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We reconsider the persistence of information under the dynamics of the logistic map in order to discuss
communication through a nonlinear channel where the sender can set the initial state of the system with finite
resolution, and the recipient measures it with the same accuracy. We separate out the contributions of global
phase-space shrinkage and local-phase space contraction and expansion to the uncertainty in predicting and
postdicting the state of the system. We determine how the amplification parameter, the time lag, and the
resolution influence the possibility for communication. A novel “clockwork” representation for real numbers is
introduced that allows for a visualization of the flow of information between scales.
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I. INTRODUCTION

When observing a dynamical system in a given state, one
can ask several basic questions, two of which are, “Where
did it come from?” and “Where is it going?” These questions
are especially relevant when one wants to communicate a
message by setting the initial state of a system, whose state
at a later time is then detected by the recipient of the mes-
sage. If the final state is completely uncertain, the message is
lost—this is often the case in chaotic systems. On the other
hand, if all initial states converge to one final state, the re-
cipient cannot determine what message he was to receive—
this can occur in dissipative systems. Many nonlinear sys-
tems have elements of both chaos and dissipation; as an
example, we choose the logistic mapfsxd=axs1−xd [1]. We
determine the relevance of state space shrinkage and expan-
sion for all values of the amplification parametera, and dis-
cuss to what extent communication in the sense mentioned is
possible. Note that using a chaotic channel is not something
the senderchoosesto do—he may be forced to entrust the
message to an unreliable medium. Communication channels
are often nonlinear, including optical fibers[2,3], neurons
[4,5], and sensory cells[6], and understanding the implica-
tions of nonlinearities and chaos is important. This distin-
guishes our perspective from other publications on commu-
nication through chaos such as in Refs.[7–11], where chaotic
dynamics are used as a tool in order to amplify and transmit
small signals.

We will show that for very short time intervals between
the initialization and the measurement, the chaotic regime
neara=4 allows for optimal communication; for intermedi-
ate times, the bifurcation points offer the best chances of
deciphering the message; and for long times, no information
remains except in the bifurcation regime, where one can dis-
tinguish between the branches of the cycle. Under all circum-
stances, uncertainty about the time at which the system was
initialized leads to additional losses of information.

The degree to which an observation at one time deter-
mines the result of an observation at a different time is given
by the mutual information between these observations and
the conditional information between them. The relevance of

measuring information to characterize the behavior of cha-
otic systems was realized more that 20 years ago[12–16] and
discussed in various contexts[17–19]; some of the results
presented here have been either alluded to or derived before,
especially in Ref.[14]. However, for concrete calculations,
most of these references assumed that the system had already
reached a stationary state or attractor, whereas relaxation to
the attractor plays a crucial role in our analysis. Also, previ-
ous studies have focused on the case of fully developed
chaos ata=4; we discuss the behavior for all regimes ofa.

When inputs and outputs are measured with finite preci-
sion, it is useful to have a representation of numbers that
separates contributions on different scales. We introduce a
representation that may be superior to the usual decimal or
binary representations in this regard, and use it to visualize
the flow of information between scales.

Section II provides an overview of information-theoretical
concepts, and a derivation of equations needed to calculate
the relevant quantities for generic maps. In Sec. III, we apply
the formalism to the logistic map. The possibility of trans-
mitting messages by initializing the system is discussed in
Sec. IV. In Sec. V, we introduce theclockwork representation
of real numbers and use it to illustrate the dynamics of the
logistic map. Section VI summarizes the results.

II. INFORMATION-THEORY PERSPECTIVE

Since observations on physical systems can only be made
with finite precision, the outcome can be described with a
finite number of digits. Each possible distinct outcome(or
elementary event) can be assigned a symbol that appears
with a given probability, and Shannon’s definition of infor-
mation [20,21] can be applied to these symbols, resulting in
resolution-dependent, but finite, information. Information
theory is usually applied to stochastic systems, e.g., Markov
chains. Deterministic chaotic systems with uncertainty in the
initial condition(such as the logistic map) display a probabil-
ity distribution of outcomes; however, they differ from sto-
chastic dynamics in the treatment of intermediate steps.

We divide the space of possible inputs and outputsx,y
P f0,1g into r nonoverlapping binsi of uniform width 1/r,
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and assume that measurement precision is independent of the
value[23]. Accordingly, we denote byxi the event “a trajec-
tory starts in bini,” and with yj the event “a trajectory ends
in bin j .” If xi is drawn from a probability distributionPXsXd,
the information[22] associated withX is

IsXd = − o
i

PXsxidlog2PXsxid s1d

the information IsYd of the variabley can be calculated
analogously from the distributionPYsyd. The conditional in-
formation, which is needed to specify the outcomey given
the inputx, is

IsYuXd = − o
i

PXsxido
j

PYuXsyjuxidlog2PYuXsyjuxjd, s2d

where PYuXsyj uxid denotes the conditional probability ofyj

occurring given thatxi occurred. All other quantities[mutual
information IsX∧Yd, joint information IsX,Yd, and condi-
tional informationIsXuYd] can be calculated fromIsXd, IsYd,
andIsYuXd, using the set-theoretical relations implied by Fig.
1. In particular, we make use ofIsYd= IsY∧Xd+ IsYuXd: to
specify y, we need the mutual informationIsY∧Xd, which
represents information abouty that can be inferred from
knowledge ofx, and the conditional informationIsYuXd.

A bijective mapping between input and output(x com-
pletely determinesy and vice versa) is achieved ifIsX∧Yd
= IsYd= IsXd. Note that IsX∧YdømaxsIsXd ,IsYdd—if the
space of possible states shrinks when applyingy= fsxd, there
can be at most aninjective mapping (x completely deter-
minesy, but not vice versa).

We first discussIsYd, then the conditional information
IsYuXd, and consider what processes influence them. We then
develop a formalism to derive analytic results for functions
that are smooth on scales comparable to the resolution, e.g.,
if ysxd is the result of applying the logistic mapfsxd=axs1
−xd iteratively for a small number of times. The results for
long times are discussed later using a different approach.

A. Total information: Global phase-space considerations

Under any mapping, an ensemble of input values drawn
from a given probability distribution is generally mapped

onto an ensemble of outputs that is described by another
distribution. It is necessary to check whether one or the other
requires more information to describe an associated event(a
distinct value of input or output).

Sampling a continuous random variable many times with
resolution 1/r is equivalent to generating a histogram withr
bins of width 1/r. It is useful to separate the information
needed to select an element from this histogram into two
contributions: one from treating the function underlying the
probability distribution as continuous inx, and another from
the act of separating the input space intor bins. Let us say
that we have a probability densitypXsxd living on xP f0,1g.
The information of this distribution, according to the usual
definition [20], is

Ic = −E dx pXsxd log2pXsxd. s3d

The discrete probability distribution of the histogram is
PXsxid<pXsi / rd / r. The information of events drawn from
this discrete distribution is

Id = − o
i

PXsxidlog2PXsxid

< −E dx r fpXsxd/rglog2fpXsxd/rg

= Ic + log2r . s4d

Replacing the sum by the integral is valid as long aspXsxd is
reasonably smooth over the range of one bin(which is only
roughly valid for the distributions that we discuss in Sec.
III B ).

If the input is drawn from a known probability distribu-
tion pXsxd, the outputy follows a probability distribution
pYsyd that can be calculated using the rules for transforming
probability distributions[24], which leads to the Frobenius-
Perron equation,

upXsxddxu = upYsysxdddyu ⇒ pYsyd = o
a

Udx

dy
U

x=xa

pXsxasydd,

s5d

the sum being over allx which map ontoy. Under all one-
dimensional chaotic maps, including the logistic map, two or
more input values are mapped onto the same output, a prop-
erty known asfolding.

B. Conditional information: Local expansion and shrinkage of
phase space

We now study the conditional informationIsYuXd. While
the last section dealt with global properties of the map, here
we are averaging over a local property—given somexi, we
ask, “how much can we know about the output?,” which is
independent of the behavior of the map for other input values
xk.

Let us denote the local conditional information as

FIG. 1. For two correlated eventsX andY, the relations between
the informationIsXd, conditional informationIsXuYd, joint informa-
tion IsX,Yd, and mutual informationIsX∧Yd are illustrated in this
diagram.
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I lsYuxid = − o
j

PYuXsyjuxidlog2PYuXsyjuxid. s6d

As long as bins are small compared to changes indy/dx,
trajectories starting from points in the intervalfxi ,xi +1/rg
are uniformly distributed over an intervalfysxid ,ysxid±d/ rg,
whered= udy/dxu and the sign is given by the sign ofdy/dx.
The uncertainty about the outcome is determined by the
overlap of this interval with the bins(as sketched in Fig. 2).
To account for this, we average over the offsetoP f0,1g
which specifies whereysxid is within a bin.

If a percentageo of a bin is covered with trajectories, the
contribution of that bin to the sum in Eq.(6) is given by
Ipsod=−so/ddlog2so/dd. Let us look first at the case
0,d,1. In that case, either the covered interval is entirely
within one bin(if o.d)–then the conditional information is
0—or the trajectories are split between two bins, resulting in
a nonvanishing conditional information. Averaging overo
gives

kI lsYuxdlo =E
0

d

fIpsod + Ipsd − odgdo+E
d

1

0do=
d

2 ln 2
.

s7d

If 1 ød,2, trajectories can be spread out over two or three
bins, depending on the offset,

I lsYuxd = HIpsod + Ipsd − od for o . d − 1

Ipsod + Ips1d + Ipsd − 1 −od for o ø d − 1.

s8d

Averaging yields

I lsYuxdo = log2d +
1

2d ln 2
. s9d

Equation(9) thus has two contributions: a term logarithmic
in d to account for the bins that are fully covered(which
represents stretching of state space), and a term from the two
partially covered bins, whose impact decays as 1/d. One can
show that Eq.(9) is valid for any value ofd.1.

To find the average conditional informationIsYuXd, we
can now sum overx, with dsxd= udy/dxu,

IsYuXd < E pXsxdI lsYuxdodx. s10d

In order to find the conditional information for a higher iter-
ate of a chaotic map, it is necessary to use the full iterated
function to determine the value ofdsxd. An alternative would
be to repeatedly apply the continuous Frobenius-Perron op-
erator on the right-hand side of Eq.(5) to an initial probabil-
ity distribution localized in one bin in order to calculate local
conditional information. This gives different results than de-
riving a stochastic transition matrix(the discrete Frobenius-
Perron operator) for one time step and considering higher
powers of this matrix. The latter approach would blur knowl-
edge about the position of the trajectory over one bin at each
time step, rather than only at the end.

Previous publications [13,14,17,18] studied the
Kolmogorov-Sinai(KS) entropy, which characterizes the in-
formation generation on the attractor in the continuum limit.
It is defined as the maximum over possible input partitions of
the conditional informationIsxt+1uxt ,xt−1,xt−2, . . .d needed to
specifyxt+1 givenall past values ofxt−i. For one-dimensional
chaotic maps, the KS entropy measured in bits is also iden-
tical to the Lyapunov exponentl divided by ln 2[25], which
determines the rate at which neighboring trajectories separate
or converge, and which can be calculated using

l/ln 2 =E pssxdlog2dsxddx, s11d

wherepssxd is the stationary probability distribution on the
attractor. Comparing Eq.(10) [inserting Eqs.(7) and(9)] and
Eq. (11), one can see that the KS entropy is generally smaller
than the conditional information on the attractor starting
from the stationary probability distribution. This statement
holds as long as the assumptions leading to Eq.(10) [i.e.,
sufficient resolution, well-behavedpXsxd] apply (see also
Ref. [14]).

C. Folding

It is well known that chaotic iterative maps require a fold-
ing mechanism to compensate for stretching of phase space.
For examples, in the case of the logistic map, the two
branches of the parabola map two input points onto the same
output. Clearly, through this process, information about the
original state is lost. In the framework presented so far, this
is not accounted for explicitly; however, it is contained im-
plicitly in the conditional information. For example, when
comparing the identity functionfsxd=x with the shift map
fsxd=2x mod 1(which is chaotic and has folding), both map
the unit interval uniformly onto itself and thus have the same
global informationIsYd. However, the latter has a larger av-
erage local slope and thus, according to Eq.(9), a larger
conditional information, leading to a smaller mutual infor-
mation between input and output. In this case, the uncer-
tainty in the prediction generated through stretching is the
same as that in postdiction through folding: going forward in

FIG. 2. Assuming small bins, trajectories from within one bin in
x are mapped uniformly onto one or more bins iny.
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time, one does not know in which of two adjacent bins the
output will be, whereas looking back, one has two possible
input bins that are well separated, one withx,1/2 and one
with x.1/2.

III. APPLICATION TO THE LOGISTIC MAP

A. Basics of the logistic map

We briefly review fundamental properties of the logistic
map fsxd=axs1−xd when used as an iteration, i.e.,xt+1

= fsxtd (see Ref.[1] for details). For aø1, there is one
(stable) fixed point, namelyxt=0. Between 1,a,3, the
only stable fixed point isxt=1−1/a. At a=3, this gives way
to a stable 2-cycle. What follows is a succession of bifurca-
tions (n-cycles split into 2n-cycles) at a<3.4493, 3.543 96,
3.564 38, etc., until the cycles merge into a continuous cha-
otic attractor atac<3.569 946(see also the bifurcation dia-
gram at the top of Fig. 12). The chaotic regime is interrupted
by smaller and larger windows of periodic behavior. Ata
=4, the chaotic attractor spans the interval[0, 1].

We now apply the formalism developed in Secs. II A and
II B to the first few iterates of the logistic mapfsxd=axs1
−xd, then explain the long-time behavior, and give numerical
results on intermediate times.

B. Short-time behavior

Let us consider the probability distributionpYsyd of the
first iterate, starting from a uniform distribution. There are
two symmetric branches ofysxd, and Eq.(5) gives

pYsyd =5
2
Îa

1
Îa − 4y

for y ,
a

4

0 for y ù
a

4

. s12d

The information of this distribution can be evaluated using
Eqs.(3) and (4)

IcsYd = − 1 − 1/ln 2 + log2a , 0,

IsYd = − 1 − 1/ln 2 + log2a + log2r . s13d

In contrast, the information of the uniform distribution was
IcsXd=0 and IsXd=log2srd, which means that information
about the state of the system was lost—1/ ln 2−1<0.44 bits
for a=4, and more fora,4.

The conditional information can be derived from integrat-
ing Eqs.(7) and(9) over the input space. In the first iterate of
the logistic map, the derivative is smaller than 1 forxP fs1
−1/ad /2 ,s1+1/ad /2g, and larger in the rest of the domain.
Choosing boundaries appropriately and making use of the
symmetry of the system, we obtain

E
0

1

pXsxdI lsYuxddx=
a

4 ln 2
s14d

for a,1, and

E
0

1

pXsxdI lsYuxddx=
1

a ln 2FE1

a Sln x +
1

2x
Ddx+E

0

1 x

2
dxG

=
1

a ln 2
Fsa + 1/2dln a +

5

4
− aG s15d

for aù1. This agrees well with numerical results for finite
resolution, as seen in Fig. 3. It should be pointed out that
IsYuXd does not explicitly depend on the resolution, in con-
trast toIsYd.

In Fig. 3, IsYuXd represents the uncertainty generated by
stretching and compressing;IsXd− IsYd represents the uncer-
tainty through shrinking of phase space; andIsXd− IsY∧Xd is
the average information necessary to reconstructx from
knowledge of y. The mutual informationIsY∧Xd is the
amount of information about the initial state retained after
the mapping.

The mutual information can be calculated by numerical
integration over Eq.(9) for the second and third iteration of

FIG. 3. Conditional, mutual, and total information of input and
output for r =100 for one time step. Direct simulations of multiple
initial conditions are compared with theory given by Eqs.(14) and
(15).

FIG. 4. Conditional, mutual, and total
information of input and output forr
=100 for two and three time steps, com-
pared to results of numerical integration.
IsYuXd does not depend strongly onr,
whereas the other quantities include an
additive term of log2r.
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the logistic map, and good agreement with simulations is
found, as shown in Fig. 4. For higher iterates, numerical
integration becomes difficult. Numerical integration over the
probability distribution of outputs also becomes less accu-
rate, and the approximation made in Eq.(4) becomes visibly
wrong for resolutions as coarse asr =100.

While Figs. 3 and 4 do not show a clear distinction be-
tween the fixed point/cyclic regime and the chaotic regime,
one can see that conditional information(i.e., uncertainty
generated by the dynamics) increases witha, whereasIsYd
develops dips. For example, the dip ata<2 represents rapid
convergence to the fixed point far from the bifurcation points
a=1 anda=3. Correspondingly,IsY∧Xd is no longer mono-
tonic in a—several maxima of conserved information
emerge.

C. Long-time behavior

For very long times, some simple statements about the
information in the output can be made: if the map has a
single fixed points0,a,3d, IsYd=0. For a cycle of length
2n, ystd can be defined completely by stating what branch of
the cycle it is on; the information is thereforen bits if the
resolution is fine enough to resolve each branch of the cycle,
and each branch has an equally large basin of attraction, and
smaller otherwise. In the chaotic regime, there is a probabil-
ity distribution filling a finite fraction of the intervalf0,1g
for most values ofa, and cycles of various lengths in certain
periodic windows. The continuous informationIc will there-
fore be less than 1, and the information at finite resolution
less than or equal to log2r, with visible dips in the periodic
windows. Numerical results ofIsYd for r =100 and r
=10 000 shown in Fig. 5 demonstrate these features.

The mutual information is at most as large as the total
information, therefore it is 0 fora,3. In the bifurcation
regime, dynamics are fairly predictable. The basins of attrac-
tion for each branch of the cycle are fractals, reminiscent of
Cantor sets, as shown in Fig. 6. If the bins are small enough
such that most bins map exclusively to one branch of a
2n-cycle, the mutual information is of ordern bits.

In the chaotic regime, information about the original state
is lost at a rate approximately equal to the Lyapunov expo-

nent [12,14], which in this regime is between 0 and 1; one
therefore expect mutual information to be 0 afterOslog rd
time steps. Note that this affects prediction as well as post-
diction: even thoughIsYd is not much smaller thanIsXd for
a=4, in the absence of mutual information, it is as impos-
sible to tell where the system came from as where it is going.
Numerical results show that mutual information indeed goes
to 0 if the attractor is one connected domain. However, it
takes values ofOs1d bits for values ofa such that the attrac-
tor has multiple branches, and the discussion of information
in cycles in the the previous paragraph can be applied.

D. Intermediate times

Figure 7 shows the mutual information forr =1000 at
various intermediate timest, measured by scanning input
space with a step width small compared to the bin width.
Apart from the long-time features explained in Sec. III C,
one notices several peaks. The narrow peaks(e.g., neara
=2.5) occur when the fixed point is very close to the bound-
ary between two bins, such that small deviations from the
fixed point lead to ambiguities in the outcome. They change
position if the binning is chosen differently.

FIG. 5. InformationIsYd of the output distribution forr =100
and r =10 000, fort→`, compared to the input informationIsXd.
Also plotted is the mutual informationIsY∧Xd for r =100 andt
=1000. The persistence of information encoded in the phase of the
cycles can be seen.

FIG. 6. The 250th iterate of the logistic map ata=3.54, as an
example of the long-time dynamics. The dominant values are the
branches of the 4-cycle; one sees the fractal structure of the basins
of attraction of each branch. Iterates at times 250+4n look indistin-
guishable. The dotted lines indicate input bins at a resolution ofr
=29 that map uniquely onto one branch of the cycle(see Sec. IV).

FIG. 7. Mutual information between input and output for differ-
ent numbers of iterationst, for a resolutionr =1000. For smaller
resolutions, curves look similar, but more jagged. Also, the maxi-
mum of the curves has an additive term of log2r.
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The wider peaks ata=1, 3, and 3.54 correspond to the
bifurcation points. There, the Lyapunov exponent is 0; devia-
tions from the fixed point or cycle decay like a power law
rather than exponentially. In the chaotic regime, the mutual
information quickly drops to 0, apart from peaks that corre-
spond to periodic windows(e.g., ata<3.83).

E. The impact of noise

Since most real-world systems are influenced by noise in
addition to their intrinsic dynamics, it is interesting to study
the influence of additive noise on these results. For that pur-
pose, we add a Gaussian random number of variances2 to
the current value ofx at each time step.

Noise has primarily two effects. First, it decreases mutual
information: the information about the original state on
scales smaller thans is erased by adding the noise term, and
iterating the process adds more noise and can propagate the
uncertainty introduced earlier to larger scales.

The second effect is that it increases the space of possible
outputs, i.e., it increasesIsYd: for example, rather than con-
verging onto a single fixed point fora,3, the probability
distribution fory will have a width of at leasts. If this width
is larger than 1/r, the system can be found in more than one
output bin. It may seem counterintuitive to say that this in-
creases the information contained iny; however, a measure-
ment now reveals information about the specific realization
of the noise, rather than the initial state(or even the intrinsic
dynamics).

For short times and intermediate times, the impact of
noise depends largely on the ratio ofs to the bin width 1/r.
IsYuXd is reduced and smoothed out; especially the peaks at
branching points for intermediate times disappear. At long
times, the absolute value ofs matters—if the spread ofy
around each branch of the cycle is large enough that the
branches overlap, the system can switch between branches,
eliminating the information encoded there.

IV. COMMUNICATION THROUGH A LOGISTIC MAP
CHANNEL

We now interpret and expand the results of previous sec-
tions with a view to the problem of communication in the
following scenario: a sender A wants to transmit a message
to a receiver B by setting the initial state of the logistic map
with some finite resolution. B receives the state aftert itera-
tions of the logistic map and interprets it. For what values of
a and t can A expect any degree of transmission, and what
resolution do A and B need?

The scenario may seem contrived; however, setting the
initial state of some physical system(like a sheet of paper, or
a hard disk) in the hope that someone will be able to read it
is the usual way of transmitting messages over long times.
Usually people choose systems whose dynamics are some-
what stable to perturbations and slow compared to the timet,
but they may not always have that choice. Let us look at two
different communication problems.

A. Reconstructing the initial state

In the first scenario, A wants B to know the state that A
started the system in. The problem is then essentially one of

postdiction for the recipient, and the relevant quantity is the
conditional information of the inputIsXuYd, which is the
difference between the input informationIsXd and the mutual
informationIsY∧Xd. Surprisingly, for very short times, Figs.
3 and 4 show that B has the best chances of postdicting the
initial state in the chaotic regime neara=4—the loss of in-
formation through chaos is not as significant as that through
phase-space shrinking in the low-a-regime. Note that at least
one bit is lost: sincefsxd is symmetric aroundx=1/2, it is
impossible to tell whether the system was started on the left
or right branch.

For intermediate times, at higha, chaotic dynamics elimi-
nates all information about the initial state; so does fast con-
vergence to a single fixed point for smalla. As Fig. 7 shows,
B’s situation is best ifa is close to one of the bifurcation
points, where convergence follows a power law rather than
an exponential.

In the limit of very long times, when the system has con-
verged to its attractor, the only regime where information
about the initial state persists is the bifurcation regime. What
value of a gives optimal transmission depends on the reso-
lution: the recipient has to be able to resolve all branches of
the cycle to make full use of the remaining information.

In all three time regimes, it is important for the recipient
to know the precise time at which the system was initialized.
The information required to specify the time lag has to be
included in the conditional informationIsXuYd. To give a
simple example: in the long-time regime, if the time is either
t or t+1 with probability 1/2, an additional bit of informa-
tion is required to reconstruct the initial state.

B. Determining the final state with certainty

In the second scenario, A only wants to send B a message
that B can decode with certainty: A chooses the initial state
(again with resolution 1/r) such that all trajectories from that
state end in one output bin. There are two relevant questions.
(i) What resolution does A and B need to specify at least two
distinct final states?(ii ) Given a certain resolution, how
many distinct final states exist that can be achieved with
certainty by choosing an appropriate initial state? This is a
problem of prediction on the part of the sender.

The answers are clearest for long times: as described
above, the only regime where information persists and com-
munication is possible at all is that of cyclic behavior. The
sender needs to identify input bins that lie completely in the
basin of attraction of one branch of the cycle, such that each
initial value in the bin leads to the same final value. One such
bin should be found for each distinct branch, and the resolu-
tion must be sufficient for the recipient to identify each
branch (see Fig. 6 for an example of such a set of bins).
Numerical results show that the latter constraint is weaker
than the first: it is the sender’s resolution that limits commu-
nication. We find that a resolution of seven bins is sufficient
for the 2-cycle at values ofa=3.5; thus, log27<2.8 bits are
needed to specify the input to transfer one bit to the recipi-
ent. For longer cycles, the ratio can be more efficient: 29 bins
are enough to resolve the 4-cycle ata=3.54, yielding 4.86
bits of input for 2 bits of output. Ata=3.562, a resolution of
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122 specifies each branch of the 8-cycle, giving 3 bits of
output for 6.93 bits of input.(We assume thata is constant
and precisely known to the sender and recipient.)

In the short- and intermediate-time regimes, the number
of distinct final states that can be reached with certainty in-
creases roughly linearly with resolution. The slope is a func-
tion of both t and a, and its value indicates the amount of
information lost in the channel. Figure 8 shows the number
of distinct states atr =1000 for different times and amplifi-
cations. Some features are similar to Fig. 7: for longer times,
peaks at the bifurcation points emerge, representing the slow
loss of information. Between the bifurcation points, plateaus
at values of 2 and 4 can be seen fort=40. In the chaotic
regime, the number of predictable final states goes to zero
with increasing time.

The most surprising feature of Fig. 8 is that the curve for
t=1 is not monotonic, and even drops below those for longer
times. The reason is that the first iterate has a slope greater
than 1 for mostx values at higha, which makes unique
prediction impossible. Further iterations can recompress
parts of the state space that were stretched in the first itera-
tion, leading to a better match between input and output bins.

V. SCALE-RESOLVING REPRESENTATIONS OF REAL
NUMBERS

Dissipation and chaos have a common aspect: in both
cases the dynamics make a connection between large and
small scales. Chaotic dynamics amplify small differences in
the initial states until they reach macroscopic proportions,
whereas dissipative dynamics shrink differences until they
vanish below the threshold of perception. To represent this
adequately, we first have to make clear what we mean by
information on different scales.

Let us consider real numbersx. On one hand, each real
number can be represented by one point on the real axis—it
is a one-dimensional quantity. On the other hand, in the usual
descriptions(decimal, binary, etc.), real numbers are repre-
sented by a set of integers that stand for different scales—the
scales of 1’s, 0.1’s, 0.01’s, etc. This makes sense because it
reflects what happens when someDx is added tox: the digits
of x are strongly affected for all scales finer than the scale of
Dx, and weakly affected for coarser scales.

There are two problems with the usual representations.
First, they arediscontinuous: a small change on a fine scale
will have no effect at all on coarser scales most of the time,
but a dramatic effect in rare cases(such as when 0.001 is
added to 0.999). This is a necessary side effect of using
discrete(integer) representations on each scale. Second, they
do not lend themselves to simple modification undermulti-
plication: multiplication is basically a convolution of the rep-
resentations of the two factors. Whereas multiplication with
numbers that have a simple representation in the chosen base
gives a shift(e.g., multiplication with 10 in the decimal rep-
resentation just shifts the decimal point), all other factors
lead to changes throughout the scales. It may therefore be
worthwhile to think about alternative representations for
which the information content of various scales is easy to
visualize.

In constructing the representation, we require that each
real number map onto one member from the representation,
and each member should map onto at most one real number.
(Since we want to include the option of representing one real
number by a set of real or complex numbers, a bijective
mapping is not generally possible.) Also, elements of the
representation corresponding to finer scales should not in-
clude the information at coarser scales—otherwise they
would not be specific to their scale. One way of achieving
this is using periodic functions, with the period equal to the
scale to be studied.

A. The clockwork representation

Using the most natural periodic function, one obtains
what we call theclockwork representation(CR). It maps
each real numberx onto a set of complex numbers

cjsxd = exps2pi 2jxd, s16d

with j identifying the scale. The base 2 is was chosen in
analogy to the familiar binary representation—any number
other than 1 can also be used. The term “clockwork repre-
sentation” was chosen because each digit can be thought of
as a cog in a clockwork of consecutively smaller cogs, as
depicted in Fig. 9—two turns ofc2 cause one turn ofc1, but
four turns ofc3 [26]. Using a different base is equivalent to
using cogs of a different radius ratio.

We can use the usual laws for exponential functions to see
how addition and multiplication of numbers carries over to
their clockwork representation,

cjsx + yd = exps2pi 2jxdexps2pi 2jyd = cjsxdcjsyd, s17d

FIG. 8. The number of distinct final states that can be reached
with certainty by choosing an appropriate initial state. Both sender
and recipient user =1000.

FIG. 9. The clockwork representation; each digit represents one
cog.
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cjsaxd = exps2pi 2j+log2axd = cj+log2ax. s18d

The second line appears a little problematic for two reasons.
First, it introduces an asymmetry between the object under
considerationx and the factora—the result might as well
have been written ascj+log2xa. This is, in some cases, desired:
there is often a conceptual difference between the dynamical
variables and the parameters of a model. Second, scales be-
come continuous rather than discrete. However, this is more
of an advantage rather than a disadvantage. The outcome is
well-defined even for noninteger scales, as opposed to the
case of discrete representations: one can write a number in
base 2 or base 3, but not base 2.5.

The CR gives a set of complex numbers; while it is clear
how to do mathematical operations on them, it is not com-
pletely obvious how todisplay them. It can be argued that
usually one is interested in the imaginary part: it gives 0 for
scales much coarser than that of the number under consider-
ation, and it gives 0 for fine scales ifx is a power of 2, much
like the bits in a binary representation would.

Another way to think about the CR is to look at the con-
tinuous function that generates the digits, as in Fig. 10: it
shows the function sins2p2jd, which is the imaginary part of
the CR of the number 1. It has an exponential tail toward
coarse scales and an oscillating part with a frequency that
increases exponentially toward fine scales. The CR picks out
the values of this function at integer values ofj . For any
other numberx, shift the curve to the left by log2x, and again
pick the values at integer values ofj .

B. Using the CR in the logistic map

As explained in the previous sections, the clockwork rep-
resentation can give an impression about how a mathemati-
cal manipulation changes a number on different scales of
resolution. This can be applied to illustrate the behavior of
the logistic map. The most obvious case is that of conver-
gence to a fixed point or cycle, as shown in Fig. 11: fora
=2.95 (slightly below the first period doubling), a random
initial state (left side) converges to the fixed point(right
side); differences from the final state occur on finer and finer
scales as time progresses, resulting in a ridge traveling to
finer scales. This ridge also shows up in a two-dimensional
Fourier transform of the CR, seen in Fig. 12: fora=2.8, the

absolute squared Fourier transform of the CR shows diago-
nal ridges. To make the effect clearer, the plot is averaged
over 100 uniformly distributed initial conditions. Note that
this is an average over the transforms of 100 individual tra-
jectories, not a transform of an ensemble of trajectories or a
probability distribution. Fora=3.05, one sees a horizontal
stripe in the center of the figure in addition to the diagonal
structures, indicating that the final state has a period of 2.

The slope of the diagonal structures during convergence
to a limit cycle is directly proportional to the Lyapunov ex-

FIG. 10. The clockwork representation of the number 1: each
digit corresponds to the value of this function at integer values ofj . FIG. 11. Imaginary part of the CR of thetth iterate of the logis-

tic map, ata=2.95. Deviations from the fixed point travel “down-
stream,” to finer scales.

FIG. 12. Squared amplitude of the Fourier transform of the CR,
averaged over more than 100 initial conditions, ata=2.8, 3.05, 3.7,
and 4.0. Dashed lines indicate a slopel / ln 2, where l is the
Lyapunov exponent.
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ponentl: during each time step, the deviation from the limit
cycle diminishes by a factor of expl. In a plot of log2x
versust such as Fig. 11, the ridge therefore has a slope of
l / ln 2. In a Fourier transform plotted as frequency versus
inverse scale, the ridge causes diagonal structures of the
same slope. To illustrate this, dashed lines of slopel / ln 2
are shown in Fig. 12.

It is not obvious that this holds for the chaotic regime as
well: there,x keeps changing on all scales, not just increas-
ingly small ones, and multiplication induces a folding of
small and large scales. Interestingly, however, similar struc-
tures can be found in the chaotic regime as well: even though
a 3D plot of the CR versus time looks unstructured and cha-
otic, a Fourier transform averaged over sufficiently many
initial conditions often reveals diagonal stripes(Fig. 12, bot-
tom), this time tilted in the opposite way—which indicates
information traveling to coarser scales rather than finer ones.
Although the structures are less clear than for convergence,
an approximate correspondence between the slope of the
structures and the Lyapunov exponent still holds for many
values ofa, as shown by the diagonal lines in the plots. In
other cases, the structures are less clear: in particular, fora
=4.0 the plot shows strong diagonal structures with a slope
of 2 overlaid on a weak diagonal with a slope of approxi-
mately 1. The latter is expected from the value of the
Lyapunov exponent.

It should be noted that using the binary representation
instead of the CR yields similar pictures(albeit more noisy)
for the convergence to a fixed point, but shows no discern-
ible structures for the convergence to the chaotic attractor.

VI. SUMMARY AND OUTLOOK

We have presented a study of the loss of information
through the nonlinear dynamics of the logistic map, using
analytical means for short times and numerics and heuristic
arguments for long times. As Secs. II and IV have shown,
different processes are relevant in the different regimes: in
the small-a regime, shrinking phase space quickly makes
postdiction impossible and prediction trivial, thus eliminat-

ing the possibility of communication. In the chaotic regime
(very higha), phase space is largely conserved, but sensitiv-
ity to initial conditions prevents both prediction and postdic-
tion for longer times. The bifurcation regime provides a
middle ground: some information about the initial state per-
sists, determining what branch of the cycle one finds the
system in. The basins of attraction for the branches have a
fractal structure, which means that some large intervals of
initial values exist that lead to one branch with certainty. At
the bifurcation points, convergence to the final state is slow,
which makes some transfer of information possible for inter-
mediate times.

The logistic map captures the universal behavior of one-
dimensional chaotic maps; we expect the results to general-
ize well to all other such maps. In higher dimensions, the
coexistence between dissipation and chaos is not as straight-
forward; however, derivations like those given in Sec. II can
be generalized(with a little more effort) to two or more
dimensions. While the bifurcation route to chaos does not
exist in more than one dimension, mutual information can
still be retained for long times in systems with more than one
(metastable) attractor.

The clockwork representation introduced in Sec. V is a
continuous generalization of the usual discrete(binary, deci-
mal, etc.) representations in which addition and multiplica-
tion of two objects are more transparent than in the discrete
case, and which allows for a more elegant visualization of
the flow of information between scales and the convergence
to fixed points. It is even possible to identify the slope of
structures in the Fourier transform of the CR with the
Lyapunov exponent of the map. While the CR thus seems to
be a conceptual and visual tool of some use, it remains to be
seen whether this representation will find additional applica-
tions in analyzing dynamical systems.
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