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Exact solution of Ising model on a small-world network
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We present an exact solution of a one-dimensional Ising chain with both nearest-neighbor and random
long-range interactions. Not surprisingly, the solution confirms the mean-field character of the transition. This
solution also predicts the finite-size scaling that we observe in numerical simulations.

DOI: 10.1103/PhysRevE.70.026112 PACS nunm®)er05.50:+q, 64.60.Cn, 05.70.Jk

[. INTRODUCTION also the complete thermodynamics at all temperatures as a
function of p and of the strength of long range interactidns

Physical interactions are usually of limited range. Never-(though in this paper, we only present the results for the free
theless, there is a long history of study of the effect of infi-energy and specific heat, in zero figldhe form of finite
nite range interactions in basic models of statistical physicsize scaling corrections to the thermodynamics can also be
[1,2]. More recently, the work of Watts and Strogd8] on  derived from our solution.
small world networks brought renewed attention to this ques- The following Sec. Il presents a description of our spe-
tion. Watts and Strogatz considered a quantitative model thatific model and the basic algorithm for its exact solution. The
interpolates between a regular lattice and a random on&ombinatorial treatment of its constituents is given is Sec.
They showed that the addition of a small fraction of randomlil. In Sec. IV, we analyze the resulting thermodynamics and
long range links can dramatically change the connectivityconclude on the mean-field character of the ordering transi-
properties of the lattice. In particular, in a latticedfnodes  tion. Section V shows how the finite size scaling properties
the averaged chemical distance, that is the averaged mintan be obtained within the same approach. Finally, the rela-
mum number of links between any two nodes, is of ordertion between our results and those of Dorogovteewal. is
O(In N), rather than®(N), as in a regular lattice, regardless discussed in Sec. VI.
of the numbepN of additional links(p>0), providedN is
large enough. Clearly, this change should be reflected in the
phenomenology of any physical models defined on such lat-
tices. Researchers were quick to grasp this opportunity and Watts and Strogatz originally considered a model in
many physical models and processes have been considerg@lich the bonds of a regular lattice are rewired at random
in small-world networks, like cellular automafidl, diffusion  with a probabilityp. It is widely believed that the modified
[5], neural network$6], the spread of disea$é], and many  model, in which random long-range bonds,shortcuts are
others[8]. added to the regular lattiqg], is essentially equivalent.

The Ising model, the simplest paradigm of order—disorder The actual model consists of a chainMflsing spinsa;,
transitions, has been studied on small-world networks in ongyith nearest-neighbor interactiodgchain bondsand short-
dimension(1D) both numerically and analyticallj9-12,  cut interactionsl (long range bonds both J and | being
and in two(2D) and three dimension8D) numerically[13]. positive, so that the Hamiltonian reads
Some partial analytic results, based on the use of the replica
trick, were presented by Gittermail] and Barratt and
Weigt[10]. They are, however, contradictofitterman pre- H= "]2 00+~ | 2 gioj hz Ois 1)

. . i=0 (ij)esS i=0
dicts a ferromagnetic phase only fp=1/2) and, at any
rate, these results do not constitute a full solution of thewith o;=+1 and periodic boundary conditionsy=oy. The
thermodynamics of the model. There is a consensus that theet S containsN,=pN shortcut pairs of spins, and the last
ferromagnetic Ising model has a mean-field transition for anyerm accounts for the effect of external magnetic field. We
finite value ofp even in 1D, even though Hastings predicts present in detail the solution of a version of this model in
the occurrence of anomalous scaling of the mean-field amwhich the sites connected by shortcuts are equally spaced in
plitudes withp— 0 [14]. Dorogovtseet al. [15] presented a the regular lattice, a distance 1 Zpart, but the shortcuts
very general discussion, for networks that are locally treeare randomly arranged among these spins. The solution of
like, based on the solution of the Ising model on a Bethethe original model, in which theN sites are randomly dis-
lattice [16]. tributed along the lattice, turns out to be essentially the same,

In this work, we present an explicit solution of the 1D and some results for this latter case are also presented in the
Ising model with additional random long-range bonds. WeAppendix. In either case, the bond selection is such that no
are able to calculate not only the transition temperature, butpin is linked to more than one shortcut.
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We consider a transformation from site variables to bondvhenb;_;j=1-b;;.4, if the additional bond variable is 1. In
variables, which we formulate for a general Ising model inany case, the knowledge of one chain bond variably
zero-magnetic field, bo,1) and the shortcut variables is enough to determine all the

terms that give a nonzero contribution to E§). Hence, the
H=-2 Jjoi0, (2)  partition function can be written as an unrestricted sum over
(@) bo 1 and Ny, shortcut bond variables which, in order to sim-
where J; can be chosen arbitrarthough in what follows ~ Plify notation, we denote simply bigo, by, ... by,

they are only 0J, or I). The partition function for tempera-
ture T=871is given by Z=Zga™ > 5 (11)

{bg. b}
Z=Tr, ex Jioio)=Tral ] exp(BJioio). (3 .
tor p('g(iE,j) 19io)=T }(ll_[,) B i0r). (3) wherec,=coshgl, t;=tanhJ, t;=tanhgl, M=3[, b; is

i ) the number of shortcut bonds with=1, andL the number of
We can use the known identity chain bonds wittb=1. We calculate it as follows: Given a
exp(BJjoi0;) = coshBJ; (1 + g0, tanh BJ;), (4) C(_)nf|gurat|on obe_shortcut_s_and a choice &l from them
with b;=1, the chain gets divided into\2 segments between
and then represent the latter factor as a sum in a discretnsecutive spins connected to oneMbfbonds. These seg-
“bond variable”b; =0, 1: ments have lengthis, ... ,l,y. Whenb,=0, the value_[b] is
the sum of even lengthk,+1,+--- +1,,,. Otherwise, it is the

1+oi0 tanhBJj= X (oj0; tanh )", (5)  sum of the odd ones;+ls+ -+ +l,_y.
0;j=0.1 Our solution is based on the observation that Ef)
to write the partition function as permits explicit separation of two extensive thermodynami-

cal variabled_[b] andM[b] [both being®(N)] from N, mi-

zZ= (H COShBJij> (6)  croscopic variables;. The latter only define a temperature
By independent prefactd(M L) at the product;t) with given
L and M. A similar situation(but with a single variableﬁ)

xTr{,,}E H (gio; tanh ﬁJij)bii. was already addressed by Saul and Kardar for the problem of
b} (D) Ising spin glasse§l7]. Instead of the numerical procedure

(7)  for the prefactor employed in Reffl7], we are able here to
calculate analytically the sum over all the bond configura-

When we trace over any spin variablg in a product with  on<'in E : _ :
. . . : . g.(12). DenotingQ (M ,L)=exd S(M,L)] the num
fixed configuration{b} of bond variablesy;, we get zero if ber of choices oM segments giving a fixed value &f we
the ith spin multiplicity in this product¥; by;, is odd, and a

ij 1 et
factor of 2 if it is even. Therefore, we can trace over the spin
variables to obtain z= ZchairpleE > exp(S- L/g - MIE), (12)
by M,L
Z= 2N<H cosh,BJij> (8) °
() where¢;=1/In(1/t,) is the Ising chain correlation radius and
§| = 1/|n(1lt|)

XEH(tanhB\]ij)bij, (9) The crucial property of the exponential function under
{b} (i,j) sum in EQ.(12) is that it has, as will be seen below, an

extremely sharp maximum at sonmeacroscopicallygreat
values ofL and M. This reduces the calculation of its con-
tribution to the free energyF=-T In Z, to the logarithm of

its maximum. The latter turns out to kB(N) and thus a
§elf-averaging quantity, that is coinciding, f@mos) any

a 2 ; L

random realization of the disordered system, with its average

where the sum ovefb} is restricted to configurations with
only evenX; by; for all i.

As an example, we can derive from E) the partition
function of the Ising chainJ;=J, for nearest neighboys
Since each spin there has only two bonds, this implies th
eitherb; =0 for all the bonds ob;;=1 for all the bonds, and

these two alternatives contribute in the partition function value [18]‘ . . . .
Passing to the intensive thermodynamical variables
Zenain= (2 coshB)N(1 + tani' BJ) (100 =L/N, n=M/N,, and to the intensive functiors(l,n)

=S(L,M)/N, we rewrite Eq(12) as
as expected. X ) a(12)

The restriction of the sum in Eq9) to configurations _ PN _ _
such that¥; b;; is even, allows a reduction of the number of 2= 2Zenaif % eXAN(s=1/& = prg)], (13
required variables. If the sitehas no shortcut bonds, then

this condition reduces tb;_;;+b; i, being an even number, and in the thermodynamic limk — , the sum converts into
that is,bi_; ;=D i1 (sinceb; =0, 1). On the other hand, ifis integral which can be done by steepest descent. The values
a shortcut site, with an associated additional bond variabld)o=0 and 1 give identical contributions, hence the factor 2.
the sum in Eq.(9) gets only nonvanishing contributions The free energy per spin isf=F/N=—(T/N)in Z
when b;_;;=b; ;,4, if the additional bond variable is 0, or =—(T/N)In Z,Z,=fy+f,, where
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FIG. 1. Q(L,M) is the number of possible choices Mf bonds,
terminating in filled dots, fronpN fixed bonds, which have a given
value of the sum,+l,+- -+l =L/d.

fo=—T[In(2 coshBJ) + p In coshpl] (14

and the “anomalous” terr, (if exists, see beloyis given

by simple minimization with respect toandn of the follow-
ing function: FIG. 2. Trajectories of the maxima of the exponent in Eif)
_ in the domain{l,n}, as temperature varies from=0 (central poin,

fll,m) =TL=s(l,m) +1/&;+ prvg]. (15 to T, (lateral verticespy=0 or by=1) at particular choices of pa-
The task that remains is to calculate the configurational en@meters(l) p=0.01,1=1;(2) p=1/2,1=1;(3) p=0.1,1=0.1; and

tropy s(I,n)=In Q(L,M)/N (for L,M=0O(N)). (4) p_=1/2, 1=0.1. For each temperature, there are two equal con-
tributions to free energy resulting frobp=1,0.

I1l. COMBINATORICS OF BONDS
the number of ways of dividing0,(N-L)/d] into M+1 in-

The calculation of)(L,M) can be formulated in the fol- teger segmentghe last of them possibly zero
lowing way.

We are given a chain ofl sites{0,1,2,... N-1} with CiN-Lrdclid-1 (20)
periodic boundary conditions. The shortcut sites are evenl
spaced forming a regular lattice with coordinates
{d,2d, ... N}, whered=1/2p. A number pN of shortcuts
connectpN pairs, randomly chosen from these sites. If we
chooseM of these bondgthose for whichb=1) from the
total of pN, the corresponding shortcut sitgke filled dots in
Fig. 1) will have coordinates, in increasing order

YwhereC”m:n!/[m! (n=m)!], a binomial coefficient

Note, however, that our choice of M2 coordinates
{rq1,...rou} is constrained by the fact that the original prob-
lem hasbondsconnecting pairs of sitegy,q,,. Therefore, if
gce{ry, ---,Fam SO mustqg,,. To take this fact into account,
we multiply the previous factor by the normalizing factor,

{ri,ro, ... rawpCHd, 2d, ... ,N}. These site coordinates will cPNicEN, (21)
divide the lattice into ®1 segments of lengthdly, ... ,dlsy
where which refers to the self-averaging property in the thermody-
namic limit: That(almos) all possible pairings between the
| = ri—ri-1 1 sites{d,2d, ... ,N} give the same&(L,M). The result for
: d '’ ' Q(L,M) is, then:
— ~2p(N-L) ~2pL-1~pN;~2pN
N~y 11 Q(L,M) = C3PN-Dc2PL-1opN, 2N, (22)
1= d ' (16) At this point, it is important to specify the variation range

oM ) ) for the variabled. andM. Clearly, 0<M <pN. On the other
and 2Z; [;=N/d. Then (L, M) is the number of possible hand, since each-r,_; measures at least=1/2p, we must

choices of theM bonds such that have 2L=M andpN-2pL=M, i.e., the before defined in-
tensive variables=M/pN and|=L/N should belong to the
L+ 1+ g+ - + 1y =L/d. 17 angle P 9

We are asking in how many ways one can divide the
interval [0,N/d] igto 2M+1 integ);/er Ie)ll"ngths{ll, voodomeh n<2, n<1-2, O=ns<l, (23
where onlylyy,; may be zero, so that even lengths areshown in Fig. 2.
summed to For our purposes, all that will be required is the leading
O(N) term in InQ(L,M). Using Stirling’s formula

o+ 1+ -+ +1yy =L/d. (18
Then, clearly, the odd lengths should sum to nl = \’2—wn<2>n, (24)
lp+lg+ - +|2M+1=%- (190 we arrive at
In Q(L,M) =Ng(l,n) (25

Therefore,Q)(L,M) is just the number of ways of dividing
the intervall0,L/d] into M segments of integer length, times with
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1.5x10° large N, even small deviations of 1€ (L,M) from S1,n),
would result in simulations which do not cover the entire
5 spectrum, as ours do.
B, [1.ox10°
=
.2 IV. THERMODYNAMIC BEHAVIOR
L 5
= =010 The necessary conditions for the exponent in @8) to
be maximum:df(l,n)/on=0f(1,n)/dl=0, define from Eq.
\ = L 1.00 (26) the following equations for the coordinatesand|” of
e — j),\ this maximum
7’ i N < n n*(l - n*)
’ N 0.50 a1,
i N 2-2"-n)2 -n)
Vd AY
- ) 21" - n)(L-1")
- 0.00 % =14, (27)
000 025 050 075  1.00 F2-2-n)
! (d=1/2p). These equations are easily solved:
- - 1-t9- 241§
FIG. 3. Histogram of occurrences bfvalues for several fixed I* = J 1Y ’ (29)
values ofn, obtained in multicanonical simulations with the entropy (1 —t?)2 -4t
of Eq. (26) as sampling distribution for a sample wigh=1/4 and
N=512. o t, - tg
n:|<1+m>, (29
s(l,n) = p[(2 - 2)In(2 - 2) + 21 In(21)+ (1 - n)In(1 - n) !
and, fort;, t; varying with temperature, these are parametric
—ninn- (21 =n)in(2l -n) equations for a certain trajectory of the maximum of the
-(2-2-nin(2-2-n)] (26) exponent in then,| plane[within the admissible range, Eq.
_ (23)]. At zero temperature, whef=t;=1, it locates at”
[dropping the term©(In N)]. =1/2,n"=1/2 (the central point in Fig. 2 corresponding to

In order to confirm the basic assumption of self-the maximum configurational entrog(,n). As T increases,
averaging, mvolved_ in the_ calculations Ieadln_g to ILfZﬁ), the maximum moves toward the origin=l =0 (or to n=0,
we performed multicanonical Monte Carlo simulations ON|=1) as shown in Fig. 2. The trajectory reaches the very

the variabled andn. For the sampling probability distribu- origin at a finite temperatur&=T,, given by the condition
tion of a statei (characterized by a set of values for the

variables{b}), we usedp;=1/Q(L;,M;). The Monte Carlo t9(1+2) = 1. (30)
move is given by:

(1) From an initial staté, propose a new staje differing
from i by the value of a randomly chosen bo¢with prob-
ability 1/Ny).

(2) Accept the new state with the usual probabilty;
=min[1,Q(L;,Mj)/Q(L;,M;j)]. This procedure ensureby
detailed balance and ergodicity of the algorijhthat the
asymptotical sampling probability is;. The asymptotical
histogram of frequencies in ath,n) point should, then, be
given by

It is important to notice that below this critical temperature,
when the reduced temperature T/T.—1 is nonzerdt<O0),
no matter how smallt| is, the coordinates of maximum
(I",n") Egs.(28) and(29), are also finitei”,n" ~|t|. Hence,
the corresponding numbek$=1"N andM"=pn’'N are mac-
roscopic:L",M"=0O(N). On the other hand, the width of the
maximum, estimated from the second derivatives
#sl 2| o~ sl on?|p ~1/1", is O(I"/N) and tends to
zero in the thermodynamic limit, that is the probability dis-
tribution in macroscopic variabldsn tends to as-function
with an amplitude which can only depend on macroscopic
QLM parameters of long-range linkg and I) but not on their
specific realization. This justifies the above used assumption
where (,(L,M) is the actual number of states, with given of self-averaging for the probability distribution and relates it
(L,M), of the sample that we are using in the simulation. Ifto the known self-averaging property for observable values
Q,(L,M)=Q(L,M), the histogram should be flat in all the [18].
range of(l,n). Above T, the maximum of the exponent in EG.3) goes
The corresponding histogranishown in Fig. 3, for a away from the physical region, E§23), while its highest
single disorder realizatiorare indeed quite flat, confirming value in this region is zero, attained at the origin. Hence, the
that the entropies we calculated are apparently exact in thiast factor of the Eq(13) turnsO(1), and it gives no contri-
thermodynamic limit and very accurate for the moderatebution to the free energy in the thermodynamic limit. There-
tested sizes. Recall thal(L,M)<exdNsl,n)] and, for fore, the free energy abovk. is simply f,, Eq. (14), but it

H(l,n) = Q,(L,M)
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FIG. 4. Behavior of the critical temperatug@ units of J) as a FIG. 5. Specific heat obtained by Monte Carlo simulations for
function of I for several values of the concentratiprof shortcuts  four sizes of samples, with=1/4 andl =1 in comparison with the
theoretical curvg«). Inset shows the collapse of the four curves

gets an extra term beloW: fo+f,, wheref, is given by Eq.  When plotted in function ofN*2,

(15) with | and n are given by Eqs(28) and (29). These

equations combined provide a complete description of théhe additional ternf, in the free energy can be simplified to:

thermodynamics of the model at all temperatures in zero «

field. f=Tpin—2-2 ZN)”
The dependence of transition temperatdrg defined 2 (1-n)2-27)7

from Eq. (30), on the system parametepsJ, andl, can be and its leading terms in the critical region are clearly of order

easily analyzed in characteristic limits. 5 . - 2
If shortcut bonds are much stronger than chain bondso(t ). Hence, the specific heat per spipz=—T¢#f/JT?, has a

then for any finitep andl — oo, the critical temperature tends finite Jump A.C at the critical point. As an ?*amp'e' we
to a finite value:T,— J/(arctanh 9P). Since shortcut spin present in Fig. 5 the calculated exact specific heat for

o R . . . =1/4 andl =], together with the results of simulations on
pairs in this limit should be considered as single spins, the . . . . .

. ” Samples of various sizes. This behavior permits one to clas-
above value defines also the transition temperature for a ran-

dom graph with connectivity 4 made of Ising chains of sify the considered transition as second-order mean-fieldlike,
length d=1/2p. In the limit of small concentrationp<<1, with a critical exponent=0. In the case op<1 with T,

: . X : 30 2
this critical temperaturd turns small compared td, the given by Eq.(31), the jump is proportional tp® In(p In 3),
energy scale for Ising chain: and is also independent of the shortcut bond strengt¥hen

the shortcuts are much weaker than the chain boplds,J,
2] with T, by Eq. (32), we find the specific heat discontinuity
Te= m (31) proportional top(1/J)? In%(J/pl). The above results indicate
a nonanalyticdecayof this mean-field amplitude gt— 0,
and such-independent behavior holds as well for moderatespecific for the considered one-dimensional system. It is of
shortcut strengtkunlessl is too small:l <J/[In(p In 3)|). At interest to compare this to a power-lalivergencen p of the
last, in the limit where the shortcuts are much weaker thamean-field amplitudes for systems where a second-order
the chain bondsgyl <J, we have within logarithmic accuracy transition at nonzero temperature exists in absence of long-
23 23 range links[14].

T nmi2en] ~ inaiptin@eng o2

The above relations define the system phase diagram in
p,!,T variables, as shown in Fig. 4. It was shown that the self-averaging property invoked for

It is of interest to compare these formulas to the finiteour calculation of(2(L,M) is true in the thermodynamic
critical temperatures, resulting from breaking down thelimit, and flatness of the histograms in the multicanonical
Mermin—-Wagner theorem for a two-dimensional Heisenbergimulations suggests that the calculafed_,M) is accurate
magnet in the presence gbmall anisotropy AJ<J:T.  (see Fig. 3. Nevertheless, there are visible deviations from
~JZ/In(T/AJ) (z is the coordination numbgrThey can flatness near the edges of the spectrum, which diminish with
also be referred to the percolation threshpldfor the one-  growing system siz&l. One can therefore ask whether our

(33

V. FINITE SIZE SCALING

state limit of the Potts modglL9]: T.=23/In(1-p.). solution also contains the correct finite size scaling proper-
The nontrivial thermodynamics follows from the observa-ties of this model.
tion that close to the critical point,©©-t< 1, both variables To answer this question, the numerical sum of ER)

| andn are O(|t|), while the trajectoryn(l) reaches the origin was performed for different temperatures. The factorials
with asymptotic slopeln/dl—4/(1/t,+2)<4/3, thatis, al- were substituted by the Stirling’s approximation and the spe-
ways within the triangle, Eq23). Using Eqs(28) and(29),  cific heat was then obtained by numerical differentiation. The
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T T T T T T T i T 1 h(',U) =~ _Cl(l _|*)2_02|(U_U*)2’ (38)
— MC Simulation

L S i ini ~
2 x Al;glytic with definite constants; ,~O(1), and replaceg(l,u) by

g(0,u”). With a suitable change of variables, we obtain

N4 (= (2 -1y
Zrsdl) = _f dxf dy 07,
kl 0 -y

(39

were {=tN2, y"« N4 and the constants, , are related to

cy ». Since the finite size scaling limit ¥ —c andt— 0 (at

0.5 — fixed {<0), the limits of integration irny tend to infinity and
4 2 0 2 4 we get

V,';Nlm ® o(x+ ko0)? dx
FIG. 6. Comparison between the Monte Carlo simulation for a Zesd{) = K f :
sample ofN=8192 andb=1/4, the nurerical sum Eq(12) and the 1

analytical resul(because of the small sizes, it was necessary t0Thjs |eads to a correction in the additional free energy:
include corrections oO(N14) to the finite size scaling

= (40)
0 VX

t2
) i , i fa— fa—-TeIn 2 ), (41
comparison between the two independent calculations is pre- Ao e rsd{
septed in Fig. 6. Despite 'the fact that_ the qute Carlo Slmu'and, sincef, is also proportional td?, the scaling form for
lation was made for a unique sampleithout disorder aver-

. : . the specific heat becomes:
aging, the agreement between these calculations is very P

good. Cn(T

To derive the analytic form of the finite size scaling func- #ET; = c(tN'). (42)
tion, we approximated the sum in E@.2) by an integral in
the intensive variables and n. Then, after the change of Thus the specific heat curves for finite size systeGgT),
variables(l,n)— (I,u) whereu=n/l, the partition function when scaled byC.(T) and plotted as a function alN'/?,

for a finite sizeN of the sample becomes should collapse to a single curve. The results of the Monte
Carlo simulations are consistent with this predictisee the
Zn=exfd- BN(fo + fa) | Zrss (34 inset of Fig. 5. An excellent accordance between the ana-
lytic behavior and the results of direct summation in E)
where and of Monte Carlo simulations is shown in Fig. 6.

oo 2 A similar scaling is observed in the susceptibiliggot
Zres= &f dlf du gl,u)exp(pNh(,u)) (35  Shown hergand has been observed by other authors in 1D
2mpJ, 0 [12] and also in 2D and 3P13] (whereN=L% is the number
of spins, not the linear dimensidnof the lattice.

defines the contributions-O(N™*In N) into free energyf, This is the expected form of scaling for a situation in
with which the dimensionality igreater than the upper critical
dimension and hyperscaling is violatg2D]. It is observed in
(u) = \/ 2(1-1) (36) all these small-world models for any dimension of the under-
9t (2-1(2+u))(2-u) lying regular lattice[12,13. A similar steepest descent solu-

tion probably applies also in all of these cases.
and

1-ul ) VI. RELATION TO BETHE LATTICE APPROACH

1-ul The local environment of a spin in our model looks like
2-u u the Cayley tree in Fig. 7. The vertical links are shortdatfs
- (2-ul '”(z_u*> - ul '”(_*> strength I) and the longer ones segments of the one-
dimensional chain, containind=1/2p links of strengthJ.
—(2—I(2+u))ln( 2-1(2+u) ) (37) Since a shortcut from a given spin has an equal chance of
2-1"2+u") /)’ linking it to anywhere in the lattice, we do not expect to find
closed loops until we g&(In N) links away. Based on this
The functionh(l,u) has a maximum atl",u’). WhenT insight, Dorogovtseet al. [15] developed a description of
—T_, we havel"— 0" andu” — 2/[1+coth81)/2] < 4/3. the Ising model on such lattices based on the Bethe lattice
The integral in the Eq.35) is dominated by the vicinity of  solution. Their detailed result&amely forT,) are not di-
the maximum. To obtain the leading order terms itlNJahd  rectly applicable to our latticeéwvhich are not maximally
t we may expandh(l,u) around the maximum, random because of the strong correlation between shortcut

h(l,u) =2(1 —I)In(H) +(1 —uI)In(
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k(X,T)=(1=x)In(1=x) + (2x=1)In(2x-1)—(1 =x)In 2
-xInx=xInt$-(1-x)lnt,. (46)

Minimizing «(x,T) with respect ta, we find that this mini-
mum value «(T)=min, x(x,T) decreases with temperature
and turns zero just al=T, given by Eq.(30). At any tem-
perature abovd, the function in Eq.(45) decays exponen-
tially and there is no possibility of long-range order. In the
language of the Bethe lattice, the occurrence of an extra term
in the free energy below,, expresses the effect of bound-
aries, which is never negligible, no matter what the lattice
size is, when the function in Eq45) does not decay with
distance.

This analysis sheds some light on the previously stated
violation of hyperscaling, which arises from the fact that the
finite size corrections are not determined by the length that
characterizes the decay of correlation functions. In fact, we
have argued above that the spin—spin correlation function
pecays exponentially with the distance measured on the
any spin in the model: Shortcutslouble lines between the sites equivalent Bethe lattice, i.e., with the chemical distance on

divide the Ising chain into equal segments wdtthere,d=3) chain th_e original lattice. Thus, for the instance lofJ, we have
bonds(single lines. &=-1/Int; and

FIG. 7. The Bethe lattice that describes the local environment o

. L _ . (oo ) = €L HWIE, (47)
siteg. But their insight certainly is, and, since our results are
not based on the Bethe lattice solution, and our lattice has H is well known that the chemical distance between any two
well defined thermodynamic limit, it is interesting to con- randomly chosen spins is of ordéXIn N) so the correlation
sider the relation between the two approaches. between two spins at a distance of ordémlong the one-
In a Bethe lattice there is only one path to link two spins,dimensional chain is at least of ords¥r'’; it does not decay
as a result the correlation function is of a one-dimensionagxponentially withN as the lattice and the distance between
character. Therefore, the correlation between any two spinspins grow.
(ogo,) decays exponentially with the distance at any finite One interesting question that remains unanswered is
temperaturgeven atT,). But the number of sping, at a  Whether one can modify the model in order to effectively be
given distancer, from a given oneN(r), grows exponen- at or below the upper critical dimension, and therefore ob-
tially with distance, not as a power law, as in a regular lat-Serve a non-mean-field behavior.
tice. The function<q00r>NS(r) has a decay length thgt di- . VIl. CONCLUSIONS
verges at the ordering temperature of the Bethe lattice. It is
straightforward to derive the exact transition temperature of a In summary, we have been able to derive an exact solution
Bethe lattice of coordinatiom, B8.J=In(q/(q-2))/2, from  of an Ising model on a lattice with long range disordered
this condition. interactions. This solution expresses the free energy in terms
In our model, the chemical distance between two spin®f the density of states as a function of two macroscopic
can be taken ak’+M, whereM is the number of shortcuts Variables of ordeiO(N), which therefore is self-averaging.
and L’=M is the number of one-dimensional chain seg-Hence no disorder averaging is required in this approach. We
ments withd bonds each, which connect these spins. Thengbtained the thermodynamics in the— o limit and also the
the one-dimensional correlator is finite size scaling behavior.
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(Toor ) =€ dintM G, (43)

(000 myNs(L",M) = g KX DL +M) (45) APPENDIX
The model in which the positions of the shortcut sites are
where the decay constartx, T), with x=L"/(L’+M), is randomly chosen can be solved along the same lines of the
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model considered in the main text. We denote the coordithe same probabilit{?(L|M). In that case we can calculate it,

nates of the shortcut sites, in increasing order,
{01, 02, - .. ,Gzpnt With ;>0 (allowing for g,,n=0). The dis-
tances between consecutive sites are

di=0-0-, i#1,
(A1)
dy; =N-—0ggpn+ 01,
so that=?"N d,=N. If we chooseM bonds(those for which
b=1) from the total ofpN, the corresponding shortcut sites
{re,ro, o favt €101, 9p, - O2pnt Will divide the lattice into
2M segments of lengthls, ... I,y where
li=ri=rig, 1#1,
(A2)
|1:N—r2M + I’l,

and =2 [;=N. Then, Q(L,M) is the number of possible
choices of theM bonds such that

lo+1,+1g+ -+ +1y=L. (A3)

We define
Q(L,M) =Q(M)P(LIM), (A4)

where )(M) is the number of choices d#l shortcuts with
b=1 from a total ofpN [Q(M)=CPN], and P(L|M) is the
probability that any such choice &fl bonds will selectL
chain bonds wittb=1.

It should be stressed again that, for a given realization of
disorder, this probability must be calculated in the event

space consisting of the choicesMfshortcuts from the spe-
cific set of pN random shortcuts. However, it follows from

byenlarging the space of events to incluakthe configurations

of shortcuts.

We are therefore led to ask in how many ways one can
choose R} sites,{q;,95, ...,0om} C{1, ... N=1}, such that
the sum of even lengths in this seriesljs1,+1g+- -+l
=|. We have seen above that it is given by

ovoviy (A5)
Since the total number of such choicesCly,, we have
P(LIM) =Ntk tieh,, (AB)
so that
Q(L,M) = chNe e /e,
With the same definitions as above, we get
s(l,n) ==pn(In n/4) — p(1 —n)In(1 —n)
+(1-2pn)In(1-2pn)— (1 -1-pn)in(1-1-pn)

(A7)

=(=pnin(l=pn)+ @ -Hin(L-DH+1Inl. (A8)

The equation for the transition temperature is
ty(1+4pt) =1, (A9)

with the characteristic limits
— <1, |I> J

““inazp P T ez

(A10)
2]
pl<J.

T =—
¢ In(T42pl)’

the self-averaging property in the thermodynamic limit thatThe resulting thermodynamic behavior is essentially the
any statistically significant configuration of shortcuts leads tassame as in the model considered in the main text.
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