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Frequency synchronization in a random oscillator network

Takashi Ichinomiya
Meme Media Laboratory, Hokkaido University Sapporo, Hokkaido, Japan
(Received 12 November 2003; revised manuscript received 2 June 2004; published 30 August 2004

We study the frequency synchronization of a randomly coupled oscillators. By analyzing the continuum
limit, we obtain a sufficient condition for the mean-field-type synchronization. We especially find that the
critical coupling constanK becomes 0 in the random scale-free netwéttk) o<k, if 2 <y=<3. Numerical
simulations in finite networks are consistent with this analysis.
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|. INTRODUCTION the results of the numerical simulations, which are described

in Sec. IV. In the final section, we make a summary of this

Recently, It ha; become clear that cor_n_pl_ex networks pla aper and discuss the relation to the other properties of the
an important role in many natural and artificial systems, suc cale-free network

as neural networks, metabolic systems, power supply sys-
tems, the Internet, and so d&,2]. In particular, we have
recognized that many networks have scale-free topology; the
distribution of the degree obeys the power [&k) ~k™?.

The study of scale-free networks now attracts the interest of
many researchers in mathematics, physics, engineering, and

biology. tstudy the network witiN nodes. At each node, there exists

The dynamics in network systems is one of the importan . : :
themes of the investigation of complex networks. In this pa-an oscillator, and the phase of the oscillaibis developed

per, we study the synchronization of a random network o

oscillators. Phase synchronization in complex networks has

been studied by several authd®4], while frequency syn- 26

chronization has not been studied as much. One of the im- — = +KX & isin(6; — 6), (1)

portant studies on this problem was done by Wghis He at i

suggested, from numerical simulation, that mean-field-type

synchronization occurs in small-world networks such as the ) ) o )

Watts-Strogatz model. His study was followed by the workWhereK is the coupling constant, argj; is 1 if the nodes

of Hong et al, in which phase diagrams and critical expo- @ndj are connected and 0 otherwis.is a random number

nents are numerically studied in detdB]. These works Whose distribution is given by the functiW(w).

showed that mean-field-type synchronization, which Kura- For the analytic study, it is convenient to use the con-

moto observed in g|0ba||y Coup|ed Osci”atqrgl, appears tinuum limit equation. We deﬂn@(k) as the distribution of

also in small-world networks. However, such a study innhodes with degrek, andp(k,w;t, ¢) as the density of oscil-

scale-free networks has not been performed yet. lators with phase) at timet, for given  andk. We assume
In this paper, we analytically study frequency synchroni-that p(k, ;t, 6) is normalized as

zation in a random network of oscillators. By analyzing the

continuum limit of this model, we obtain a sufficient condi-

tion for synchronization. Our result shows that in the scale- am

free random network, the threshold for synchronization is

absent if 2< y=<3. We also carry out numerical simulations,

and the results are consistent with this analysis.

This paper is constructed as follows. The next sectiorzor simplicity, we assumBl(w)=N(-w). Under this assump-

describes the model of an oscillator network and derives thgon we suppose that the collective oscillation corresponds to
continuum limit equation. Section Ill is devoted to deriving a ihe stable solutionglp/dt=0, in this model.

sufficient condition for synchronization from the continuum  Now we construct the continuum limit equation for the
limit equation. We show that the order parameter is different,anwork of oscillators. The evolution of is determined by

from the one used in previous works; in particular, we CoN-he continuity equatiodp/ dt=—d(pv)/ 36, wherev is defined
clude that the threshold for synchronization disappears in thg,, ihe continuum limit of the right-hand sideh.s) of Eq.

random scale-free network. These results are consistent wi ). Because one randomly selected edge connects to the

node of degred, frequencyw, and phase with the prob-
ability kP(K)N(w)p(k,w;t,0)/ fdkkPk), p(k,w;t,0) obeys
*Electronic address: miya@aurora.es.hokudai.ac.jp the equation

II. OSCILLATOR NETWORK MODEL AND ITS
CONTINUUM LIMIT

First we describe the model we study in this paper. We

p(k,w;t,6)do=1. (2
0
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J p(k,w;t,0) __i{ Kot 0)< +kadw’fdk’fdB’N(w’)P(k’)k’p(k’,w’;t,B’)sin(H—0’))} @
ot aelPTO\Y I dk P(K)K’ '
[
In the next section, we study the mean-field solution of this )
equation. fdwfdkf doN(w)kP(K)p(k, w; 6)€'?
IIl. MEAN-FIELD ANALYSIS OF RANDOM OSCILLATOR Kkr —Kkr oo
NETWORK =fdkf de(f dw+f dw+f dw)
—Kki -0 Kk
In this section, we study the sufficient condition for the r » r
synchronization using Eq3). First we introduce order pa- X N(w)kP(K)p(k,w; 0)€"”. 9

rameter(r, ) as
The contribution from the integral a<-Kkr and > Kkr

rei‘”:fdwfdkf dIN(o) is 0 if N(w)=N(-w), because
—Kkr ©
’ . i0
xP(kp(k, :t, 6)€” / J dkRIK.  (4) ( L dort f ” d“’)'\'(“’)p(""‘" fe
This order parameter is different from the one used in previ-  _ fw N(w)e“C(k w)< 1 . 1 )
ous work in the small-world mod¢b,6]. In previous works, Kkr " \w-Kkrsing o+Kkrsing/’

>, €%/N is used for the mean field, while our order param-
eter corresponds t8; ki€%/3; k;, wherek; is the degree of

the node. However, from Eq(3) it seems natural to use Eq. ) .
(4) as the mean-field value in the random network. Here wd he integral of the r.h.s. of Eq10) over 6 is equal to 0.

(10

note that G<r<1. Therefore, Eq(9) is equivalent to
Inserting Eq.(4) into Eq.(3), we get »
r
dpkw;t, 6 9 _ =
2RO - Lt B+ K siny= 0] o d"f_m NPl

(5)  arcsir -2
Xexp[l arcsv(Kkr)]/fdkkP(k). (11)

If we assume arcsim/Kkr) is betweer-m/2,7/2], we get

The time-independent solution pfis then
J
ﬁ{p(k’w;t’ ) w + Kkr sin(y— 6)]} = 0. (6)

Kkr 2
Without a loss of generality, we can assuge0. Since we rfdkkp(k) :J dkf dwN(w)kP(K) /1 _<i>
want to seek the solution which corresponds to Kuramoto’s —Kkr Kkr

solution in globally coupled oscillators, we assume the solu-

1
tion of this equation as :fdkf do'kP(KIN(Kkro')v1 — w'2Kkr
[ o ol -
60— arcsi Kkr if —ksl 1 o
p(k,w; 6) = Kkr Kkr ) :KrfdkkzP(k)f do'N(Kkre' V1 - w'2.
T C(k,w) . -1
_— th ,
|w — Kkr sin 6| omenwise (12

whereC(k, w) is the normalization factor. Here we note that
p depends on botK and k. This equation means thatk
corresponds to the coupling between mean field and the os-

cillator. Inserting Eq(7) into Eq.(4), we get the equation for J dkkP(K) = Kf dkkzP(k)fl dw’N(Kkrw’)\s"m.
-1

r
_ 13
r:fdwfdkf daN(w)kP(k)p(k,w;a)e'”/fdkkP(k).

) The l.h.s. of this equation is independentraind we define
the r.h.s. of this equation &¢r). At r=1, f(r) is not larger
To calculate this integral, first we divide the integral owgr than fdkkRk), because

If r#0, we get
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FIG. 1. (w,d6/dt) distribution of oscillators in a random net- FIG. 2. (w, ) distribution of oscillators in a random network;
work, for K=0.15 andK=0.30. K=0.15 andK=0.30.

1 ) — continuum limit equation. In the next section, we show that
dkiCP(k) [ do'N(KknV1 - o the analysis above is in good agreement with the results of
1 the numerical simulations.

1
= f dkaP(k)j ldw’N(Kkra)’) IV. NUMERICAL SIMULATION OF SYNCHRONIZATION
1 (= In this section, we show the result of the numerical simu-
< f dkaP(k)f do"N(w") lations of the random network of oscillators. In all the simu-
KkrJ_., lations, we takeN(w) asN(w)=0.5 if -1.0< w<1.0, and 0
[ dkkR(k) othe.rwise. ) o
= Er— (14) First we show the result on the 1000-node Erdds-Rényi

. random network model. We choose the probability of cou-
Here we use the relatioft,, dwN(w)=1. Therefore, the suf- pjing p=0.005, which gives/dkkRk)=5.0 and [dkiCP(K)

ficient condition that Eq(12) have a solution at &r<11is =297 on average. In this case, the estimated critical vdlue
that f(r) > fdkkR(k) atr=0, is K,=0.214. Each simulation is carried out 100 times.
KN(0)7r [ dkiCP(k) In Fig. 1, we plot the relation betweey anddé;/dt after
2 [ dkkP(k) =4 15 4 long time(t=200 whenK=0.15 and 0.30. In the case of

K=0.15,d6/dt seems to depend an linearly. On the other

This is the sufficient condition for synchronization in a ran- hand, alk =0.30 many oscillators seem to be synchronized at
dom network of oscillators. The most impressive point ofdg/dt=0. This figure strongly suggests that synchronization
this equation is that in the random scale-free netwéi(k) occurs betweei=0.15 and 0.30.
«k™?, this condition is satisfied for anK>0 if 2<y=<3, We plot the relation betwee® and 0 for K=0.15 andK
becausefdkiCP(k)/ fdkkP(k) diverges. Therefore, we have =0.30 in Fig. 2. We find a clear difference between these two
no threshold for synchronization in the random scale-freecases. In the case #=0.30, the distribution ofw;, 6) is
network. This seems similar to the absence of a threshold iapparently nonuniform, while &=0.15 we cannot find any
the susceptible-infected-susceptit®S) model[8]. We will structure. In the case #¢=0.30, # seems to depend linearly
discuss this similarity later. on w. However, from the previous analysis we suggest that

In this section, we derive a sufficient condition for syn- depends on botw andk. To clarify the degree dependence,
chronization in a random network of oscillators, using thewe plot(w, 6) for the nodes with the degrdée 3, 5, and 7 at
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FIG. 4. Interaction dependence of mean-field paramger

most impressive suggestion of our analysis is the absence of
the threshold in the random scale-free network. In the fol-
lowing, we show the result of simulation in the random
scale-free network withy=2.5. In Fig. 5, we show the rela-
tion between order parameteiand coupling constarK for
N=500, 1000, 2000, and 4000. At=500, r,, rapidly in-
creases abov&K ~0.16, which is qualitatively consistent
with the K.~ 0.175 estimated from E@12). As the network
size increases;,, at small coupling decreases, which sug-
gests that the finite,, at small coupling is the finite-size
effect. The order parameter begins to increase rapidly above
K.. We note that by increasing the system size, the increase
of order parameter begins at smaller coupling. This means
that the critical couplingK, decreases as the system size
increases. We also shol;, estimated from Eq(12) in this
figure. The estimateH,. qualitatively coincides with the cou-
pling constant at which the order parameter increases rapidly.
We conclude that our analysis and the results of the numeri-
cal simulation show a good agreement also in the random
scale-free network. These results suggest that in the infinite-
size scale-free network, the critical coupling consténbe-
comes zero, just the same as in the continuum limit equation.
To compare the results of the numerical simulation and
the analysis more precisely, we need a more accurate estima-

FIG. 3. (w, 0) distribution of oscillators with degree 3, 5, and 7 tion of K, from the numerical simulation. In the case of the

in a random networkkK =0.30.

K=0.30 in Fig. 3. We also plot arcgia/Kkr) in these fig-
ures. The average ofis 0.623 in our simulation. From these
figures, we find that distribution dfw, §) seems to be con-
centrated around a single line. The concentration line coin-
cides qualitatively withd=arcsiiw/Kkr). This result sug-
gests that our mean field defined by E4) is the correct
one.

To estimate the critical couplini§., we plot theK depen-
dence of the average of the order parametgmn Fig. 4.r,,
is less than 0.1 and shows a weak dependenceX cait
K <0.2. This nonzero value af,, is due to the finite-size
effect. On the other hand, &> 0.2, r,, increases rapidly as
the interaction increases. This figure suggestskhad about
0.2, which is in agreement with our analysis. Therefore, we

globally coupled networks and Watts-Strogatz modgl,is

0.6 ' | ' | ' | ' | '
I E—EIN=500 A
0.5 G--© N=1000 4
&> N=2000 ‘
A=A N=4000 -7

04K (N=4000)

K (N=1000) K (N=500)

I
0.16

I
0.18

0.2

conclude that all numerical results are consistent with our F|G. 5. Interaction dependence of the mean-field parameter in

analysis.

the random scale-free network fdi=500, 1000, 2000, and 4000.

From these simulations, we find that our mean-fieldThe arrow shows, estimated from Eq(12). Simulations for each
theory is applicable to the Erdés-Rényi model. However, theparameter are carried out for at least 50 realizations of the networks.
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3 R g network. All the results of these simulations show a qualita-
3—£1N=500 e tive agreement with the analysis in the previous section.
G--ON=1000 -y 1
&> N=2000 R

A---AN=4000 ' 4 V. SUMMARY AND DISCUSSION

In this paper, we study the frequency synchronization of
the random oscillator network. By analyzing the continuum
limit equation, we find that mean-field-type synchronization
occurs in a random network model. We obtain a sufficient
condition for the synchronization. In particular, we find that
the threshold for the synchronization is absent in a scale-free

Y B I S I S random network if 2<y=<3. The results of numerical simu-
KK, lations are in good agreement with this analysis.
FIG. 6. The relation betweeN®2¥,, andK/K,, whereK, is the One of the most astonishing results in the dynamics of the

scale-free network is the absence of an epidemic threshold in
the SIS model. Our result seems to be similar to the result in
the SIS model, however there is a large difference between
) ) ) o them. In the SIS model, the absence of an epidemic threshold
numerically obtained as the point at whibf 5ra_v becomes s the result of the divergence &f,, the mean degree of the
independent of the size of the netwd#X. In their analysis, nearest-neighbor nod¢]. On the other hand, in our model
there exists an assumption th&t does not depend on the the absence of a threshold originates from the degree depen-
size of the network. On the other hand, our analysis an@ience of the coupling between the order parameter and the
simulation show thak. depends clearly on the size of the oscillators. The coupling between the oscillators and the
network through the average of the square of the degreemean field is proportional to the degree of the nodes, as
Therefore, it is impossible to obtain accur#tgfrom finite-  shown in Eq(5), and the contribution to the order parameter
size analysis. The exact estimationkyf is a difficult task. from the oscillator is also proportional to the degree of the
However, we find thaK, derived from Eq(12) seems to node, shown in Eq(4). This degree dependence results in
have a strong relation to the phase transition. We res¢ale thek? dependence of Eq15), which leads to the absence of
by K., which is obtained from Eq12), and plot the relation the threshold in a random scale-free network. Therefore,
betweenN°2%,, and K/K, in Fig. 6. In the case oN there is a large difference between the absence of a threshold
=1000, 2000, and 4000, the well-defined crossing point exin the SIS model and the synchronization, although these are
ists atk/K.=1. In the case oN=500,N*%,, atK/K.=1is apparently similar results. To clarify this difference, we will

a little larger than in the other cases. However, this differenc&@€@d to study the synchronization in the other network mod-
is small, and it seems th&t/K.=1.0 is the crossing point at els. As Eguiluz and Klemm have shown, a scale-free network

with a large clustering coefficient has an epidemic threshold
in the SIS mode[10], due to the smallness &f,,. The dif-

erent behavior of the threshold may appear in our oscillator
rr_1etwork, because the absence of the threshold is not caused
by the divergence ok,, but by the degree dependence of

gunatl(()jn of thicr't'cal coupl)(le:gg sgengtﬂ. To avoid the SIZ€ hean-field—oscillator coupling. The study of the synchroni-
ependence oK., we rescalek and we have no guarantee ;o in other scale-free network models is a future

that such a rescaling is valid for the scale-free ”et""orli)roblem.
model. However, our result strongly suggests tKatob-
tained from the numerical simulation coincides with the re- ACKNOWLEDGMENTS
sult of the analytic solution.
To conclude this section, we carried out the simulations We acknowledge Y. Nishiura, M. lima, and T. Yanagita
on the Erdos-Rényi model and the random scale-fredor fruitful comments.

value estimated from Eq12).

large N. This result is similar to the results of the finite-size
scaling in the globally coupled networks and Watts-Strogat
model. In these models, there exists a crossing poir€ at

=K,. On the other hand, our analysis is not a precise dete
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