork representation
NUMBERS

o _ Using the most natural periodic function, one obtains
Dissipation and chaos have a common aspect: in bottyhat we call theclockwork representatioiCR). It maps

cases the dynamics make a connection between large ag@ch real numbex onto a set of complex numbers
small scales. Chaotic dynamics amplify small differences in

the initial states until they reach macroscopic proportions, ¢i(x) = exp(2mi 2/x), (16)
whereas dissipative dynamics shrink differences until they, .., j identifying the scale. The base 2 is was chosen in
vanish below the_ threshold of perception. To represent thi%nalogy to the familiar binary representation—any number
adequately, we first have to make clear what we mean byiner than 1 can also be used. The term “clockwork repre-
information on different scales. sentation” was chosen because each digit can be thought of
Let us consider real numbers On one hand, each real 54 5 ¢oq in a clockwork of consecutively smaller cogs, as
number can be represented by one point on the real ax's_&}epicted in Fig. 9—two turns af, cause one turn of;, but

is a one-dimensional quantity. On the other hand, in the usugy, ;- yrns ofc, [26]. Using a different base is equivalent to
descriptions(decimal, binary, etg, real numbers are repre- using cogs of a different radius ratio.

sented by a set of integers that stand for different scales—the \ya can use the usual laws for exponential functions to see

scales of 1's, 0.1's, 0.0, etc. This makes sense becausef, addition and multiplication of numbers carries over to
reflects what happens when soheis added toc: the digits %heir clockwork representation

of x are strongly affected for all scales finer than the scale o _ .
Ax, and weakly affected for coarser scales. Cj(x+y) = exp2mi 2x)exp2mi 2'y) = ¢;(x)cj(y), (17)
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sin2n2)

FIG. 10. The clockwork representation of the number 1: each
digit corresponds to the value of this function at integer valugs of FIG. 11. Imaginary part of the CR of th#h iterate of the logis-
tic map, ata=2.95. Deviations from the fixed point travel “down-
Cj(aX) - quZ’ITi 2j+|092aX) = Cj+|ngaX' (18) stream,” to finer scales.

The second line appears a little problematic for two reas;onsf’.lbso.IUte squared Fourier transform of the CR sr_]ows diago-
al ridges. To make the effect clearer, the plot is averaged

First, it intr n mmetr ween th ' n . L iy
cor?gidterattigg?(;ensd ihea?gctoraet—i/hge:esejt r;igh?bgcsv:"deover 100 uniformly distributed initial conditions. Note that

have been written &5 100,58 This is, in some cases, desired: this is an average over the transforms of 100 individual tra-

. . .~ jectories, not a transform of an ensemble of trajectories or a
there is often a conceptual difference between the dynamic 7 ]

variables and the parameters of a model. Second. scales robability distribution. Fora=3.05, one sees a horizontal
: P ; ' g s%ripe in the center of the figure in addition to the diagonal
come continuous rather than discrete. However, this is mor

of an advantage rather than a disadvantage. The outcome§|tsrucmres' indicating that the final state has a period of 2.
9 ge. The slope of the diagonal structures during convergence

well-deflngd even for nomnt.eger. scales, as ppposed to tht% a limit cycle is directly proportional to the Lyapunov ex-
case of discrete representations: one can write a number In

base 2 or base 3, but not base 2.5. 1

The CR gives a set of complex numbers; while it is clear ¢
how to do mathematical operations on them, it is not com-
pletely obvious how taisplay them. It can be argued that RO‘
usually one is interested in the imaginary part: it gives O for 04
scales much coarser than that of the number under considel g2
ation, and it gives O for fine scalesxfis a power of 2, much
like the bits in a binary representation would.

Another way to think about the CR is to look at the con-
tinuous function that generates the digits, as in Fig. 10: it
shows the function si2#2!), which is the imaginary part of
the CR of the number 1. It has an exponential tail toward
coarse scales and an oscillating part with a frequency tha
increases exponentially toward fine scales. The CR picks ou
the values of this function at integer values jofFor any
other numbek, shift the curve to the left by lgg, and again
pick the values at integer values jf

0

(=]

B. Using the CR in the logistic map

As explained in the previous sections, the clockwork rep-
resentation can give an impression about how a mathemati
cal manipulation changes a number on different scales of
resolution. This can be applied to illustrate the behavior of
the logistic map. The most obvious case is that of conver-
gence to a fixed point or cycle, as shown in Fig. 11: dor
=2.95 (slightly below the first period doublinga random
initial state (left side) converges to the fixed pointright
side), differences from the final state occur on finer and finer - FiG. 12. Squared amplitude of the Fourier transform of the CR,
scales as time progresses, resulting in a ridge traveling taveraged over more than 100 initial conditionsaa®.8, 3.05, 3.7,
finer scales. This ridge also shows up in a two-dimensionadnd 4.0. Dashed lines indicate a slopéin 2, where\ is the
Fourier transform of the CR, seen in Fig. 12: B¢2.8, the  Lyapunov exponent.

inverse scale inverse scale

026205-8



INFORMATION FLOW THROUGH A CHAOTIC.. PHYSICAL REVIEW E 70, 026205(2004)

ponent\: during each time step, the deviation from the limit ing the possibility of communication. In the chaotic regime
cycle diminishes by a factor of exp In a plot of logx  (very higha), phase space is largely conserved, but sensitiv-
versust such as Fig. 11, the ridge therefore has a slope ofty to initial conditions prevents both prediction and postdic-
MIn 2. In a Fourier transform plotted as frequency versugion for longer times. The bifurcation regime provides a
inverse scale, the ridge causes diagonal structures of thmiddle ground: some information about the initial state per-
same slope. To illustrate this, dashed lines of slapk 2  sists, determining what branch of the cycle one finds the
are shown in Fig. 12. system in. The basins of attraction for the branches have a
It is not obvious that this holds for the chaotic regime asfractal structure, which means that some large intervals of
well: there,x keeps changing on all scales, not just increasdnitial values exist that lead to one branch with certainty. At
ingly small ones, and multiplication induces a folding of the bifurcation points, convergence to the final state is slow,
small and large scales. Interestingly, however, similar strucwhich makes some transfer of information possible for inter-
tures can be found in the chaotic regime as well: even thoughmediate times.
a 3D plot of the CR versus time looks unstructured and cha- The logistic map captures the universal behavior of one-
otic, a Fourier transform averaged over sufficiently manydimensional chaotic maps; we expect the results to general-
initial conditions often reveals diagonal strip@sg. 12, bot-  ize well to all other such maps. In higher dimensions, the
tom), this time tilted in the opposite way—which indicates coexistence between dissipation and chaos is not as straight-
information traveling to coarser scales rather than finer onegorward; however, derivations like those given in Sec. Il can
Although the structures are less clear than for convergencée generalizedwith a little more efforj to two or more
an approximate correspondence between the slope of tlimensions. While the bifurcation route to chaos does not
structures and the Lyapunov exponent still holds for manyexist in more than one dimension, mutual information can
values ofa, as shown by the diagonal lines in the plots. In still be retained for long times in systems with more than one
other cases, the structures are less clear: in particulag for (metastablgattractor.
=4.0 the plot shows strong diagonal structures with a slope The clockwork representation introduced in Sec. V is a
of 2 overlaid on a weak diagonal with a slope of approxi-continuous generalization of the usual discr@imary, deci-
mately 1. The latter is expected from the value of themal, etc) representations in which addition and multiplica-
Lyapunov exponent. tion of two objects are more transparent than in the discrete
It should be noted that using the binary representatiortase, and which allows for a more elegant visualization of
instead of the CR yields similar picturéalbeit more noisy  the flow of information between scales and the convergence
for the convergence to a fixed point, but shows no discernto fixed points. It is even possible to identify the slope of
ible structures for the convergence to the chaotic attractor. structures in the Fourier transform of the CR with the
Lyapunov exponent of the map. While the CR thus seems to
VI. SUMMARY AND OUTLOOK be a conceptual and visual tool of some use, it remains to be

) ~seen whether this representation will find additional applica-
We have presented a study of the loss of informationjons in analyzing dynamical systems.

through the nonlinear dynamics of the logistic map, using
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