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The analysis of experimental time series, obtained from single and polycrystals subjected to constant strain
rate tests, reports an intriguing dynamical crossover from a low-dimensional chaotic state at medium strain
rates to an infinite-dimensional power-law state of stress drops at high strain rates. We present the results of an
extensive study of all aspects of the Portevin–Le Chatelier(PLC) effect within the context of a recent model
that reproduces this crossover. We characterize the dynamics of this crossover by studying the distribution of
the Lyapunov exponents as a function of the strain rate, with special attention to system size effects. The
distribution of the exponents changes from a small set of positive exponents in the chaotic regime to a dense
set of null exponents in the scaling regime. As the latter is similar to the result in a shell model for turbulence,
we compare the results of our model with that of the shell model. Interestingly, the null exponents in our model
themselves obey a power law. The study is complimented by visualizing the configuration of dislocations
through the slow manifold analysis. This shows that while a large proportion of dislocations are in the pinned
state in the chaotic regime, most of them are pushed to the threshold of unpinning in the scaling regime, thus
providing insight into the mechanism of crossover. We also show that this model qualitatively reproduces the
different types of deformation bands seen in experiments. At high strain rates, where propagating bands are
seen, the model equations can be reduced to the Fisher-Kolmogorov equation for propagative fronts, which in
turn shows that the velocity of the propagation of the bands varies linearly with the strain rate and inversely
with the dislocation density. These results are consistent with the known experimental results. We also discuss
the connection between the nature of band types and the dynamics in the respective regimes. The analysis
demonstrates that this simple dynamical model captures the complex spatiotemporal features of the PLC effect.
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I. INTRODUCTION

Plastic deformation is a highly dissipative irreversible
nonequilibrium process where nonlinearities play a funda-
mental role. Under normal conditions, one finds homoge-
neous deformation. However, under suitable conditions of
deformation, different types of spatial and temporal patterns
are observed that can be broadly classified by the associated
time and length scales—for example, the persistent slip
bands lasting over long time scales[1,3] and the propagative
Lüders bands characterized by short time scales[1,3]. Yet
another and even more complex spatitemporal pattern is ob-
served during tension tests of dilute metallic alloys in a cer-
tain range of strain rates and temperatures. This phenomenon
has come to be known as the Portevin–Le Chatelier(PLC)
effect [2]. Here a uniform deformation mode becomes un-
stable, leading to a spatially and temporally inhomogeneous
state. The instability manifests itself in the form of serrations
on the stress-strain curves of the sample[1,3]. Each stress
drop is generally associated with the nucleation and often the
propagation of a band of localized plastic deformation. In
polycrystals, these bands and the associated serrations are
classified into three generic types. On increasing the strain
rate or decreasing the temperature, one first finds the typeC
band, identified with randomly nucleated static bands with
large characteristic stress drops on the stress-strain curve.
The serrations are quite regular. Then the typeB “hopping”
bands are seen. The serrations are more irregular with ampli-

tudes that are smaller than that for the typeC. The bands that
are formed are still localized and static in nature, but they
form ahead of the previous band in a spatially correlated
way, giving the visual impression of a hopping propagation.
Finally, one observes the continuously propagating typeA
bands associated with small stress drops.(In single crystals,
such a clear classification does not exist.) These different
types of PLC bands are believed to represent distinct corre-
lated states of dislocations in the bands.

The well-accepted classical explanation of the PLC effect
is via the dynamic strain aging concept introduced by Cot-
trell [4] and later extended by others[1,5–7]. (An alternate
approach to the study of collective effects of dislocations is
due to Weertman[8], who uses the Bilby-Cottrell-Swindsen
crack problem.) In Cottrell’s picture, the dynamic strain ag-
ing refers to the interaction of mobile dislocations with the
diffusing solute atoms. At low strain rates(or high tempera-
tures) the average velocity of dislocations is low and there is
sufficient time for the solute atoms to diffuse to the disloca-
tions and pin them(called “aging”). Thus, the longer the
dislocations are arrested, the larger will be the stress required
to unpin them. When these dislocations are unpinned, they
move at large speeds until they are arrested again. At high
strain rates(or low temperatures), the time available for sol-
ute atoms to diffuse to the dislocations decreases and hence
the stress required to unpin them decreases. Thus, in a range
of strain rates and temperatures, where these two time scales
are of the same order of magnitude, the PLC instability
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manifests. The competition between the slow rate of pinning
and the sudden unpinning of the dislocations, at the macro-
scopic level, translates into a negative strain rate sensitivity
of the flow stress as a function of strain rate, which is the
basic instability mechanism used in most phenomenological
models[1,3]. Slow-fast dynamics and the negative flow-rate
characteristic are common to many stick-slip systems, such
as frictional sliding[9], fault dynamics[10], peeling of an
adhesive tape[11], and charge-density waves[12].

There are two different types of challenges in dealing with
the PLC effect. The first is understanding the collective be-
havior of dislocations, which has been slow, largely due to
the lack of techniques for describing the cooperative behav-
ior of dislocations. Second, the PLC effect involves collec-
tive modes of dislocations, where both fast and slow times
scales play an equally important role, requiring specific tech-
niques of nonlinear dynamics. Further, these time scales
themselves evolve as a function of strain rate and tempera-
ture, which in turn leads to different types of serrations. At a
low strain rate, the existence of both fast(time scales over
which stress drops occur) and slow time scales(loading time
scales) are clearly displayed in the stress-strain curves. How-
ever, at a high strain rate, as internal(plastic) relaxation is
not complete, a clear demarcation of time scales is difficult.
This, along with the corresponding length scales(band-
widths), points to extremely complex underlying dynamics.

The inherent nonlinearity and presence of multiple time
scales necessitates the use of techniques of nonlinear dynam-
ics for a proper understanding of this phenomenon. The first
dynamical approach was undertaken in the early 1980s by
Ananthakrishna and co-workers[13], which affords a natural
basis for the description of the time-dependent aspects of the
PLC effect. It also allows for the explicit inclusion and in-
terplay of different time scales inherent in the dynamics of
dislocations. The original model attempts to address the time
dependence of the phenomenon using three types of disloca-
tion densities assumed to represent the collective degrees of
freedom of dislocations[13]. Despite the simplicity of the
model, many generic features of the PLC effect, such as the
existence of a window of strain rates and temperatures within
which it occurs, etc., were correctly reproduced. More im-
portantly, thenegative strain rate sensitivity was shown to
emerge naturallyin the model, as a result of nonlinear inter-
action of the participating defects[13,14].

Due to the dynamical nature of the model, one prediction
is the existence of the chaotic stress drops in a certain range
of temperatures and strain rates[15], subsequently verified
by analyzing the stress-time series[16,17] using dynamical
methods[18,19]. The number of degrees of freedom esti-
mated from such an analysis of experimental time series turn
out to be the same as in the model offering justification for
ignoring spatial degrees of freedom. These studies have also
shown that a wealth of dynamical information can be ex-
tracted from the stress-time series[16,17]. Further efforts
showed the existence ofan intriguing crossover from a cha-
otic state at low and medium strain rates to a power-law
state of stress drops at high strain rates[20,21]. As the
crossover is observed in both single and polycrystals, it ap-
pears to be insensitive to the microstructure. However, the
chaotic state is dynamically a distinct state from the power-

law state, as the former involves a small number of degrees
of freedom characterized by the self-similarity of the attrac-
tor and sensitivity to initial conditions[19], while the latter is
an infinite-dimensional state reminiscent of self-organized
criticality (SOC) [22–24]. Due to this basic difference in the
nature of the dynamics, most systems exhibit either of these
states. More importantly, these studies also demonstrate that
the chaotic state at intermediate strain rates is correlated with
the typeB band and the power-law regime of stress drops at
high strain rates with the propagating typeA band [21].
These authors also make a connection between the transition
in the nature of serration between the typeB and A bands’
regime of strain rates with the Anderson’s transition in con-
densed matter physics. Thus, it appears that the PLC effect is
a storehouse of many paradigms in condensed matter phys-
ics. Indeed, recently, the spatiotemporal features of the PLC
effect have also attracted attention from physicists[25]. Un-
derstanding these connections between the dynamics and
general features of the PLC effect would give insight into the
rich physics.

The dynamics of the crossover as a function of strain rate
is unusual in a number of ways. First, the PLC effect is one
of the two rare instances where such an intriguing crossover
phenomenon is seen, the other being in the hydrodynamic
turbulence[26]. Second, the power law, both in the PLC
effect and turbulence, arises at high drive rates[26,27]. Thus,
it would be interesting to examine the similarity and differ-
ences with hydrodynamic turbulence by comparing, the re-
sults of the Lyapunov spectrum of our PLC model with that
of the Gledzer-Ohkitani-Yamada shell model of turbulence.
(Henceforth, we refer to this model as shell model for brevity
[27,28].) Further, such a study helps us to compare the nature
of the Lyapunov spectrum with the conventional SOC sys-
tems seen at low drives(such as those in earthquakes[29]
and Barkhausen noise[30]). For lack of anything better, we
shall reserve SOC for power-law situations at low drives.
Finally, as different types of bands are a characteristic feature
of the PLC effect, we investigate the connection between
spatial aspects and the nature of the dynamics.

The fully dynamical nature of the Ananthakrishna’s model
makes it most suitable for studying this crossover by includ-
ing spatial degrees of freedom. We report a detailed investi-
gation of all these issues(reported in brief earlier[31,32]).
Particular attention will be paid to study the system size
effects during the crossover.

Section II introduces the dynamical model and its exten-
sion to include spatial degrees of freedom. Section III con-
tains the numerical procedure used. In Sec. IV, we introduce
the background material used for the study. Section V con-
tains a comparison of the results of the analysis of experi-
mental time series with that of the model. Section VI con-
tains all the major results on the dynamics of crossover,
including the evolution of the Lyapunov spectrum as a func-
tion of the strain rate and the analysis of the distribution of
null exponents in the power-law regime of stress drops. Sec-
tion VI also includes a comparison of the results of the
model with that of the shell model for turbulence, followed
by the slow manifold method of visualization of dislocation
configurations. Finally, in Sec. VII we discuss both analytical
and numerical results on the nature of dislocation bands. We

G. ANANTHAKRISHNA AND M. S. BHARATHI PHYSICAL REVIEW E 70, 026111(2004)

026111-2



conclude the paper with a few general comments.

II. THE ANANTHAKRISHNA’S MODEL

In the model [13], the well-separated time scales sub-
sumed in the dynamic strain aging concept are mimicked by
three types of dislocations, namely, the fast mobile, immo-
bile, and “decorated” Cottrell-type dislocations. As the
model has been studied in detail by our group[13,14,34,33]
(see also[35,36]), following the notation in Ref.[14], we
shall briefly outline the model in scaled variables. The evo-
lution equations for the densities of the mobile, immobile,
and Cottrell-type dislocations denoted byrmsx,td, rimsx,td,
andrcsx,td, respectively are

] rm

] t
= − b0rm

2 − rmrim + rim − arm + fef f
m rm

+
D

rim

]2sfef f
m sxdrmd
] x2 , s1d

] rim

] t
= b0sb0rm

2 − rmrim − rim + arcd, s2d

] rc

] t
= csrm − rcd. s3d

The model includes the following dislocation mechanisms:
immobilization of two mobile dislocations due to the forma-
tion of lockssb0rm

2 d, the annihilation of a mobile dislocation
with an immobile onesrmrimd, and the remobilization of the
immobile dislocation due to stress or thermal activation
srimd. It also includes the immobilization of mobile disloca-
tions due to solute atomssarmd. Once a mobile dislocation
starts acquiring solute atoms we regard it as the Cottrell-type
dislocationrc. As they progressively acquire more solute at-
oms, they eventually stop, and are considered immobile dis-
locations rim. Alternately, the aggregation of solute atoms
can be regarded as the definition ofrc, i.e., rc
=e−`

t dt8rmst8dKst− t8d, whereKstd is an appropriate kernel.
For the sake of simplicity, this kernel is modeled through a
single time scale,Kstd=e−ct. The convoluted nature of the
integral physically implies that the mobile dislocations to
which solute atoms aggregate earlier will be aged more than
those which acquire solute atoms later(see Ref.[14]). The
fifth term in Eq. (1) represents the rate of multiplication of
dislocations due to cross slip. This depends on the velocity of
the mobile dislocations taken to beVmsfd=fef f

m , where
fef f=sf−hrim

1/2d is the scaled effective stress,f the scaled
stress,m the velocity exponent, andh a work-hardening pa-
rameter.

The nature of the spatial coupling in the PLC effect has
been a matter of much debate[1]. Several mechanisms have
been suggested as a source of spatial coupling, such as com-
patibility stresses between the slipped and the unslipped re-
gions, long-range interactions, and triaxiality of stresses[1].
Within the scope of our model, cross slip is a natural source
of spatial coupling, as dislocations generated due to cross

slip at a point spread over to the neighboring elements. Let
Dx be an elementary length. Then, the rate of production of
dislocationsFsxd=Vmsx,tdrmsx,td, at a point x spreading
into x±Dx and vice versa, is given by

Fsxd +
p

2
fFsx + Dxd − 2Fsxd + Fsx − Dxdg, s4d

wherep is the probability of cross slip spreading into neigh-
boring elements. ExpandingFsx±Dxd and keeping the lead-
ing terms, we get

rmVm +
p

2

]2srmVmd
] x2 sDxd2. s5d

We further note that cross slip spreads only into regions of
minimum back stress. It is well known that considerable con-
tribution to the back stress arises from the existing immobile
dislocation density ahead of it. The length scale over which
the effect of the back stress is felt is conventionally taken to
be proportional torim

−1/2. As Dx is a measure of the distance
over which a dislocation produced atx spreads into the
neighboring element,Dx can be identified with the back
stress length scale. In addition, to account for all the allowed
dislocation configurations, we use an ensemble averaged
value ofDx2, i.e.,Dx2=kDx2l= r̄2rim

−1, wherek. . .l refers to the
ensemble average andr̄2 is an elementary(dimensionless)
length. Using this, we haveD=pr̄2/2. (Note that in scaled
form Vmrm=fmrm.) Finally, a, b0, andc are the scaled rate
constants referring, respectively, to the concentration of sol-
ute atoms slowing down the mobile dislocations, the thermal
and athermal reactivation of immobile dislocations, and the
rate at which the solute atoms are gathering around the mo-
bile dislocations. We note here that the order of magnitudes
of the constants have been identified in Refs.[13,33,36].
These equations are coupled to the machine equation

dfstd
dt

= dFė −
1

l
E

0

l

rmsx,tdfef f
m sx,tddxG , s6d

where ė is the scaled applied strain rate,d the scaled effec-
tive modulus of the machine and the sample, andl the di-
mensionless length of the sample.(We reserveėa for the
unscaled strain rate.) Actually, many of these rate constants
[the first, second, third, and fourth terms in Eq.(1)] are func-
tions of the velocity of mobile dislocation that we have ig-
nored for the sake of simplicity, particularly as this affects
only the domain of instability without affecting other fea-
tures [37]. Note the feedback mechanism between Eqs.(6)
and(1), wherein the former determines the stress which itself
depends on the difference between the applied strain rate and
the average plastic strain rate. This in turn determines the
dislocation multiplication in Eq.(1). This type of global cou-
pling [Eq. (6)] is common to many other situations, for in-
stance, in the nonlinear transport properties of charge-density
waves (in blue bronze for example) [12]. We shall make
some comments on this later.
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III. NUMERICAL SOLUTION OF THE MODEL

We first note that the spatial dependence ofrim and rc
arises only through that ofrm. We solve the above set of
equations by discretizing the specimen length intoN equal
parts. Then,rms j ,td, rims j ,td, rcs j ,td, j =1,… ,N, and fstd
are solved. The widely differing time scales[14,31,34] calls
for appropriate care in the numerical solutions. We use a
variable step, fourth-order Runge-Kutta scheme with an ac-
curacy of 10−6 for all four variables. The spatial derivative in
rm is approximated by its central difference. The initial val-
ues of the dislocation densities are so chosen that they mimic
the values in real samples. They are uniformly distributed
with a Gaussian spread along the sample. However, for most
calculations, we have used the steady-state values for the
variables, as the long term evolution does not depend on the
initial values. As for the boundary conditions, we note that
the sample is strained at the grips. This means that there is a
high density of immobile dislocations at the ends of the
sample. We simulate this by employing 2 orders of magni-
tude higher values forrims j ,td at the end pointsj =1, andN
than the rest of the sample. Further, as bands cannot propa-
gate into the grips, we userms j ,td=rcs j ,td=0 at j =1 andN.

As in the original modelsD=0d, as a function of the ap-
plied strain rate, the PLC state is reached through a Hopf
bifurcation (the lower critical strainėc1

,35) and is termi-
nated by a reverse Hopf bifurcationsėc2

,1000d when the
other parameters are kept in the instability domain. Thus, the
instability domain increases substantially compared to the
case whenD=0, due to fact that the instability range depends
on the value ofD due to the global coupling in Eq.(6). (The
domain converges quickly as a function ofN.) The number
of complex conjugate roots are 2N, the negative ones areN
and one zero exponent. A set of four eigenvalues are shown
in Fig. 1 for a=0.8, b0=0.0005, c=0.08, d=0.00006,m
=3.0, andh=0 with D=0.5. Beyondėc2

,1000 a uniform
steady state exits. Although the numerical results reported in
the present work are for the above values, the results hold
true for a wide range of values of other parameters in the
instability domain, including a range of values ofD. Various
system sizes are used depending upon the property studied,
but are generally in the rangeN=100–3333. A sequence of
values ofN are used wherever convergence of the properties
are investigated.

IV. METHODOLOGY

As our approach is fully dynamical and keep in view the
materials science community, we collect here a few defini-
tions and provide some details of the methodology used in
the analysis. Characterizing the dynamics of the model equa-
tions is carried out by studying the Lyapunov spectrum. The
number of Lyapunov exponentsM for a givenN is M =3N
+1. We shall also use two other well-known invariants,
namely the Kaplan-Yorke dimensionDKY= j +oi=1

j li / ul j+1u,
where j is such thatoi=1

j li .0,oi=1
j+1 li ,0 and the Kolmog-

orov entropyH=oi=1
p li, such thatlpù0 andlp+1,0. One

important issue relevant to systems with many degrees of
freedom is the existence of a limiting density for the
Lyapunov spectrum as the system size is increased. This re-
quires that we should ascertain ifl j vs x= j /Ld converges to
a well-defined asymptotic density functionLsxd with x
P f0,1g. (See Ref.[27].) We address this issue by calculating
the spectrum for various system sizesN=100–3333, which
covers approximately 2 orders inM. In particular, such a
study will be useful in comparing the results of our model
with the shell model for turbulence[28] in the power-law
regime of stress drops. Then, one expects thatj /DKY con-
verges to a well-defined density function. Following Ref.
[28], we use j /DKY vs an appropriately scaled quantity
l jDKY/H. This quantity is expected to converge to
fsl jDKY/Hd. (We note here that the distribution function is
proportional to the negative derivative off.) The nature of
the converged Lyapunov density functionfsl jDKY/Hd as a
function of the drive parameterė can be used to quantify the
changes in the dynamics during the crossover.

As stated earlier, a proper description of the PLC effect
requires a method of dealing with both the slow and fast time
scales, which in turn requires special techniques in nonlinear
dynamics. In the model equations, Eq.(1) represents fast
dynamics compared to the rest. Both Eqs.(2) and (6) are
slow, while (3) falls in between. Such a system can be stud-
ied by eliminating the fast variable, thereby allowing a re-
duction in the dimensionality of the system[38]. To illustrate
this, consider

mẋ = fsx,y,md, s7d

ẏ = gsx,y,md, s8d

where m is a small parameter andxPRp and yPRq. The
main feature of such systems is thatx evolves much faster
than y unlessfsx,y,md is small. In the vicinity of the slow
manifold defined byfsx,y,md=0, the dynamics is character-
ized by the evolution of the slow variabley. Thus, there is a
reduction in the dimensionality of the system. On the other
hand, if one is interested in the fast subsystem, using a scaled
time t= t /m, we get the corresponding fast variablex defined
by Eq. (7), where the slow variablesy act as parameters
[obtained from Eq.(8)]. This subspace is clearly the compli-
mentary subspace of the slow manifold. We shall use these
two subspaces for the visualization of dislocation configura-
tions in the high strain rate power-law regime and obtain the
band velocity at high strain rates, respectively.

FIG. 1. Eigenvalue spectrum of the fixed point for the model.vr

andvi refer to the real and imaginary parts of the eigenvalue.
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The analysis of the experimental stress-time series is
carried out by estimating both the correlation dimension
n and the Lyapunov spectrum. These methods involve
embedding the scalar time series in a higher dimensional
space using time-delay techniques[19,39]. Given a time

series hs ju j =1, . . ,Pj, one first constructs vectorsjW i

=ssi ,si−t ,si−2t ,… ,sP−sd−1dtd in a d-dimensional space. The
assumption here is that the actual dynamics can be unfolded
by embedding the time series in a higher dimensional space
in which the original attractor resides.(In addition, surrogate
data analysis was also carried out in[20].) Then, a quantita-
tive estimate of the self-similarity of the attractor, namely the
correlation dimensionn, can be obtained by calculating the

integral [40] Csrd=s1/NTdoQsr − ujW i −jW jud, rn, whereNT is
the total number of points in the sum. Correlation dimension
also provides a lower bound for the number of degrees of
freedom required for a dynamical description of the system,
which is given by the minimum integer larger thann+1 [41].
The geometrical interpretation of these degrees of freedom is
that they correspond to the subspace to which the trajectories
are confined. The dimension of this subspace can be obtained
directly by using singular value decomposition[42]. This
method is often used for filtering noise components super-
posed on the time series. However, in the present context, the
method can be used for thevisualization of the strange at-
tractor. (This method has been applied to the PLC time se-
ries earlier[17].) The method involves setting up them3d

trajectory matrixT defined bysjW1,jW2,… ,jWmd, wherem=P
−sd−1d3t. The eigenvalues of the matrix are obtained us-
ing the standard method of decompositionT =UWV T, where
U is m3d orthogonal matrix,V is a d3d unitary matrix,
andW is the matrix of eigenvalues of the covariance matrix
of T, which are all nonnegative. The eigenvalues usually
decrease rapidly, saturating to a level below which the
changes are minimal. Then, the dimension of the attractor is
taken to be that corresponding to a number at which the
eigenvalues saturate.

V. COMPARISON WITH EXPERIMENTS

To motivate, we begin by briefly recalling the relevant
experimental results on the crossover phenomenon and then
comparing them with those from the model. We begin by
comparing the nature of serrations in the respective regimes
of strain rate. Figures 2(a) and 2(b) show the plots of two
experimental stress-strain curves from CuAl single crystals.
The stress-strain curve in Fig. 2(a) corresponds to the me-
dium strain rates, while that in Fig. 2(b) is for high applied
strain rates. The stress-time series in the intermediate and
high strain rate regimes from the model are shown in Figs.
2(c) and 2(d). The similarity between the experimental time
series and that of the model is clear.

The analysis of the stress-time series given in Fig. 2(a)
has been reported in Ref.[20]. The correlation dimension
was found to ben=2.3. Then, the number of degrees of
freedom required for the description of the dynamics of the
system, given by the minimum integer larger thann+1 [41],
is seen to be four, consistent with that used in the original

model. This time series also has one positive Lyapunov ex-
ponent, and hence, is chaotic[20]. As an independent check
to obtain the number of degrees of freedom, as also for the
visualization of the experimental attractor, we have carried
out singular value decomposition of this time series. The
normalized eigenvalues are shown in Fig. 3, which shows
that the relative strength of the fourth eigenvalue drops more
than 2 orders of magnitude compared to the first, and
changes very little beyond the fourth. Thus, we estimate the
dimension of the experimental attractor to be four, which is
again consistent with that obtained from the correlation di-
mension.(For time series from model systems, one usually
finds a floor level below which the eigenvalues saturate. This
is taken as the dimension of the actual attractor. However, in
real situations, as in the present case, the eigenvalues do not
saturate, due to the presence of noise.) Then, for the visual-
ization of the experimental attractor, we can use the domi-
nant eigenvalues to reconstruct the nature of the attractor.
Using the first three principal directions of the subspace
Ci ; i =1–3, wehave reconstructed the experimental attractor
in the space of specifically chosen directionsC1−C2,C3, and
C1 to permit comparison with the attractor obtained from the
model. This is shown in Fig. 4(a) for the experimental time

FIG. 2. Experimental stress-time series:(a) chaotic state at
strain ratesėa=1.7310−5s−1 and (b) power-law state atėa=8.3
310−5s−1. Stress-time series from the model at(c) ė=120 and(d)
ė=280.

FIG. 3. Singular value spectrum of the experimental time series
shown in Fig. 2(a).
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series atėa=1.7310−5s−1. This can be compared with the
strange attractor obtained from the model in the space of
rm, rim, and rc (at an arbitrary spatial location, herej =50
andN=100) shown in Fig. 4(b) for ė=120, corresponding to
the midchaotic region(see below). Note the similarity with
the experimental attractor, particularly about the linear por-
tion in the phase space[Fig. 4(a)]. This direction can be
identified with the loading direction in Fig. 2(a). Note that
the identification of the loading direction is consistent with
the relatively low values ofrm. Thus, it appears that the
model is chaotic at low and medium strain rates. As a con-
firmatory test, we shall study the Lyapunov spectrum of the
model in the next section.

In contrast to the experimental time series at low and
medium strain rates, for the time series at the highestėa [Fig.
2(b)], as shown in Ref.[20], we neither find a positive
Lyapunov exponent nor a converged value of the correlation
dimension. Instead, the distribution of stress drops obeys a
power law[20] (see also Fig. 5). We shall refer to this as the
power-law regime of stress drops.

We now address if the model generates power-law statis-
tics of stress drops. It is clear that Fig. 2(d) is similar to Fig.
2(b), as there is no inherent scale in the magnitudes of the

stress drops in both cases, and thus, it is likely that stress-
strain curves from the model in the high strain rate regime
may also exhibit power law statistics of stress drops. Indeed,
the distribution of stress drop magnitudes,DsDfd, shown in
Fig. 5 and obtained from long runs for a large system size
sN=1000d, shows a power lawDsDfd,Df−a over 2 orders
of magnitude, which increases with both the length of stress
series and the system size.[Note that the value ofN here is
nearly three times larger than the results in Ref.[31], Fig.
3(b), and thus, the power law is well converged with respect
to the system size.] Surprisingly, experimental points(•) cor-
responding toėa=8.3310−5s−1 also fall on the same curve
with an exponent valuea<1.1. (We have scaled the experi-
mental points by a constant amount along both axes to show
that these points also fall on the same line.) The distribution
of the durations of the stress dropsDsDtd,Dt−b also shows
a power law with an exponent valueb<1.3. The conditional
average ofDf, denoted bykDflc for a given value ofDt,
behaves askDflc,Dt1/x with x<0.65. The exponent values
satisfy the scaling relationa=xsb−1d+1 quite well. The ex-
ponent values that remain unaltered in the region of strain
rate 270,ė,700 we have investigated thus areindependent
of the value of the drive parameter. (There are models of
coupled-map lattices that produce power laws, where the ex-
ponent value depends on the drive parameter.) We now in-
vestigate the underlying causes leading to this power law.

VI. DYNAMICS OF CROSSOVER

A. Lyapunov spectrum

While it is pleasing to see that the model does generate
the power-law distribution of stress drops at high strain rates,
we still do not know the mechanism responsible for this. An
answer to this is particularly important, as the model is fully
dynamical and noise free.

In order to answer the question, and also to characterize
the dynamics of crossover, we follow the evolution of the
Lyapunov spectrum as a function of the applied strain rate in
the entire interval where the PLC effect is seen. Further, we
also discuss the convergence properties of the Lyapunov
spectrum as the system size is increased. In particular, this
will be useful in examining the density of null(nearly van-
ishing) exponents and also to compare our results with that
of the shell model of turbulence.

We have calculated the spectrum of Lyapunov exponents
using the algorithm by Benettinet al. [43]. The exponent
values reported here were obtained by averaging over 15 000
time steps after stabilization with an accuracy of 10−6. We
have used several system sizes ranging fromN
=100,150,350,500,1000, and 3333, which cover approxi-
mately two orders of magnitude inM, i.e., from 301 to
10 000. A rough idea of the changes in the dynamics of the
system can be obtained by studying the dependence of the
largest Lyapunov exponent,lmax, as a function of the strain
rate. The largest Lyapunov exponent converges fast as a
function of the system size. For instance, we find thatlmax
for N=500 looks the same for a much smaller system size
N=100 given in Fig. 3(a) in Ref. [31]. (Indeed, one of the

FIG. 4. (a) Reconstructed experimental attractor from the time
series shown in Fig. 2(a). (b) Attractor from the model forN=100,
j =50.

FIG. 5. Distributions of the stress drops from the modelssd,
from experimentssPd for N=1000, andė=280. The solid line is a
guide to the eye.
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primary requirements for spatially extended systems is the
convergence of the largest Lyapunov exponent as a function
of system size[27].) lmax becomes positive aroundė<35,
reaching a maximum atė=120, and practically vanishing
around 250.(Periodic states are observed in the interval
10,ė,35.) In the region ėù250, the dispersion in the
value of lmax is ,5310−4, which is the same order as the
mean. Thus,lmax can be taken to vanish beyondė=250.

The study of the Lyapunov spectrum reveals that in the
chaotic regime of strain rates, only a small proportion of the
exponents are positive, an equal small number are close to
zero, and a large proportion of the exponents are negative.
The distribution of the Lyapunov exponentsDsld is shown
for N=1000 in the inset of Fig. 6 forė=120. For this system
size (with a total of exponentsM =3001), the number of
positive exponents is< 6.2% of the total number of expo-
nents, and the null exponents are also<9%. (For numerical
purposes null exponents are taken to correspond toul u
ø5.2310−4.) These ratios remain the same for the larger
system sizes used.

While Dsld reflects the distribution of Lyapunov expo-
nents in various regions, for studying the convergence of the
Lyapunov spectrum, plots of the density functionj /DKY
= fsl jDKY/Hd are better suited. Further, these quantities have
been used traditionally in the studies of extended dynamical
systems[27]. A plot of j /DKY vs l jDKY/H for ė=120 for
N=500 and 1000 is shown in Fig. 6. It is clear that while the
density function has not yet converged for negative values of
l jDKY/H, those for positive values are already converged. As
we increase the strain rate beyondė=180, concomitant with
the decrease in the value oflmax, the number of null expo-
nents increases. For instance, atė=220, for which the maxi-
mum Lyapunov exponent is small,,0.0058, the number of
null exponents increases to 30%M (see inset of Fig. 7). Dsld
shows that the number of null exponents has increased. Con-
comitant with this trend, a plot ofj /DKY vs l jDKY/H for N
=500 and 1000(Fig. 7) shows that forė=220 is well con-
verged for the entire range of values of the scaled Lyapunov
exponentl jDKY/H. This signals a faster convergence of the
density functionj /DKY= fsl jDKY/Hd with the system size, as
we approach the scaling regime. Indeed, we find that plots
for N=500 and 1000 for strain rateė=280 cannot be distin-

guished over the entire range of values ofl jDKY/H. Even
though it would be adequate to useN=1000 for a further
analysis of the Lyapunov spectrum in the scaling regime, we
use a much bigger system size ofN=3333, which for all
practical purposes can be taken to be largeN limit. A plot of
j /DKY vs l jDKY/H, shown in Fig. 8 forN=3333 (and also
for 1000), shows that forė=280 is well converged for the
entire range of values ofl jDKY/H. Note also that nearly 40%
of the exponents are close to zero(see the inset).

As we approach the power-law regime of stress drops
(extending fromė=250), as the largest Lyapunov exponent
approaches zero(,5.16310−4 for ė=280), exponents below
a certain value cross each other as a function of time; the
distribution of the exponents remains unchanged. However,
the first few exponents remain distinct. Figure 9 shows the
first two exponents that are well separated and another two
which are close to each other in magnitude(for ė=280 and
N=3333). The most significant feature of the spectrum in the
region is that there is adense set of null exponents. The
peaked nature of the distribution of the null exponentssul u
ø5.2310−4d for ė=280 is shown in Fig. 10.

The peaked nature ofDsulud for the null exponents sug-
gests a power-law distribution for their magnitudes. The dis-
tribution of the null exponentssuliuø5.2310−4d for ė=280,
for a system size ofN=3333,M =10 000 is shown in Fig. 11.
It is clear that both positive and negative exponents show a
power-law distributionDsulud,ulu−g with an exponent value
g,0.51, and the scaling extends over an impressive three
decades. As null exponents correspond to marginal stable

FIG. 6. A plot of j /DKY vs l jDKY/H for ė=120. The inset
shows a plot ofDsld as a function ofl for N=1000.

FIG. 7. A plot of j /DKY vs l jDKY/H for ė=220. The inset
shows a plot ofDsld as a function ofl for N=1000.

FIG. 8. A plot of j /DKY vs l jDKY/H for ė=280. The inset
shows a plot ofDsld for N=3333. A schematic plot of the
Lyapunov density function(continuous line) for the shell model
(after [28]) is shown.
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natures of the system, their finite density, which itself obeys
a power-law, elucidates the underlying cause of power-law
distribution of stress drops at high strain rates.

B. Comparison with shell model for turbulence

As mentioned in the Introduction, both in the PLC effect
and in turbulence, power-law statistics are seen at high drive
rates in contrast to conventional SOC systems, where it is
observed at low drives[24]. Such finite-density null
Lyapunov exponents were suggested by Ruelle[44] in the
context of turbulence. This property is preserved by the shell
model[28]. Here we attempt a comparison of the Lyapunov
spectrum obtained from our model with that of the shell
model.

Shell models of turbulence[27] are designed to mimic the
behavior of Navier-Stokes equations at high drives, where
the power law is seen. One standard shell model is the
Gledzer-Ohkitani-Yamada model[27,28]. For this model,
Ohkitani and Yamada[28] gave good numerical evidence
that the density function exists as the viscosity parameterh
tends to zero. In our case, the role of the viscosity parameter
is taken by the applied strain rate. In Sec. IV A we have
shown that there is a rapid increase in the density of null
exponents and consequently, there is a rapid convergence of
j /DKY= fsl jDKY/Hd as a function ofN, starting from ė
=220. This suggests that one should expect convergence of
the limiting j /DKY= fsl jDKY/Hd function as we approach the
power-law strain rate regime of stress drops. Thus, we should

expect that the limiting distribution itself converges as a
function of ė as we approach the scaling regime. Considering
N=1000 approximates the limiting distribution(see Fig. 7
for justification), we have verified that plots ofj /DKY
= fsl jDKY/Hd for three values ofė=250, 260, and 280 for
reasonably largeN=1000 converge. This result is similar to
the convergence of the density function in the shell model as
a function of the viscosity parameter. The density function
j /DKY obtained from the model can be compared with that of
the shell model. A plot ofj /DKY= fsl jDKY/Hd for a large
systemN=3333(which can be taken to represent the limiting
density as a function of system size) for ė=280 is shown in
Fig. 8, along with a schematic plot for the shell model shown
by the continuous line. As can be seen, in both cases, the
distribution function that is proportional to −dfsld /dl shows
a singularity near zero, the difference being that the singu-
larity is more pronounced for our model. Ohkitani and Ya-
mada also plot another quantity that represents the null ex-
ponents better, namely, the sum of Lyapunov exponents up to
j , normalized byH as a function ofj scaled byDKY. The
quantityo1

j l j /H is an increasing function ofj /DKY for posi-
tive l j and goes to unity whenoi=1

j li =H. In the region of
null exponents, this quantity remains constant and then de-
creases withj for negativel j. Thus,o1

j l j /H also reflects the
density of null exponents. A schematic plot ofo1

j l j /H as a
function of j /DKY (continuous and dashed line) for the shell
model is shown in Fig. 12. The increase ino1

j l j /H for small
j /DKY shows that there is a finite density of positive expo-

FIG. 10. The peaked nature of the distribution of null exponents
lying in the rangef−5.2310−4,5.2310−4g for ė=280,N=3333.

FIG. 11. Log-log plot of the distribution of the marginal expo-
nents forė=280,N=3333. The solid line is a guide to the eye.

FIG. 12. A plot of o1
j l j /H as a function ofj /DKY for ė=280

andN=3333. The corresponding schematic plot for the shell model
for j /DKY,1 (continuous line) and j /DKYù1 (dashed curve) (after
[28]) is shown.

FIG. 9. The first two Lyapunov exponents that do not cross each
other as a function of time forN=3333 forė=280. Also shown are
two more exponents that are close to each other.
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nents in the Lyapunov spectrum for the shell model. Further,
these authors find that there is a convergence with respect to
the viscosity parameter for the Lyapunov spectrum corre-
sponding to the interior of the attractor(i.e., j /DKY,1),
while there is scatter forj /DKY.1 (the dashed line repre-
sents this portion). We have plottedo1

j l j /H as a function of
j /DKY for N=3333 on the same plot for the sake of compari-
son. In our case, the increase to unit value is much slower
(compared to the shell model), which clearly implies that
there are very few positive exponents(of any significant
magnitude) with most of them being vanishingly small. This
feature is unlike the shell model, where there is a finite den-
sity of positive exponents. In the shell model, the largest
exponent is proportional toh−1/2, which is reflected in the
steeper increase ino1

j l j /H for the shell model.

C. Slow manifold analysis

The above analysis shows that as the strain rate is in-
creased, most exponents get concentrated around the zero
value. As zero Lyapunov exponents represent a marginal
situation, the region ofė.240 (corresponding to the power-
law state of stress drops) can be identified with a marginally
stable state. Thus, it would be interesting to realize a geo-
metrical picture of dislocation configurations in the marginal
state and examine how dislocations reach this state with in-
creasing strain rate.

Recently, the geometry of the slow manifold[38] of the
original model has been examined in detail[14,34]. The
study shows that the relaxational nature of the PLC effect
arises from theatypical bent nature of the slow manifold.
Here, we recall some relevant results on the slow manifold of
the original modelsD=0d and extend the ideas to the spatial
extension of modelsDÞ0d. Slow manifold expresses the fast
variable in terms of the slow variables, conventionally done
by setting the derivative of the fast variable to zero[14,34],

ṙm = gsrm,fd = − b0rm
2 + rmd + rim = 0, s9d

whered=fm−rim−a. d has been shown to have all the fea-
tures of an effective stress and thus plays an important physi-
cal role [34], particularly in studying the pinning-unpinning
of dislocations. We note thatd is a combination of two slow
variablesf andrim, both of which take small positive values.
Hence,d takes on small positive and negative values. Using
Eq. (9), we get two solutions:

rm = fd + sd2 + 4b0rimd1/2g/2b0, s10d

one ford,0 and another ford.0. For regions ofd,0, as
b0 is small ,10−4, we get rm/rim<−1/d, which takes on
small values. This defines a part of the slow manifold,S2,
where rm is small. In this region, as the mobile density is
small and immobile density is large(relative to rm), this
region can be identified with pinned configuration of dislo-
cations and hence we shall refer to the regionS2 as the
“pinned state of dislocations.” We note that larger negative
values ofd correspond to strongly pinned configurations, as
they refer to smaller ratio ofrm/rim. For positive values ofd,
another connected piece,S1, is defined bylarge valuesof rm,
given byrm<d /b0, which we refer to as the “unpinned state

of dislocations,” as rim is also small. These two pieces,S2

andS1, are separated byd=0, which we refer to asthe fold
line [14,34] (see below). A plot of the slow manifold in the
d−rm plane is shown in Fig. 13(a). For the sake of illustra-
tion, we have plotted a monoperiodic trajectory describing
the changes in the densities during a loading-unloading
cycle. The inset showsrmstd andfstd. For completeness, the
corresponding plot of the slow manifold in thesrm,rim,fd
space is shown in Fig. 13(b), along with the trajectory and
the symbols. In this space, one can see thatd=fm−rim−a
=0 is a line that separates the piecesS2 and S1 of the slow
manifold, and hence the namefold line. The cyclic changes
in the variables is well captured by the nature of trajectory
shown in Fig. 13(b). The trajectory entersS2 at A and moves
into S2. The value ofd [in Fig. 13(a)] decreases from zero to
a maximum negative value as the trajectory reachesB. Then,
d increases as the trajectory returns toA8 before leavingS2.
The corresponding segment isABA8 in Fig. 13(b), which is
identified with the flat region ofrmstd in the inset of Fig.
13(a). As the trajectory crossesd=0, ]g/]rm becomes posi-
tive and accelerates into the shaded region[Fig. 13(a)] rap-
idly until, it reachesrm=d /2b0. Thereafter, it settles down
quickly onS1, decreasing rapidly until it re-entersS2 again at
A. The burst inrm [inset in Fig. 13(a)] corresponds to the
segmentA8DA in Figs. 13(a) and 13(b). The nature of tra-
jectories in the chaotic domain is essentially the same, but is
different in the power-law regime of high strain rates, as we
will show later.

We now consider the variation of stress as the state of the
system changes from the pinned to the unpinned state, i.e.,
when the system goes though a burst of plastic activity. For
D=0, Eq.(6) reduces to

FIG. 13. (a) Bent slow manifoldS1 andS2 (thick lines) with a
simple trajectory forė=200 andm=3. Inset:rm (dotted curve) and
f (solid line). (b) The same trajectory in thesf ,rim,rmd space.
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ḟ = dfė − ėpg, s11d

where ėp=fmrm is the plastic strain rate. Sincerm is small
and nearly constant on the pinned stateS2, stress increases
monotonically. However, during the burst inrm (A8DA in the
inset), ėpstd exceedsė, leading to a yield drop. Sincerm

grows outsideS2, the d=0 line separates the pinned state
from the unpinned state. Thus,d=0 physically corresponds
to the value of the effective stress at which dislocations are
unpinned.

When the spatial degrees of freedom are included, there is
no additional complication as the slow manifold is defined at
each spatial point. Thus, a convenient set of variables for the
visualization of dislocations is,rmsxd ,dsxd ,x. Here, we in-
vestigate the nature of typical spatial configurations in the
chaotic and the power-law regimes of stress drops and study
the changes as we increase the strain rate. For simplicity, we
shall useh=0 for which we havefef f=f. (It is straightfor-
ward to extend the arguments to the case whenhÞ0.) Then,
the plastic strain rateėpstd is given by

ėpstd = fmstd
1

l
E

0

l

rmsx,tddx= fmstdr̄mstd, s12d

wherer̄mstd is the mean mobile density[=o jrms j ,td /N in the
discretized form]. With the inclusion of spatial degrees of
freedom, the yield drop is controlled by the spatial average
r̄mstd, rather than by individual values ofrms jd. Further, al-
though the configuration of dislocations change during one
loading-unloading cycle, the drastic changes occur during a
yield drop whenr̄mstd grows rapidly. However, one should
expect that configurations will be representative for a given
strain rate. Thus, we focus our attention on the spatial con-
figurations on the slow manifoldat the onset and at the end
of a typical yield drop.

First, consider the configuration seen just before and after
the yield drop when the strain rate is in the chaotic regime. In
this regime, the stress drop magnitudes are large, implying
that the change in mobile density is large. Figures 14(a) and
14(b) for a typical value ofė=120. It is clear that both at the
onset and end of a typical large yield drop, theds jd values
that reflect the state of system(pinned or unpinned state), are
negative, and correspondingly, the mobile densityrms jd’s are
small, i.e., most dislocations are ina strongly pinned state.
(Recall thatd signifies how close the spatial elements are
close to unpinning threshold.) The arrows show the increase
in rms jd at the end of the yield drop. We have checked that
this is a general feature for all yield drops in the chaotic
regime of strain rates. Now consider a dislocation configura-
tion in the scaling regime at high strain rates, say,ė=280, at
the onset and end of a yield drop shown in Figs. 14(c) and
14(d) respectively. In contrast to the chaotic regime, in the
scaling regime,most dislocations are clearly seen to be at
the threshold of unpinning withds jd<0, both at the onset
and end of the yield drop. This also implies that they remain
close to this threshold throughout the process of a stress
drop. We have verified that theedge-of-unpinning picture is
valid in the entire power-law regime of stress drops for a
range ofN values. Further, as a function of strain rate, we

find that the number of spatial elements reaching the thresh-
old of unpinningd=0 during a yield drop increases as we
approach the scaling regime of stress drops.

VII. TYPES OF BANDS

As the extended Ananthakrishna’s model is able to repro-
duce the crossover dynamics from chaos to the power-law
regime of stress drops(and other generic features demon-
strated earlier), one might expect that the nature of the dif-
ferent types of bands may also emerge. Most models of dis-
location bands use diffusive coupling, although the physical
mechanism of the term is different in different situations[1].
An important feature of the spatial coupling in the model is
that it accounts for the spreading of dislocations into regions
of low back stress once dislocations are unpinned(the factor
rim

−1). The term also determines the length scale over which
dislocations spread into the neighboring elements. Thus,
while dislocation pinning and unpinning gives a heterogene-
ity in space(in principle), regions of lowrim are favored for
dislocation multiplication and spreading into such regions.
Further, this type of spatial term couples length and time
scales in a dynamical way, asrim itself evolves in time and
hence, the associated time scale. Indeed, multiplication of
dislocation depends on stress,(i.e., fef f

m ), and hence this rate
itself is changing dynamically, leading to changes in the time
scale of internal relaxation as a function ofė. This leads to
changes in spatial correlation as the strain rate is increased.

Below, we report both numerical and analytical studies on
the spatiotemporal patterns emerging from the model as a
function of the strain rate,ė. We begin with the numerical
results[45].

For ė,10 and ė.2000, we get homogeneous steady-
state solutions for all the dislocation densities,rm, rim, and
rc. In the region where interesting dynamics of chaotic and
power-law states are observed, the nature of the dislocation

FIG. 14. Dislocation configurations on the slow manifold at the
inset and at the end of yield drop:(a) and (b) for ė=120 (chaotic
regime), and(c) and (d) for ė=280 (scaling regime).
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bands can be broadly classified into three different types oc-
curring at low, intermediate, and high strain rates described
below.

For strain rates 30øė,70, we get uncorrelated static dis-
location bands. The features of these bands are illustrated for
a typical value, say forė=40 in Fig. 15. Dislocation bands of
finite width nucleate randomly in space and remain static
until another band is nucleated at another spatially uncorre-
lated site. The associated stress-time curve that is nearly
regular has large characteristic stress drops whose distribu-
tion is peaked as in experiments at low strain rates[21].

At slightly higher values of strain rates, 70øė,180, we
find that new bands nucleate ahead of the earlier ones, giving
a visual impression ofhopping bands. This can be clearly
seen from Fig. 16, where a plot ofrms j ,td is given for ė
=130. However, this hopping motion does not continue until
the other boundary. They stop midway and another set of
hopping bands reappear in the neighborhood. Often nucle-
ation occurs at more than one location. Stress-time plots in
this regime have a form similar to Fig. 2(c), with the average
amplitude of the stress drops being smaller than the localized
nonhopping bands at low strain rates as seen in experiments.
The distribution of stress drops is nearly symmetric but
slightly skewed to the right, similar to those observed in
experiments[21].

As the strain rate is increased further, the extent of propa-
gation increases, concomitantly, and the magnitudes of the
stress drops decrease. We see continuously propagating
bands even atė=240, as can be seen from Fig. 17. One can
see dislocation bands nucleating from one end of the sample
(j =0, t=20, 40, and 60) and propagating continuously to
the other end. Often, we see a band nucleating at a point,

branching out, and propagating only partially towards both
the ends. Unlike the present case, which exhibits rather uni-
form values ofrm, we usually find irregularities as the band
reaches the edges. The stress strain curve in this region of
strain rates exhibits a scale-free feature in the amplitude of
the stress drops similar to Fig. 2(d), with a large number of
small drops. As can be seen from Fig. 2(d), the mean stress
level of these small amplitude stress drops increases until a
large yield drop is seen. This large stress drop corresponds to
bands having reached the end of the specimen.

It is possible to calculate the velocity of the propagating
bands in the high strain rate limit. We first note that our
equations constitute a coupled set of integropartial differen-
tial equations, and hence cannot be dealt with in their present
form. To reduce these equations to a form that is suitable for
further analysis, we recall a few pertinent points about the
changes in the structure of the slow manifold as a function of
the applied strain rate. We note that the original model ex-
hibits an incomplete approach to homoclinicity[34], i.e., the
number of mixed mode oscillations of the typeLs are lim-
ited, whereL and s refer to the large and small amplitude
oscillations, respectively. Typically, about 12 small ampli-
tude, nearly harmonic, oscillations are known to occur for a
single large one at high values of the strain rate. The reason
attributed to the limited number of small loops is the finite
rate of softening of the eigenvalue of the fixed point as the
reverse Hopf bifurcation is reached[34]. In the presence of
the spatial coupling we find that the softening rate is further
enhanced, as is clear from the fact that the upper Hopf bifur-
cation is pushed to much larger values of strain rate(ėc2
=2000, see Fig. 1). This enhanced softening rate implies that
the number of small amplitude oscillations is also increased
in this domain of strain rates. Even so, the geometry of the
slow manifold is not altered from that of the space-
independent model. In particular, the position of the unstable
saddle focus remains located on theS1 part of the manifold
(Refs. [14,34]). In addition, the feature of the fixed point
approaching the fold line as a function of the strain rate is
retained. Under these conditions, for high strain rates, nearly
sinusoidal oscillations are executed around the fixed point
with the orbits touchingS2 only after executing several such
turns. A plot of this is shown in Fig. 18. We further recall that
our analysis shows that the orbit is reinjected along the stable
manifold close to the unstable saddle focus(as shown in Fig.
11 of Ref.[34]). The orbit then spirals out along the unstable
manifold of the fixed point. Once the orbit is sufficiently
away from the fixed point when the influence of the fixed

FIG. 15. Spatially uncorrelated bands atė=40.

FIG. 16. Hopping-type bands atė=130 (arrow shows one such
band).

FIG. 17. Fully propagating bands atė=240.
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point is lost, it is reinjected close to the fixed point viaS1.
The dynamics then repeats. Note that at high applied strain
rates, the system is close to the reverse Hopf bifurcation
point and hence the fixed point is close to the applied strain
rate value. Thus, as the orbit executes one turn, there is one
small yield drop. However, the orbit executes several turns
around the fixed point, each turn leading to larger loop sizes,
i.e., larger values ofrm. Consequently, it leads to succes-
sively larger stress levels than the earlier one before briefly
visiting S2.

Under these conditions the dynamics is entirely controlled
by the spiraling motion around the fixed point. Thus, the
entire dynamics is essentially described by the fast variable;
the other two variablesrim andf can be taken to be param-
eters. Such a situation is described by the transient dynamics
dictated entirely by equation of the fast variable(the so-
called layer problem[38]) and thus, we are justified in using
only the evolution equation of the fast variable in terms of
the slow manifold parameterd=fm−rim−a. Since the trajec-
tory rarely visits theS2 part of the slow manifold, we restrict
the calculations tod.0. The physical picture of a propagat-
ing solution is that, as the orbit at a site makes one turn
around the fixed point, i.e.,d small but positive, around the
value of the applied strain rate, the front advances by a cer-
tain distance along the specimen like the motion of a screw.

The rate equation forrm in terms ofd is

] rm

] t
= − borm

2 + drm + rim + D8
]2rm

] x2 , s13d

whereD8=Dfm/rim. Since, the slow variablesrim andf are
treated as parameters, this has the form of a Fisher-
Kolmogorov equation for propagating fronts. This equation
can be reduced to the standard form,

] Z

] t8
= Zs1 − Zd + D8

]2Z

] x2 . s14d

(This is done by first transformingrm=X−rim/d, dropping
the term 2b0rim/d compared tod in the linear term inX, and
then usingZ=Xd /b0 and t8= td.) It is clear thatZ=0 is un-
stable andZ=1 is stable. Using the form for propagating
front Z=Zoe

vt8−kx8, the marginal velocity is calculated using
v* =Revsk*d /Re k* =dv /dkuk=k* and Idv /dkuk=k* =0, gives

the velocity of the bandsv* =2 [46,47]. In terms of the vari-
ables in Eq.(13), the marginal velocity is

v* = 2ÎDd. s15d

In order to relate this to the applied strain rate, we note that
for a fixed value of the strain rate(where propagating bands
are seen), the average level of stress drop is essentially con-
stant. Thus, from Eq.(6), we see that in this regime of high
strain rates, the applied strain rateė is essentially balanced
by the plastic strain rates1/lde0

l fmrmsx,td; ėp. Then, using
fm= ė / r̄m, and usingd=fm−a−rim, we get

y = 2Î Dė

r̄mrim
S ė

r̄m

− a − rimD . s16d

It is important to note that at high applied strain rate,r̄m
, r̄m

* , the fixed point value. Thus, for all practical purposes,
we can assumer̄m as a constant. From the above equation,
we see that the velocity of the propagating bands is propor-
tional to the applied strain rate. This result is similar to the
result obtained recently by Hähneret al. [48]. Further, v
~1/r̄m, which also appears to be consistent with an old ex-
perimental result.(See Fig. 7 of Ref.[49], which appears to
fit vr̄m=const.) This result needs further experimental sup-
port.

As the form of Eq.(14) has the standard form, all other
results carry through, including nonlinear analysis. We have
numerically calculated the velocity of the continuously
propagating bands at high strain rates from the model equa-
tions, which confirms the linear dependence of the band ve-
locity on applied strain rate. In the region of strain ratesė
=220–280 (corresponding to unscaled strain rate values
10−4–1.5310−4 s−1), we find that the unscaled values of the
band velocity increases from 100 to 130mm/s. These values
are consistent with the experimental values reported by Häh-
ner et al. [48].

We note here that the types of the bands seen in our model
are correlated with the two distinct dynamical regimes inves-
tigated. The hopping-type bands belong to the chaotic re-
gime, a result consistent with the recent studies on Cu-Al
polycrystals[21]. On the other hand, the propagating bands
are seen in the power-law regime of stress drops[31], again
consistent with these studies[20,21]. Curiously, the uncorre-
lated bands predicted by the model also belong to the chaotic
regime. We shall now explain these results based on the dy-
namics of the model. We first note that each spatial element
is described in the three dislocation densities[Eqs.(1)–(3)].
Consider one of these elements being close to the unpinning
threshold, i.e.,d=0. It has been shown earlier thatrim is out
of phase withrm [14,34]. This feature is retained with the
spatial coupling as well. When the orbit is about to leaveS2,
i.e., whenrms jd is at the verge of a sharp increase,rim is
largest. However, the extent of the spatial coupling is deter-
mined byrim

−1. But the magnitude ofrim itself decreases with
the applied strain rate, being large at low strain rates[14,34].
Thus, the spatial width of this is small at lowė and large at
high ė. Next we note that the growth and decay ofrms jd with
j occurs over a short time scale, which is typically of the
order of the correlation time,tc, of fstd. Beyond this time,

FIG. 18. Slow manifold showing a trajectory for the space-
independent model near the reverse Hopf bifurcation point, atė
=90, m=2. • fixed point of Eqs.(1)–(3) and (6).
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the memory of its initial state is lost. Consider an initial state
when a band is formed at some location. Before the memory
of this initial state decays, if a new band is not created, we
get an uncorrelated band. On the other hand, if a new band is
created before the memory of the initial state decays, there
are two possibilities. If another band is created just before
the correlation decays substantially by that time, we get a
hopping-type band. If however, even before the burst of
rms jd decreases beyond its peak value, new sources of cre-
ation ofrm occur, then we end up seeing a propagating band.
An analysis of the correlation time shows that it increases
with the applied strain rate. Concomitantly,rim decreases
with ė, which implies that the spatial correlation increases.
(Indeed, the value ofrim is quite small for largeė as we
reach the power-law regime of stress drops.) Under these
conditions, only partial plastic relaxation is possible in this
regime. This discussion clarifies the dynamic interplay of
time and length scales. Moreover, as the spatial coupling
term allows the spreading of dislocations only into regions of
low rim or low back stress, the propensity for continuous
propagation of the band is enhanced whenrim is small. In
addition, we find higher values ofrim at the wake of the
band, which favor propagation into regions of smaller immo-
bile density, thus also determining the direction of propaga-
tion.

VIII. SUMMARY AND CONCLUSIONS

To summarize, detailed numerical and analytical studies
on the extended Ananthakrishna’s model show that it repro-
duces all the important features of the PLC effect, including
the crossover from a chaotic to a power-law regime observed
in experiments. A systematic study of the system size effects
of the Lyapunov spectrum demonstrates that the limiting
Lyapunov distribution evolves from a set of positive and
negative exponents with a few null exponents in the chaotic
regime, to a dense set of null exponents as we approach the
scaling regime of stress drops. The analysis provides insight
into the dynamical causes leading to this crossover. This
study is complemented through the slow manifold analysis,
which is particularly useful in giving a geometrical picture of
the spatial configurations. The study shows thatwhile dislo-
cations are largely in the pinned state in low and medium
strain rates (chaotic domain), most are pushed to the thresh-
old of unpinning as we approach power-law regime of stress
drops. The study also establishes that the model has consid-
erable similarities with the shell model of turbulence[28].
The model also reproduces the major features of the three
bands, namely, the randomly nucleated band, the hopping,
and propagating types found as the strain rate is increased. It
also predicts a linear dependence of the velocity of the band
and inverse dependence on the mobile density at high strain
rates.

Several observations may be in order on the dynamics of
the crossover. We first note that the crossover itself is smooth
as the changes in the Lyapunov spectrum are gradual, though
occurring in a narrow interval of strain rates(220–250). Sec-
ond, the power law here is of a purely dynamical origin(see
below). This is a direct result of the existence of a reverse

Hopf bifurcation at high strain rates. In this regime, due to
softening of the eigenvalues(as a function ofė), the orbits
are mostly restricted to the region around the saddle focus
fixed point located on theS1 part of the manifold. This offers
a dynamical reason for the smallness of the yield drops in
this region[14,34]. Note also that there is a dynamic feed-
back between the stress determined by Eq.(6) and the pro-
duction of dislocations in Eq.(1), which provides an expla-
nation for the slowing down of the plastic relaxation. This
sets up a competition between the time scale of internal re-
laxation and the time scale determined by the applied strain
rate (essentially Deborah number). We note that while the
time scale for internal relaxation is increasing, that due to the
applied strain rate is decreasing. Third, our analysis shows
that the power-law regime of stress drops occurring at high
strain rates belongs to a different universality class compared
to SOC systems, as it is characterized by a dense set of null
exponents. This must be contrasted with the lack of any char-
acteristic feature of the Lyapunov spectrum in the few mod-
els of SOC studied so far[50–52]. Note that most SOC mod-
els have noisy drive and hence are not suitable for
calculation of Lyapunov spectrum. Of the few where the
spectrum can be calculated, no zero and positive exponents,
single positive exponent, zero exponent in the largeN limit,
etc., have been reported[50–52]. (Often, the nature of the
largest Lyapunov exponent is inferred based on the similarity
of other dynamical invariants[50].)

On the other hand, the PLC effect is similar to hydrody-
namic turbulence. For instance, it is interesting to note that in
experiments in both cases, the energy input is at a macro-
scopic scale cascading down to small length scales. Further,
the sequence of dynamical states seen as a function increas-
ing drive in our PLC model is similar to that seen in turbu-
lence experiments on helium[26]. In both cases, one sees
periodic states→ chaos→ power-law state. In more con-
crete terms, the dense set of null exponents in our model is
actually similar to that obtained in shell models of turbulence
where the power law is seen at high drive values[28]. How-
ever, there are significant differences. First, we note that the
shell model[28] cannot explain the crossover, as it is only
designed to explain the power-law regime. Second, the maxi-
mum Lyapunov exponent is large for small viscosity param-
eter h, i.e., l1~h−1/2 in shell models[28], in contrast to a
near zero value in our model.

It is also interesting to note that in our model, propagating
solutions arise in the power-law regime of stress, which
comes as a surprise. As far as we are aware, this is the first
situation, both from an experimental and theoretical angle,
where propagating solutions are seen in a marginally stable
situation.

Regarding the band types seen in the model, we stress that
these features emerge purely due to dynamical reasons with-
out any recourse to using the negative strain rate sensitivity
feature as an input, as is the case in most models[48,53–55].
Even the recently introduced polycrystalline plasticity
model, which reproduces the crossover behavior, also uses
the negative strain rate sensitivity as an input[56]. Further,
the dynamical approach followed here clearly exposes how
the slowing down of the plastic relaxation occursdue to a
feedback mechanism of dislocation multiplication and ap-
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plied strain rateas we reach the power-law regime of stress
drops. While the three different types of bands have features
of the uncorrelated typeC, hopping typeB, and the propa-
gating typeA bands found in polycrystalline materials, there
is no element of polycrystallinity in the model in its present
form. In polycrystals, other types of coupling terms do arise,
which are also modeled by diffusive-type terms[1]. One way
of including the effect of grain boundaries within the natural
setting of the model is to recognize that cross slip will be
hindered near the grain boundaries. This also leads to a term
similar to the diffusive term, which can account for the back
stress arising from the incompatibility of grains. As the form
of these terms are similar, the basic results are unlikely to
change, although one should expect a competition between
the terms operating within a crystal and that at the grain
boundaries.

From a purely dynamical point of view, this model should
be of interest to the area of dynamical systems, as it appears
to be fully dynamical model that exhibits a crossover from a
chaotic to a power-law regime, in the sense that our model is
continuous space-time modelwithout any recourse to artifi-
cial thresholdsas is done in coupled map lattices[57]. We
note also that while the slow manifold subspace gives a
method of visualizing the dislocations configurations, par-
ticularly in the scaling regime, the complementary subspace
of the fast variable has helped us to obtain the band velocity
in the same regime of strain rates. From the point of view of
plastic instabilities, the present dynamical approach should
be a promising direction for explaining many other patterns
mentioned in the Introduction[1].

Finally, as stated earlier, the PLC effect bears consider-
able similarity with many stick-slip systems and hence pre-
sents a way of understanding some of these systems. Here,

we comment on the similarity of the model for a possible
adoption to the observed voltage fluctuations in charge-
density wave compounds[12]. Under the action of applied
electric field, anomalously large voltage fluctuations are re-
ported when the electric field is above the threshold value.
This ohmic-to-nonohmic transition in K0.3MoO3 and
Rb0.3MoO3, for instance[58], has not been adequately ex-
plained, although the similarity with the PLC effect has been
noted [12]. Lee and Rice[59] have suggested that phase
dislocations of the charge-density waves carry current at
fields too low for the charge-density waves to move as a
whole. Indeed, both fall in the category of the pinning-
depinning phenomenon. In the case of charge-density waves,
pinned at impurity/defect sites is unpinned due to the applied
electric field. The threshold value of the electric field can be
viewed as the onset of plastic flow of the charged phase
dislocations[12]. These authors identify stress with voltage
and strain with current, and suggest that the total current is
the sum of the ohmic part and that arising from charge-
density waves corresponding to the elastic and plastic dis-
placements in the PLC instability. We believe that this par-
allel can be taken further along the lines of our PLC model,
where one can identify the phase dislocations with mobile
dislocations, the neutral defects of the charge-density wave
with dislocation dipoles, i.e., the immobile and phase dislo-
cations pinned at defects with the Cottrell type[60]. Work
along these lines is in progress.

The results in this paper, as well as those in our recent
papers, would not have been possible if not for the fruitful
collaboration with Dr. D. Sahoo that resulted in the model in
1981. The senior author(G.A) is grateful for the collabora-
tive effort. This work is supported by Department of Science
and Technology, New Delhi, India.
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