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The analysis of experimental time series, obtained from single and polycrystals subjected to constant strain
rate tests, reports an intriguing dynamical crossover from a low-dimensional chaotic state at medium strain
rates to an infinite-dimensional power-law state of stress drops at high strain rates. We present the results of an
extensive study of all aspects of the Portevin—Le ChatéhéC) effect within the context of a recent model
that reproduces this crossover. We characterize the dynamics of this crossover by studying the distribution of
the Lyapunov exponents as a function of the strain rate, with special attention to system size effects. The
distribution of the exponents changes from a small set of positive exponents in the chaotic regime to a dense
set of null exponents in the scaling regime. As the latter is similar to the result in a shell model for turbulence,
we compare the results of our model with that of the shell model. Interestingly, the null exponents in our model
themselves obey a power law. The study is complimented by visualizing the configuration of dislocations
through the slow manifold analysis. This shows that while a large proportion of dislocations are in the pinned
state in the chaotic regime, most of them are pushed to the threshold of unpinning in the scaling regime, thus
providing insight into the mechanism of crossover. We also show that this model qualitatively reproduces the
different types of deformation bands seen in experiments. At high strain rates, where propagating bands are
seen, the model equations can be reduced to the Fisher-Kolmogorov equation for propagative fronts, which in
turn shows that the velocity of the propagation of the bands varies linearly with the strain rate and inversely
with the dislocation density. These results are consistent with the known experimental results. We also discuss
the connection between the nature of band types and the dynamics in the respective regimes. The analysis
demonstrates that this simple dynamical model captures the complex spatiotemporal features of the PLC effect.
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[. INTRODUCTION tudes that are smaller than that for the typ€elrhe bands that
are formed are still localized and static in nature, but they
Plastic deformation is a highly dissipative irreversible form ahead of the previous band in a spatially correlated
nonequilibrium process where nonlinearities play a fundaway, giving the visual impression of a hopping propagation.
mental role. Under normal conditions, one finds homoge+inally, one observes the continuously propagating type
neous deformation. However, under suitable conditions obands associated with small stress drgpssingle crystals,
deformation, different types of spatial and temporal patternsuch a clear classification does not exidthese different
are observed that can be broadly classified by the associatégbes of PLC bands are believed to represent distinct corre-
time and length scales—for example, the persistent slipated states of dislocations in the bands.
bands lasting over long time scalgs3] and the propagative The well-accepted classical explanation of the PLC effect
Liders bands characterized by short time sc@lg8]. Yet is via the dynamic strain aging concept introduced by Cot-
another and even more complex spatitemporal pattern is olirell [4] and later extended by othef$,5—7. (An alternate
served during tension tests of dilute metallic alloys in a cerapproach to the study of collective effects of dislocations is
tain range of strain rates and temperatures. This phenomendue to Weertmati8], who uses the Bilby-Cottrell-Swindsen
has come to be known as the Portevin—Le ChatéRarC)  crack problem. In Cottrell's picture, the dynamic strain ag-
effect [2]. Here a uniform deformation mode becomes un-ing refers to the interaction of mobile dislocations with the
stable, leading to a spatially and temporally inhomogeneoudiffusing solute atoms. At low strain ratésr high tempera-
state. The instability manifests itself in the form of serrationstureg the average velocity of dislocations is low and there is
on the stress-strain curves of the samg3]. Each stress sufficient time for the solute atoms to diffuse to the disloca-
drop is generally associated with the nucleation and often théons and pin them(called “aging’). Thus, the longer the
propagation of a band of localized plastic deformation. Indislocations are arrested, the larger will be the stress required
polycrystals, these bands and the associated serrations @ceunpin them. When these dislocations are unpinned, they
classified into three generic types. On increasing the straimove at large speeds until they are arrested again. At high
rate or decreasing the temperature, one first finds the@ype strain rategor low temperaturesthe time available for sol-
band, identified with randomly nucleated static bands withute atoms to diffuse to the dislocations decreases and hence
large characteristic stress drops on the stress-strain curvihe stress required to unpin them decreases. Thus, in a range
The serrations are quite regular. Then the tipthopping”  of strain rates and temperatures, where these two time scales
bands are seen. The serrations are more irregular with ample of the same order of magnitude, the PLC instability
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manifests. The competition between the slow rate of pinnindaw state, as the former involves a small number of degrees
and the sudden unpinning of the dislocations, at the macrosf freedom characterized by the self-similarity of the attrac-
scopic level, translates into a negative strain rate sensitivityor and sensitivity to initial conditiongl9], while the latter is

of the flow stress as a function of strain rate, which is thean infinite-dimensional state reminiscent of self-organized
basic instability mechanism used in most phenomenologicairiticality (SOC [22—24. Due to this basic difference in the
models[1,3]. Slow-fast dynamics and the negative flow-ratenature of the dynamics, most systems exhibit either of these
characteristic are common to many stick-slip systems, suchtates. More importantly, these studies also demonstrate that
as frictional sliding[9], fault dynamics[10], peeling of an the chaotic state at intermediate strain rates is correlated with
adhesive tap¢ll], and charge-density wav§$?2). the typeB band and the power-law regime of stress drops at

There are two different types of challenges in dealing withhigh strain rates with the propagating tyge band [21].
the PLC effect. The first is understanding the collective be-These authors also make a connection between the transition
havior of dislocations, which has been slow, largely due tan the nature of serration between the typeand A bands’
the lack of techniques for describing the cooperative behawegime of strain rates with the Anderson’s transition in con-
ior of dislocations. Second, the PLC effect involves collec-densed matter physics. Thus, it appears that the PLC effect is
tive modes of dislocations, where both fast and slow times storehouse of many paradigms in condensed matter phys-
scales play an equally important role, requiring specific techics. Indeed, recently, the spatiotemporal features of the PLC
nigues of nonlinear dynamics. Further, these time scalesffect have also attracted attention from physicjgf. Un-
themselves evolve as a function of strain rate and temperalerstanding these connections between the dynamics and
ture, which in turn leads to different types of serrations. At ageneral features of the PLC effect would give insight into the
low strain rate, the existence of both fgtine scales over rich physics.
which stress drops occuand slow time scaledoading time The dynamics of the crossover as a function of strain rate
scaleg are clearly displayed in the stress-strain curves. Howis unusual in a number of way#irst, the PLC effect is one
ever, at a high strain rate, as interrjplastio relaxation is  of the two rare instances where such an intriguing crossover
not complete, a clear demarcation of time scales is difficultphenomenon is seen, the other being in the hydrodynamic
This, along with the corresponding length scalgmnd- turbulence[26]. Second, the power law, both in the PLC
widths), points to extremely complex underlying dynamics. effect and turbulence, arises at high drive rg®627. Thus,

The inherent nonlinearity and presence of multiple timeit would be interesting to examine the similarity and differ-
scales necessitates the use of techniques of nonlinear dynaences with hydrodynamic turbulence by comparing, the re-
ics for a proper understanding of this phenomenon. The firssults of the Lyapunov spectrum of our PLC model with that
dynamical approach was undertaken in the early 1980s bgf the Gledzer-Ohkitani-Yamada shell model of turbulence.
Ananthakrishna and co-worke$3], which affords a natural (Henceforth, we refer to this model as shell model for brevity
basis for the description of the time-dependent aspects of tHR7,29.) Further, such a study helps us to compare the nature
PLC effect. It also allows for the explicit inclusion and in- of the Lyapunov spectrum with the conventional SOC sys-
terplay of different time scales inherent in the dynamics oftems seen at low driveguch as those in earthquakig9]
dislocations. The original model attempts to address the timand Barkhausen noig80]). For lack of anything better, we
dependence of the phenomenon using three types of dislocahall reserve SOC for power-law situations at low drives.
tion densities assumed to represent the collective degrees Binally, as different types of bands are a characteristic feature
freedom of dislocation$13]. Despite the simplicity of the of the PLC effect, we investigate the connection between
model, many generic features of the PLC effect, such as thgpatial aspects and the nature of the dynamics.
existence of a window of strain rates and temperatures within The fully dynamical nature of the Ananthakrishna’s model
which it occurs, etc., were correctly reproduced. More im-makes it most suitable for studying this crossover by includ-
portantly, thenegative strain rate sensitivity was shown to ing spatial degrees of freedom. We report a detailed investi-
emerge naturallyn the model, as a result of nonlinear inter- gation of all these issuggeported in brief earlief31,32).
action of the participating defec{43,14. Particular attention will be paid to study the system size

Due to the dynamical nature of the model, one predictioreffects during the crossover.
is the existence of the chaotic stress drops in a certain range Section Il introduces the dynamical model and its exten-
of temperatures and strain ratgkb], subsequently verified sion to include spatial degrees of freedom. Section Ill con-
by analyzing the stress-time serig6,17 using dynamical tains the numerical procedure used. In Sec. IV, we introduce
methods[18,19. The number of degrees of freedom esti- the background material used for the study. Section V con-
mated from such an analysis of experimental time series turtains a comparison of the results of the analysis of experi-
out to be the same as in the model offering justification formental time series with that of the model. Section VI con-
ignoring spatial degrees of freedom. These studies have aldains all the major results on the dynamics of crossover,
shown that a wealth of dynamical information can be ex-including the evolution of the Lyapunov spectrum as a func-
tracted from the stress-time serigs6,17. Further efforts tion of the strain rate and the analysis of the distribution of
showed the existence af intriguing crossover from a cha- null exponents in the power-law regime of stress drops. Sec-
otic state at low and medium strain rates to a power-lawtion VI also includes a comparison of the results of the
state of stress drops at high strain rat¢®0,21. As the  model with that of the shell model for turbulence, followed
crossover is observed in both single and polycrystals, it apby the slow manifold method of visualization of dislocation
pears to be insensitive to the microstructure. However, theonfigurations. Finally, in Sec. VII we discuss both analytical
chaotic state is dynamically a distinct state from the powerand numerical results on the nature of dislocation bands. We
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conclude the paper with a few general comments. slip at a point spread over to the neighboring elements. Let
Ax be an elementary length. Then, the rate of production of

dislocations ®(x) =V (X,t)pm(X,t), at a pointx spreading
Il. THE ANANTHAKRISHNA'S MODEL into x+Ax and vice versa, is given by

In the model[13], the well-separated time scales sub-
sumed in the dynamic strain aging concept are mimicked by + p + _ + _
three types of dislocations, namely, the fast mobile, immo- X 2[cI>(x AX) =200 + B(x - Ax)], @
bile, and “decorated” Cottrell-type dislocations. As the
model has been studied in detail by our grg@p,14,34,33  wherep is the probability of cross slip spreading into neigh-

(see als0[35,34), following the notation in Ref[14], we  poring elements. Expandinf(x+Ax) and keeping the lead-
shall briefly outline the model in scaled variables. The evo4ing terms, we get

lution equations for the densities of the mobile, immobile,

and Cottrell-type dislocations denoted py(X,t), pin(X,t), P(pVo)
and p¢(x,t), respectivel v, + DL )2 5
pc(X, 1), respectively are PV * 5 (BX%. (5)
9 Pm — 2 m
at bopf = PmPim + Pim = 8pm + PeiPm We further note that cross slip spreads only into regions of
m minimum back stress. It is well known that considerable con-
+ Rﬁz(ﬁbeff(x)f’m) (1) tribution to the back stress arises from the existing immobile
Pim ax2 ' dislocation density ahead of it. The length scale over which
the effect of the back stress is felt is conventionally taken to
3 pim 5 be proportional tqu‘”f’z. As Ax is a measure of the distance
T bo(bopin = PmPim = Pim + @p¢), (2 over which a dislocation produced at spreads into the
neighboring elementAx can be identified with the back
stress length scale. In addition, to account for all the allowed
9pe _ _ 3 dislocation configurations, we use an ensemble averaged
=¢(pm= po)- (3 5 > A= -1
at value ofAx?, i.e., Ax“=(Ax%) =r?p;;, where(....) refers to the

ensemble average and is an elementarydimensionless
length. Using this, we hav®=pr?/2. (Note that in scaled
form Vpom=¢"pm.) Finally, a, by, andc are the scaled rate
constants referring, respectively, to the concentration of sol-
ute atoms slowing down the mobile dislocations, the thermal
(pn). It also includes the immobilization of mobile disloca- and atherr_nal reactivation of immobile dis_Iocations, and the
m rate at which the solute atoms are gathering around the mo-

tions due t(')'solute atom@pp). Once a mob|le dislocation bile dislocations. We note here that the order of magnitudes
starts acquiring solute atoms we regard it as the Cottrell-typ&¢ ihe constants have been identified in Rdfk3,33,36

dislacationp.. As they progressively acqqire more solu_te A These equations are coupled to the machine equation
oms, they eventually stop, and are considered immobile dis-

The model includes the following dislocation mechanisms
immobilization of two mobile dislocations due to the forma-
tion of Iocks(bopﬁ]), the annihilation of a mobile dislocation
with an immobile on€p,pi,,), and the remobilization of the
immobile dislocation due to stress or thermal activation

locations p;,,. Alternately, the aggregation of solute atoms |

b ded he definit i do(®) _ . _1
cart1 € regarae as the _elnltlon ch,_ .., pc Y =d|l e-= pm(X,t)(i)g'ff(X,t)dX ) (6)
=[_.dt' p(t")K(t—t"), whereK(t) is an appropriate kernel. dt I Jo

For the sake of simplicity, this kernel is modeled through a
single time scaleK(t)=e . The convoluted nature of the wheree is the scaled applied strain ratkthe scaled effec-
integral physically implies that the mobile dislocations totive modulus of the machine and the sample, arlde di-
which solute atoms aggregate earlier will be aged more thamensionless length of the sampi@Ve reservee, for the
those which acquire solute atoms lateee Ref[14]). The unscaled strain rateActually, many of these rate constants
fifth term in Eq. (1) represents the rate of multiplication of [the first, second, third, and fourth terms in E&)] are func-
dislocations due to cross slip. This depends on the velocity ofions of the velocity of mobile dislocation that we have ig-
the mobile dislocations taken to b¥(¢)=¢g;, where nored for the sake of simplicity, particularly as this affects
¢eff=(¢—hpﬁ]’f) is the scaled effective stresg, the scaled only the domain of instability without affecting other fea-
stressm the velocity exponent, and a work-hardening pa- tures[37]. Note the feedback mechanism between Egs.
rameter. and(1), wherein the former determines the stress which itself
The nature of the spatial coupling in the PLC effect hasdepends on the difference between the applied strain rate and
been a matter of much debdtd. Several mechanisms have the average plastic strain rate. This in turn determines the
been suggested as a source of spatial coupling, such as codislocation multiplication in Eqg(1). This type of global cou-
patibility stresses between the slipped and the unslipped regsling [Eqg. (6)] is common to many other situations, for in-
gions, long-range interactions, and triaxiality of streqdés  stance, in the nonlinear transport properties of charge-density
Within the scope of our model, cross slip is a natural sourcevaves (in blue bronze for exampje[12]. We shall make
of spatial coupling, as dislocations generated due to crossome comments on this later.
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o’ ' o IV. METHODOLOGY
0 . . o
A, As our approach is fully dynamical and keep in view the
| materials science community, we collect here a few defini-
-1t 1 tions and provide some details of the methodology used in

the analysis. Characterizing the dynamics of the model equa-
tions is carried out by studying the Lyapunov spectrum. The
number of Lyapunov exponentd for a givenN is M=3N
+1. We shall also use two other well-known invariants,
, , , namely the Kaplan-Yorke dimensidyy=j+S/; N/[\j4,
0 1000 2000 wherej is such thatl_, \;>0,2/*1 \;<0 and the Kolmog-
€ orov entropyH=XF; \;, such that\,=0 and\,;<0. One

important issue relevant to systems with many degrees of
freedom is the existence of a limiting density for the
Lyapunov spectrum as the system size is increased. This re-
quires that we should ascertain\if vs x=j/L% converges to
a well-defined asymptotic density functioh(x) with x

We first note that the spatial dependencepgf andp,  €[0,1]. (See Ref[27].) We address this issue by calculating
arises only through that gb,,, We solve the above set of the spectrum for various system siZg¢s 100—3333, which
equations by discretizing the specimen length iNt@qual covers approximately 2 orders . In particular, such a
parts. Then,pn(j,t), pim(i.b), pcj,t), j=1,...,N, and ¢(t)  study will be useful in comparing the results of our model
are solved. The widely differing time scalgs4,31,34 calls  with the shell model for turbulencf28] in the power-law
for appropriate care in the numerical solutions. We use diegime of stress drops. Then, one expects B con-
variable step, fourth-order Runge-Kutta scheme with an acverges to a well-defined density function. Following Ref.
curacy of 108 for all four variables. The spatial derivative in [28], we usej/Dyy vs an appropriately scaled quantity
pm IS approximated by its central difference. The initial val- \{Dxy/H. This quantity is expected to converge to
ues of the dislocation densities are so chosen that they mimifA;Dyy/H). (We note here that the distribution function is
the values in real samples. They are uniformly distributedproportional to the negative derivative &) The nature of
with a Gaussian spread along the sample. However, for moshe converged Lyapunov density functiét\;Dyy/H) as a
calculations, we have used the steady-state values for thHanction of the drive parametercan be used to quantify the
variables, as the long term evolution does not depend on thehanges in the dynamics during the crossover.
initial values. As for the boundary conditions, we note that As stated earlier, a proper description of the PLC effect
the sample is strained at the grips. This means that there israquires a method of dealing with both the slow and fast time
high density of immobile dislocations at the ends of thescales, which in turn requires special techniques in nonlinear
sample. We simulate this by employing 2 orders of magni-dynamics. In the model equations, Ed) represents fast
tude higher values fop;,(j,t) at the end point§=1, andN  dynamics compared to the rest. Both E¢®). and (6) are
than the rest of the sample. Further, as bands cannot propslow, while (3) falls in between. Such a system can be stud-
gate into the grips, we usg,(j,t)=p.(j,t)=0 atj=1 andN. ied by eliminating the fast variable, thereby allowing a re-

As in the original model(D=0), as a function of the ap- duction in the dimensionality of the systeg@8]. To illustrate
plied strain rate, the PLC state is reached through a Hopthis, consider
bifurcation (the lower critical strain'ecl~35) and is termi-

FIG. 1. Eigenvalue spectrum of the fixed point for the modgel.
and w; refer to the real and imaginary parts of the eigenvalue.

Ill. NUMERICAL SOLUTION OF THE MODEL

nated by a reverse Hopf bifurcatidig:,~1000 when the px=f(xy,p), (7)
other parameters are kept in the instability domain. Thus, the
instability domain increases substantially compared to the y=g(X,y,u), (8)

case whe =0, due to fact that the instability range depends

on the value oD due to the global coupling in E@6). (The  where u is a small parameter anxle kP andy e R9. The
domain converges quickly as a function Mf) The number main feature of such systems is thaevolves much faster

of complex conjugate roots aréN2the negative ones afé  thany unlessf(x,y, ) is small. In the vicinity of the slow
and one zero exponent. A set of four eigenvalues are showmanifold defined byf(x,y, «)=0, the dynamics is character-

in Fig. 1 for a=0.8, by=0.0005, c=0.08,d=0.00006,m ized by the evolution of the slow variabje Thus, there is a
=3.0, andh=0 with D=0.5. Beyond'eC2~1OOO a uniform  reduction in the dimensionality of the system. On the other
steady state exits. Although the numerical results reported ihand, if one is interested in the fast subsystem, using a scaled
the present work are for the above values, the results holtime 7=t/ u, we get the corresponding fast variakldefined
true for a wide range of values of other parameters in thdy Eq. (7), where the slow variableg act as parameters
instability domain, including a range of valuesf Various  [obtained from Eq(8)]. This subspace is clearly the compli-
system sizes are used depending upon the property studietigntary subspace of the slow manifold. We shall use these
but are generally in the randé=100-3333. A sequence of two subspaces for the visualization of dislocation configura-
values ofN are used wherever convergence of the propertie§ons in the high strain rate power-law regime and obtain the
are investigated. band velocity at high strain rates, respectively.
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The analysis of the experimental stress-time series is 13 14
carried out by estimating both the correlation dimension
v and the Lyapunov spectrum. These methods involve
embedding the scalar time series in a higher dimensional
space using time-delay techniqugk9,39. Given a time
series {oj[j=1,..,P}, one first constructs vectorsgi 6600 6750 %7750 7800
=(0y,0i-7,0i-2;, ..., Op—(¢-1),) IN @ d-dimensional space. The time (b) time
assumption here is that the actual dynamics can be unfolded 1.4 14
by embedding the time series in a higher dimensional space
in which the original attractor reside@n addition, surrogate
data analysis was also carried ouf{#0].) Then, a quantita-
tive estimate of the self-similarity of the attractor, namely the 1.375

correlation dimensiony, can be obtained by calculating the 1.28 5000 2100 2600

integral [40] C(r)=(1/NT)E®(r—|§i—§j|)~r”, whereNy is {c) time {d) time

the total number of points in the sum. Correlation dimension . . . .

also provides a lower bound for the number of degrees of "'C: 2. Experimental stress-time serigs) chaotic state at
freedom required for a dynamical description of the systemSain_alesea=1.7>10s = and (b) power-law state ak,=8.3
which is given by the minimum integer larger than 1 [41]. ?:lggos - Stress-time series from the model(g} €=120 and(d)

The geometrical interpretation of these degrees of freedom is '

that they correspond to the subspace to which the trajectories del. This i . Iso h .

are confined. The dimension of this subspace can be obtaindB°d€l. This time series also has one positive Lyapunov ex-
directly by using singular value decompositi¢42]. This pon(ka)nt,_ a”r? henc% IS cfh;lotIZD]. Asfa;n |nddependen|t chfeckh
method is often used for filtering noise components supert-q obtain the number of degrees of freedom, as also for the
posed on the time series. However, in the present context tndsualization of the experimental attractor, we have carried
method can be used for thésualizétion of the strange at-’ out singular value decomposition of this time series. The
tractor. (This method has been applied to the PLC time seo'malized eigenvalues are shown in Fig. 3, which shows
ries earlier[17].) The method involves setting up tmex d that the relative strength of the fourth eigenvalue drops more

. ) . - = > _ than 2 orders of magnitude compared to the first, and
trajectory matrixT defined by(,,&, ..., &m), wherem=P changes very little beyond the fourth. Thus, we estimate the

~(d-1)x 7. The eigenvalues of the matrix are c;btalned US-dimension of the experimental attractor to be four, which is
ing the standard method of decompositibrUWV *, where  4q4in consistent with that obtained from the correlation di-
U is mXd orthogonal matrix,V is ad>xd unitary matrix,  mension.(For time series from model systems, one usually
andW is the matrix of eigenvalues of the covariance matrixings a floor level below which the eigenvalues saturate. This
of T, which are all nonnegative. The eigenvalues usuallyig taken as the dimension of the actual attractor. However, in
decrease rapidly, saturating to a level below which thgey) sjtuations, as in the present case, the eigenvalues do not
changes are minimal. Then, the dimension of the attractor iSaturate, due to the presence of ngidden, for the visual-
taken to be that corresponding to a number at which the;ation of the experimental attractor, we can use the domi-

eigenvalues saturate. nant eigenvalues to reconstruct the nature of the attractor.
Using the first three principal directions of the subspace
V. COMPARISON WITH EXPERIMENTS _Ci;i:1—3, wehave reponstructed th_e experimental attractor
in the space of specifically chosen directi@s-C,,Cs;, and
To motivate, we begin by briefly recalling the relevant C, to permit comparison with the attractor obtained from the
experimental results on the crossover phenomenon and thenodel. This is shown in Fig.(4) for the experimental time
comparing them with those from the model. We begin by

Stress (In MPa
(v

O

comparing the nature of serrations in the respective regimes 10°

of strain rate. Figures(a) and 2b) show the plots of two

experimental stress-strain curves from CuAl single crystals. o d=151=5

The stress-strain curve in Fig(a82 corresponds to the me- 10t © d=161=4

dium strain rates, while that in Fig(t® is for high applied o * d=141=6

strain rates. The stress-time series in the intermediate and & M. * d=137-6

high strain rate regimes from the model are shown in Figs. 3 15 LI

2(c) and 2d). The similarity between the experimental time ®uy sa

series and that of the model is clear. b8880,
The analysis of the stress-time series given in Fi@) 2 107

has been reported in Ref20]. The correlation dimension 10° 10!

was found to ber=2.3. Then, the number of degrees of
freedom required for the description of the dynamics of the

system, given by the minimum integer larger thanl [41], FIG. 3. Singular value spectrum of the experimental time series
is seen to be four, consistent with that used in the originakhown in Fig. 2a).

singular index
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stress drops in both cases, and thus, it is likely that stress-
strain curves from the model in the high strain rate regime
may also exhibit power law statistics of stress drops. Indeed,
the distribution of stress drop magnitud&gA ¢), shown in
Fig. 5 and obtained from long runs for a large system size
(N=1000, shows a power laid(A¢) ~A¢p~“ over 2 orders
of magnitude, which increases with both the length of stress
series and the system sifé&lote that the value olN here is
nearly three times larger than the results in H8t], Fig.
3(b), and thus, the power law is well converged with respect
to the system sizgSurprisingly, experimental points) cor-
responding toe,=8.3xX 10°s! also fall on the same curve
with an exponent value=1.1. (We have scaled the experi-
mental points by a constant amount along both axes to show
that these points also fall on the same IjiEhe distribution
of the durations of the stress dropgAt) ~ At™# also shows

(b) Pm 1500 O a power law with an exponent valyg=1.3. The conditional

average ofA¢, denoted by(A¢). for a given value ofAt,

FIG. 4. (8 Reconstructed experimental attractor from the time pehaves a$A¢)C~At1’X with x~0.65. The exponent values
_series shown in Fig.(3). (b) Attractor from the model foN=100, satisfy the scaling relation=x(8-1)+1 quite well. The ex-
1=50. ponent values that remain unaltered in the region of strain

) . _— . , rate 270< e< 700 we have investigated thus amelependent
series ate;=1.7X107>s™. This can be compared with the ot the value of the drive parametefThere are models of
strange attractor obtained from the model in the space ofqpled-map lattices that produce power laws, where the ex-
Pm: Pim: @Nd pe (at an arbitrary spatial location, heje50  honent value depends on the drive parampewfe now in-

andN=100 shown in Fig. 4b) for e=120, corresponding to vestigate the underlying causes leading to this power law.
the midchaotic regiorisee below. Note the similarity with

the experimental attractor, particularly about the linear por-

100

tion in the phase spacg-ig. 4@)]. This direction can be VI. DYNAMICS OF CROSSOVER
identified with the loading direction in Fig.(&. Note that
the identification of the loading direction is consistent with A. Lyapunov spectrum

the relatively low values opp. Thus, it appears that the  while it is pleasing to see that the model does generate
model is chaotic at low and medium strain rates. As a conthe power-law distribution of stress drops at high strain rates,
firmatory test, we shall study the Lyapunov spectrum of thewe still do not know the mechanism responsible for this. An

model in the next section. answer to this is particularly important, as the model is fully
In contrast to the experimental time series at low anddynamical and noise free.
medium strain rates, for the time series at the higbggtig. In order to answer the question, and also to characterize

2(b)], as shown in Ref[20], we neither find a positive the dynamics of crossover, we follow the evolution of the

Lyapunov exponent nor a converged value of the correlatiomyapunov spectrum as a function of the applied strain rate in
dimension. Instead, the distribution of stress drops obeys the entire interval where the PLC effect is seen. Further, we
power law[20] (see also Fig. b We shall refer to this as the also discuss the convergence properties of the Lyapunov
power-law regime of stress drops. spectrum as the system size is increased. In particular, this

We now address if the model generates power-law statiswill be useful in examining the density of nulhearly van-
tics of stress drops. It is clear that Figdis similar to Fig.  ishing) exponents and also to compare our results with that
2(b), as there is no inherent scale in the magnitudes of thef the shell model of turbulence.

We have calculated the spectrum of Lyapunov exponents
using the algorithm by Benettiet al. [43]. The exponent
values reported here were obtained by averaging over 15 000
time steps after stabilization with an accuracy of®10Ve
have used several system sizes ranging from
=100,150,350,500,1000, and 3333, which cover approxi-
mately two orders of magnitude iM, i.e., from 301 to
10 000. A rough idea of the changes in the dynamics of the
0 system can be obtained by studying the dependence of the

largest Lyapunov exponent,,,,, as a function of the strain
rate. The largest Lyapunov exponent converges fast as a

FIG. 5. Distributions of the stress drops from the motie), ~ function of the system size. For instance, we find that,
from experiment{®) for N=1000, ande=280. The solid line is a for N=500 looks the same for a much smaller system size
guide to the eye. N=100 given in Fig. 8) in Ref. [31]. (Indeed, one of the

D(Ac)

107 10” 10
AG
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FIG. 7. A plot of j/Dgy vs N\jDky/H for €=220. The inset
Dy H shows a plot oD()\) as a function ofx for N=1000.

FIG. 6. A plot of j/Dxy vs A\jDky/H for €=120. The inset guished over the entire range of values\gDyy/H. Even
shows a plot oD(\) as a function of for N=1000. though it would be adequate to ude=1000 for a further

. . . . analysis of the Lyapunov spectrum in the scaling regime, we
primary requirements for spatially extended systems is th%se a much bigger system size NE3333, which for all

convergence of the largest Lyapunov exponent as a funCtiOBracticaI .
- o ; purposes can be taken to be laxglemit. A plot of
of system sizg27].) \yax becomes positive aroune~ 35, }/Dyy VS \;Dicy/H, shown in Fig. 8 forN=3333 (and also

reaching a maximum at=120, and practically vanishing Ifor 1000, shows that fore=280 is well converged for the

around 250.(Periodic states are observed in the interval .
10< e<35) fn the region e=250, the dispersion in the entire range of values ofiDyxy/H. Note also that nearly 40%
: of the exponents are close to z€eee the insét

value of A is ~5X 1074, which is the same order as the ,
mean. Thus),, can be taken to vanish beyotag 250. As we approach the power-law regime of stress drops

The study of the Lyapunov spectrum reveals that in thd€xtending frome=250), as E‘he largest Lyapunov exponent
chaotic regime of strain rates, only a small proportion of the?PProaches zere-5.16x 10 for e=280), exponents b.elov.v
exponents are positive, an equal small number are close ® certain value cross each other as a function of time; the
zero, and a large proportion of the exponents are negativg_lstnbunon of the exponents remains unchanged. However,

The distribution of the Lyapunov exponeri\) is shown the first few exponents remain distinct. Figure 9 shows the
for N=1000 in the inset of Fig. 6 foe=120. For this system first two exponents that are well separated and another two

size (with a total of exponentsv=3001), the number of Which are close to each other in magnitu@ier e=280 and
positive exponents is= 6.2% of the total number of expo- N=_3333. The most S|_gn|f|cant feature of the spectrum in the
nents, and the null exponents are ais8%. (For numerical ~ '€9ion is that there is _aie'nse' set of null exponentShe
purposes null exponents are taken to correspondifo peaked na}ure qf the d|.str|but|on.of the null expone(its
<5.2x10™%) These ratios remain the same for the larger=>-2%10") for =280 is shown in Fig. 10.
system sizes used. The peaked nature dd(|A|) for the null exponents sug-
While D(\) reflects the distribution of Lyapunov expo- ggst; a power-law distribution for their magnitude_s. The dis-
nents in various regions, for studying the convergence of th&ibution of the null exponent§)| <5.2x 107 for =280,
Lyapunov spectrum, plots of the density functipfDy,  for a system size di=3333 M=10 000 is shown in Fig. 11.
=f(\;Dyy/H) are better suited. Further, these quantities havét is clear that both positive and negative exponents show a
been used traditionally in the studies of extended dynamicaPower-law distributiorD(|\[) ~ [\|"” with an exponent value
systems[27]. A plot of j/Dyy vs \;Dyy/H for €=120 for v~0.51, and the scaling extends over an impressive three
N=500 and 1000 is shown in Fig. 6. It is clear that while thedecades. As null exponents correspond to marginal stable
density function has not yet converged for negative values of ,
\jDky/H, those for positive values are already converged. As 1[® w0 asmes
we increase the strain rate beyoed180, concomitant with
the decrease in the value ®f,,, the number of null expo-
nents increases. For instancegat220, for which the maxi- o ost
mum Lyapunov exponent is smal;0.0058, the number of -
null exponents increases to 30W(see inset of Fig. 7 D(\) © N-3333
shows that the number of null exponents has increased. Con-
comitant with this trend, a plot of/ Dy Vs A\{Dyy/H for N % 1o 0 10 20 30
=500 and 100QFig. 7) shows that fore=220 is well con- Dyy/H
verged for the entire range of values of the scaled Lyapunov
exponent\;Dyy/H. This signals a faster convergence of the  F|G. 8. A plot of j/Dyy Vs \Dky/H for €=280. The inset
density functionj/Dyy=f(A;Dky/H) with the system size, as shows a plot ofD(\) for N=3333. A schematic plot of the
we approach the scaling regime. Indeed, we find that plotgyapunov density functior{continuous ling for the shell model
for N=500 and 1000 for strain rate=280 cannot be distin- (after[28]) is shown.

4000

2000
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FIG. 9. The first two Lyapunov exponents that do not cross each FIG. 11. Log-log plot of the distribution of the marginal expo-
other as a function of time fak=3333 fore=280. Also shown are nents fore=280 ,N=3333. The solid line is a guide to the eye.
two more exponents that are close to each other.
expect that the limiting distribution itself converges as a
P unction of e as we approach the scaling regime. Considering
which itself ObeygN:1000 approximates the limiting distributiasee Fig. 7
or justification), we have verified that plots of/Dyy
=f(\jDxy/H) for three values ok=250, 260, and 280 for
reasonably larg&=1000 converge. This result is similar to
B. Comparison with shell model for turbulence the convergence of the density function in the shell model as
As mentioned in the Introduction, both in the PLC effect@ function of the viscosity parameter. The density function
and in turbulence, power-law statistics are seen at high drivé/ Dky obtained from the model can be compared with that of
rates in contrast to conventional SOC systems, where it i§1€ shell model. A plot ofj/Dyy=f(\;Dxy/H) for a large
observed at low drives[24]. Such finite-density null SystemN=3333(which can be taken to represent the limiting
Lyapunov exponents were suggested by Rupli in the  density as a function of system sjZer e=280 is shown in
context of turbulence. This property is preserved by the shelFig. 8, along with a schematic plot for the shell model shown
model[28]. Here we attempt a comparison of the Lyapunovby the continuous line. As can be seen, in both cases, the
spectrum obtained from our model with that of the shelldistribution function that is proportional tad#(\)/d\ shows
model. a singularity near zero, the difference being that the singu-
Shell models of turbulend®7] are designed to mimic the larity is more pronounced for our model. Ohkitani and Ya-
behavior of Navier-Stokes equations at high drives, whereénada also plot another quantity that represents the null ex-
the power law is seen. One standard shell model is thgonents better, namely, the sum of Lyapunov exponents up to
Gledzer-Ohkitani-Yamada mod¢R7,28. For this model, j, normalized byH as a function ofj scaled byDyy. The
Ohkitani and Yamadd28] gave good numerical evidence quantity=} \;/H is an increasing function gt Dy for posi-
that the density function exists as the viscosity paramsgter tive A; and goes to unity whel!_; \;=H. In the region of
tends to zero. In our case, the role of the viscosity parametgrull exponents, this quantity remains constant and then de-
is taken by the applied strain rate. In Sec. IV A we havecreases witl) for negative\;. Thus,Z} \;/H also reflects the
shown that there is a rapid increase in the density of nulbensity of null exponents. A schematic plot Bf\;/H as a
exponents and consequently, there is a rapid convergence fnction of j/Dyy (continuous and dashed lintor the shell
j/Dxy=f(\;Dxy/H) as a function ofN, starting from e model is shown in Fig. 12. The increased\;/H for small
=220. This suggests that one should expect convergence pfDyxy shows that there is a finite density of positive expo-
the limiting j/Dyxy=f(\{Dky/H) function as we approach the

natures of the system, their finite density,
a power-law, elucidates the underlying cause of power-la
distribution of stress drops at high strain rates.

power-law strain rate regime of stress drops. Thus, we should 1
500
0
<
s :
_ - -
S 2501 1 °
0|
o\
_20 04 0.8 1
ol . . /Dy
-5 0 5 '
2z x 107 FIG. 12. A plot of 2} \j/H as a function ofj/Dyy for e=280

andN=3333. The corresponding schematic plot for the shell model
FIG. 10. The peaked nature of the distribution of null exponentsfor j/Dyy<1 (continuous lingandj/Dyy=1 (dashed curve(after
lying in the rangg-5.2X 1074,5.2x 1074] for €=280 N=3333. [28]) is shown.

026111-8



DYNAMICAL APPROACH TO THE SPATIOTEMPORAL.. PHYSICAL REVIEW E 70, 026111(2004)

nents in the Lyapunov spectrum for the shell model. Further, 1500
these authors find that there is a convergence with respect to 1500
the viscosity parameter for the Lyapunov spectrum corre- .
sponding to the interior of the attractdgre., j/Dyy<1), .0
while there is scatter foj/Dyy>1 (the dashed line repre- Sl
sents this portion We have plottecE)\;/H as a function of &
j/Dgy for N=3333 on the same plot for the sake of compari- A
son. In our case, the increase to unit value is much slower 100
(compared to the shell modelwhich clearly implies that
there are very few positive exponentsf any significant 5
magnitudég with most of them being vanishingly small. This -4
feature is unlike the shell model, where there is a finite den-  (a)

sity of positive exponents. In the shell model, the largest

exponent is proportional ta; 2, which is reflected in the 1200
steeper increase IBj\;/H for the shell model.

£
(o8
C. Slow manifold analysis s
The above analysis shows that as the strain rate is in- 0 4. {
creased, most exponents get concentrated around the zero P 1.8
value. As zero Lyapunov exponents represent a marginal (b) Pim

situation, the region o&é>240 (corresponding to the power-

law state of stress dropsan be identified with a marginally FIG. 13. (a) Bent slow manifoldS; and S, (thick lines with a
stable state. ThUS, it would be interesting to realize a geOSimp|e trajectory fore=200 andm=3. Inset:p, (dotted curvg and
metrical picture of dislocation configurations in the marginal ¢ (solid line). (b) The same trajectory in the, pim, pm) Space.
state and examine how dislocations reach this state with in-

creasing strain rate.

Recently, the geometry of the slow manifdi@8] of the  of dislocations’ as p;, is also small. These two pieceS,
original model has been examined in detfi¥,34. The andS,, are separated b§=0, which we refer to ashe fold
study shows that the relaxational nature of the PLC effecfine [14,34 (see below A plot of the slow manifold in the
arises from theatypical bent nature of the slow manifold s5-, plane is shown in Fig. 8). For the sake of illustra-
Here,_w_e recall some relevant results on_the slow manlfolc_j Ofion, we have plotted a monoperiodic trajectory describing
the original mode(D=0) and extend the ideas to the spatial i, changes in the densities during a loading-unloading
extgnsion of mod€lD # 0). Slow manifold expresses the fast cycle. The inset shows.(t) and #(t). For completeness, the
e e oo el " rtsponcing po fth sow mand n i,

b space is shown in Fig. 1B), along with the trajectory and
O = = — bnp? = the symbols. In this space, one can see #md™-p;,—a
P =8P )= = Dopin* pmd* pim =0, © =0 is a line that separates the pie@sand S, of the slow
where 6=¢"-pin—a. J has been shown to have all the fea- manifold, and hence the nanfield line. The cyclic changes
tures of an effective stress and thus plays an important physin the variables is well captured by the nature of trajectory
cal role[34], particularly in studying the pinning-unpinning shown in Fig. 180). The trajectory enterS, at A and moves
of dislocations. We note thatis a combination of two slow jnto S,. The value of§ [in Fig. 13a)] decreases from zero to
variables¢ andp;y, both of which take small positive values. a maximum negative value as the trajectory readhekhen,
Hence,s takes on small positive and negative values. Usings increases as the trajectory returnsitobefore leavingS,.
Eq. (9), we get two solutions: The corresponding segmentABA in Fig. 13b), which is
_ 1 identified with the flat region op,(t) in the inset of Fig.
prn =L+ (& + 4bopim)"*)/ 20, (10 13(a). As the trajectory crosse$=0, dg/ dp,, becomes posi-
one for <0 and another fo6>0. For regions of6<0, as  tive and accelerates into the shaded redieig. 13a)] rap-
by is small ~10™4, we getp,/pim=-1/8, which takes on idly until, it reachesp,,=8/2b,. Thereafter, it settles down
small values. This defines a part of the slow manifd&g, quickly onS;, decreasing rapidly until it re-ente® again at
where p,, is small. In this region, as the mobile density is A. The burst inp,, [inset in Fig. 18a)] corresponds to the
small and immobile density is larggelative to p,), this  segmentA’DA in Figs. 13a) and 13b). The nature of tra-
region can be identified with pinned configuration of dislo-jectories in the chaotic domain is essentially the same, but is
cations and hence we shall refer to the regi®nas the different in the power-law regime of high strain rates, as we
“pinned state of dislocatiorisWe note that larger negative will show later.
values of§ correspond to strongly pinned configurations, as We now consider the variation of stress as the state of the
they refer to smaller ratio gb,,/ pi,,. FOr positive values o8, system changes from the pinned to the unpinned state, i.e.,
another connected piec8,, is defined bylarge valuesof p,,,, ~ when the system goes though a burst of plastic activity. For
given byp,= 6/bgy, which we refer to as theuhpinned state D=0, Eq.(6) reduces to
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W

R
-3,
i
0

b=dle- e, (11) 000
where e,= ¢"pp, is the plastic strain rate. Singg, is small a
and nearly constant on the pinned st8e stress increases
monotonically. However, during the burst i, (A’DA in the ?
insed, €,(t) exceedse, leading to a yield drop. Since, 0
grows outsideS,, the §=0 line separates the pinned state 3
from the unpinned state. Thué=0 physically corresponds -
to the value of the effective stress at which dislocations are(@)
unpinned

30
30 .
i
. ) . 600
When the spatial degrees of freedom are included, there it
no additional complication as the slow manifold is defined at &
each spatial point. Thus, a convenient set of variables for the
visualization of dislocations isp,(X), 8(x),x. Here, we in- 0o5
vestigate the nature of typical spatial configurations in the ™
chaotic and the power-law regimes of stress drops and stud' g ©
30
57 .
J

the changes as we increase the strain rate. For simplicity, we -0
shall useh=0 for which we havep.s=¢. (It is straightfor- (©
ward to extend the arguments to the case w&r0.) Then,

the plastic strain ratép(t) is given by FIG. 14. Dislocation configurations on the slow manifold at the
inset and at the end of yield droga) and (b) for e=120 (chaotic
regime, and(c) and(d) for =280 (scaling regimg

600
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[« %
0
1
0
0 8 300
(b)
600
1S
[«N
0
05
3
0 300
059 _
(d) j

|
&pl(t) = ¢m(t)% f P, )dx= ¢ (V) (1), (12)
0

o find that the number of spatial elements reaching the thresh-
wherepy(t) is the mean mobile densif=;py(j,t)/Ninthe  old of unpinning =0 during a yield drop increases as we
discretized form With the inclusion of spatial degrees of approach the scaling regime of stress drops.
freedom, the yield drop is controlled by the spatial average

(1), rather than by individual values @f.(j). Further, al-
though the configuration of dislocations change during one VIl. TYPES OF BANDS

loading-unloading cycle, the drastic changes occur during a Ag the extended Ananthakrishna’s model is able to repro-
yield drop whenpy(t) grows rapidly. However, one should gyce the crossover dynamics from chaos to the power-law
expect that configurations will be representative for a givenregime of stress dropgnd other generic features demon-
strain rate. Thus, we focus our attention on the spatial constrated earlier one might expect that the nature of the dif-
figurations on the slow manifoldt the onset and at the end ferent types of bands may also emerge. Most models of dis-
of a typical yield drop location bands use diffusive coupling, although the physical
First, consider the configuration seen just before and aftefechanism of the term is different in different situatigfk
the yield drop when the strain rate is in the chaotic regime. Inan important feature of the spatial coupling in the model is
this regime, the stress drop magnitudes are large, implyinghat it accounts for the spreading of dislocations into regions
that the change in mobile density is large. Figure@jldnd  of Jow back stress once dislocations are unpin¢tad factor
14(b) for a typical value ofe=120. It is clear that both at the 1) The term also determines the length scale over which
onset and end of a typical large yield drop, ti§) values  dislocations spread into the neighboring elements. Thus,
that reflect the state of systepinned or unpinned stateare  while dislocation pinning and unpinning gives a heterogene-
negative, and correspondingly, the mobile dengijt§j)’s are ity in space(in principle), regions of lowp;,, are favored for
small, i.e., most dislocations are astrongly pinned state dislocation multiplication and spreading into such regions.
(Recall thaté signifies how close the spatial elements areFurther, this type of spatial term couples length and time
close to unpinning thresholdThe arrows show the increase scales in a dynamical way, as, itself evolves in time and
in py(j) at the end of the yield drop. We have checked thathence, the associated time scale. Indeed, multiplication of
this is a general feature for all yield drops in the chaoticdislocation depends on stresse., ¢1), and hence this rate
regime of strain rates. Now consider a dislocation configuraitself is changing dynamically, leading to changes in the time
tion in the scaling regime at high strain rates, say280, at  scale of internal relaxation as a function ©fThis leads to
the onset and end of a yield drop shown in Figsici4nd changes in spatial correlation as the strain rate is increased.
14(d) respectively. In contrast to the chaotic regime, in the Below, we report both numerical and analytical studies on
scaling regimemost dislocations are clearly seen to be atthe spatiotemporal patterns emerging from the model as a
the threshold of unpinning witl#(j) =0, both at the onset function of the strain ratee. We begin with the numerical
and end of the yield drop. This also implies that they remairresults[45].
close to this threshold throughout the process of a stress For e<10 and e>2000, we get homogeneous steady-
drop. We have verified that thedge-of-unpinning picture is state solutions for all the dislocation densitips, pim and
valid in the entire power-law regime of stress drops for ap.. In the region where interesting dynamics of chaotic and
range ofN values. Further, as a function of strain rate, wepower-law states are observed, the nature of the dislocation
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100

position 3

FIG. 15. Spatially uncorrelated bandseat40. FIG. 17. Fully propagating bands &t 240.

branching out, and propagating only partially towards both
bands can be broadly classified into three different types oghe ends. Unlike the present case, which exhibits rather uni-
curring at low, intermediate, and high strain rates describegqrm values ofp,, we usually find irregularities as the band
below. ) reaches the edges. The stress strain curve in this region of
For strain rates 38 e< 70, we get uncorrelated static dis- strain rates exhibits a scale-free feature in the amplitude of
location bands. The fgatures of these bands are illustrated fghe stress drops similar to Fig(d}, with a large number of
a typical value, say foe=40 in Fig. 15. Dislocation bands of small drops. As can be seen from Figdg the mean stress
finite width nucleate randomly in space and remain statiqevel of these small amplitude stress drops increases until a
until another band is nucleated at another Spatially UnCOfI'Qarge y|e|d drop is seen. This |arge stress drop Corresponds to
lated site. The associated stress-time curve that is nearlyands having reached the end of the specimen.
regular has large characteristic stress drops whose distribu- |t i possible to calculate the velocity of the propagating
tion is peaked as in experiments at low strain rag&s. bands in the high strain rate limit. We first note that our
At slightly higher values of strain rates, <180, we  equations constitute a coupled set of integropartial differen-
find that new bands nucleate ahead of the earlier ones, givinga| equations, and hence cannot be dealt with in their present
a visual impression ohopping bandsThis can be clearly form. To reduce these equations to a form that is suitable for
seen from Fig. 16, where a plot @f,(j,t) is given fore  further analysis, we recall a few pertinent points about the
=130. However, this hopping motion does not continue untilchanges in the structure of the slow manifold as a function of
the other boundary. They stop midway and another set ofhe applied strain rate. We note that the original model ex-
hopping bands reappear in the neighborhood. Often nuclenibits an incomplete approach to homoclinici84], i.e., the
ation occurs at more than one location. Stress-time plots iAumber of mixed mode oscillations of the typé are lim-
this regime have a form similar to Fig(@, with the average ited, whereL and s refer to the large and small amplitude
amplitude of the stress drops being smaller than the localizegscillations, respectively. Typically, about 12 small ampli-
nonhopping bands at low strain rates as seen in experimentgde, nearly harmonic, oscillations are known to occur for a
The distribution of stress drops is nearly symmetric butsingle large one at high values of the strain rate. The reason
slightly skewed to the right, similar to those observed inattributed to the limited number of small loops is the finite
experimentg21]. rate of softening of the eigenvalue of the fixed point as the
As the strain rate is increased further, the extent of propareverse Hopf bifurcation is reach¢@4]. In the presence of
gation increases, concomitantly, and the magnitudes of thghe spatial coupling we find that the softening rate is further
stress drops decrease. We see continuously propagatigghanced, as is clear from the fact that the upper Hopf bifur-
bands even a¢=240, as can be seen from Fig. 17. One carcation is pushed to much larger values of strain r(&tg
see dislocation bands nucleating from one end of the sample2000, see Fig. )L This enhanced softening rate implies that
(j=0, t=20, 40, and 6pand propagating continuously t0 the number of small amplitude oscillations is also increased
the other end. Often, we see a band nucleating at a poinfy this domain of strain rates. Even so, the geometry of the
slow manifold is not altered from that of the space-
independent model. In particular, the position of the unstable
saddle focus remains located on tBepart of the manifold
(Refs. [14,34). In addition, the feature of the fixed point
approaching the fold line as a function of the strain rate is
retained. Under these conditions, for high strain rates, nearly
sinusoidal oscillations are executed around the fixed point
with the orbits touchings, only after executing several such
turns. A plot of this is shown in Fig. 18. We further recall that
our analysis shows that the orbit is reinjected along the stable
manifold close to the unstable saddle fo¢as shown in Fig.
11 of Ref.[34]). The orbit then spirals out along the unstable
FIG. 16. Hopping-type bands at 130 (arrow shows one such manifold of the fixed point. Once the orbit is sufficiently
band. away from the fixed point when the influence of the fixed
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300 y y y ; the velocity of the bands” =2 [46,47. In terms of the vari-
ables in Eq(13), the marginal velocity is
200 v =2\Ds. (15)
£ . . .
a In order to relate this to the applied strain rate, we note that
100 for a fixed value of the strain ratgvhere propagating bands
are seey) the average level of stress drop is essentially con-
stant. Thus, from Eq6), we see that in this regime of high
0 ] strain rates, the applied strain ratds essentially balanced
- by the plastic strain rat(al/l)f'0¢mpm(x,t)z'ep. Then, using
"=¢/pm and usingd=¢™-a- p;,, we get
FIG. 18. Slow manifold showing a trajectory for the space- De [ ¢
independent model near the reverse Hopf bifurcation poink at v= 2\/_ <: _a_Pim)- (16)
=90, m=2. « fixed point of Eqs(1)—3) and(6). PmPim \ Pm
o o _ _ It is important to note that at high applied strain rage,
point is lost, it is reinjected close to the fixed point Ba  ~7" the fixed point value. Thus, for all practical purposes,

The dynamics then repeats. Note that at high applied straiye can assumg,, as a constant. From the above equation,
rates, the system is close to the reverse Hopf bifurcatiofye see that the velocity of the propagating bands is propor-
point and hence the fixed point is close to the applied straifional to the applied strain rate. This result is similar to the
rate value. Thus, as the orbit executes one turn, there is oi@sult obtained recently by Hahnet al. [48]. Further,v
small yield drop. However, the orbit executes several turnsc1/,  which also appears to be consistent with an old ex-
around the fixed point, each turn leading to larger loop Sizesperimental result(See Fig. 7 of Ref[49], which appears to
i.e., larger values opn,. Consequently, it leads to succes- fit 5 =const) This result needs further experimental sup-
sively larger stress levels than the earlier one before brieﬂbort,
visiting S,. As the form of Eq.(14) has the standard form, all other
Under these conditions the dynamics is entirely controllectesylts carry through, including nonlinear analysis. We have
by the spiraling motion around the fixed point. Thus, thenymerically calculated the velocity of the continuously
entire dynamiCS is esseﬂtia”y described by the fast Variabl%ropagating bands at h|gh strain rates from the model equa-
the other two variablep;, and ¢ can be taken to be param- tjons, which confirms the linear dependence of the band ve-
eters. Such a situation is described by the transient dynamiq§city on applied strain rate. In the region of strain rates
dictated entirely by equation of the fast varialitbe so-  =220-280 (corresponding to unscaled strain rate values
called layer problen38]) and thus, we are justified in using 10-4—1.5x 10 s7%), we find that the unscaled values of the
only the evolution equation of the fast variable in terms ofpygng velocity increases from 100 to 136n/s. These values
the slow manifold parametei= ¢™~ pi —a. Since the trajec-  are consistent with the experimental values reported by Hah-
tory rarely visits theS, part of the slow manifold, we restrict peret al. [48).
the calculations t&>0. The physical picture of a propagat- e note here that the types of the bands seen in our model
ing solution is that, as the orbit at a site makes one turtyre correlated with the two distinct dynamical regimes inves-
around the fixed point, |e§ small but pOSitiVe, around the t|gated The hopp|ng_type bands be'ong to the Chaotic re-
value of the applied strain rate, the front advances by a cegime, a result consistent with the recent studies on Cu-Al
tain distance along the specimen like the motion of a sCreVpolycrystals[21]. On the other hand, the propagating bands

The rate equation fop, in terms of § is are seen in the power-law regime of stress dii@i$, again
P p consistent with these studi§¢20,21. Curiously, the uncorre-
%“ = = bop2 + Spm+ Pim + D,a_Z?' (13) lated bands predicted by the model also belong to the chaotic

regime. We shall now explain these results based on the dy-
whereD’ =D¢™ ;.. Since, the slow variables,, andé are ~ Namics of the model. We first note that each spatial element

treated as parameters, this has the form of a FishefS described in the three dislocation densifigss.(1)«3)].
Kolmogorov equation for propagating fronts. This equationcons'der one of these elements being cloge to the_ unpinning
can be reduced to the standard form, threshold, i.e.5=0. It has been shown earlier thaf, is out

of phase withp,, [14,34. This feature is retained with the
spatial coupling as well. When the orbit is about to le&e
i.e., whenp,(j) is at the verge of a sharp increagg, is
largest. However, the extent of the spatial coupling is deter-
(This is done by first transforming,=X-pj/ 8, dropping  mined byp;~. But the magnitude of,, itself decreases with
the term Dgp;/ 6 compared tas in the linear term inX, and  the applied strain rate, being large at low strain rfeis34.
then usingZ=Xé/b, andt’'=té.) It is clear thatZ=0 is un-  Thus, the spatial width of this is small at lowand large at
stable andZ=1 is stable. Using the form for propagating high e. Next we note that the growth and decaypg{fj) with
front Z:Zoe‘”t"kx', the marginal velocity is calculated using j occurs over a short time scale, which is typically of the
v =Re w(K')/Rek =dw/dK=¢ and Jdw/dK,-+=0, gives order of the correlation timez., of ¢(t). Beyond this time,

9z =7(1-2)+ Drﬂ (14)
ot Ix%
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the memory of its initial state is lost. Consider an initial stateHopf bifurcation at high strain rates. In this regime, due to
when a band is formed at some location. Before the memaorgoftening of the eigenvalugss a function ofe), the orbits

of this initial state decays, if a new band is not created, weare mostly restricted to the region around the saddle focus
get an uncorrelated band. On the other hand, if a new band fixed point located on th&, part of the manifold. This offers
created before the memory of the initial state decays, therd dynamical reason for the smallness of the yield drops in
are two possibilities. If another band is created just beforéhis region[14,34. Note also that there is a dynamic feed-
the correlation decays substantially by that time, we get #ack between the stress determined by @gy.and the pro-
hopping-type band. If however, even before the burst ofjuc;tlon of dlslocatlc_ms in Eq), which prc_;wdes an expla-_
p(j) decreases beyond its peak value, new sources of cr@ation for the slowing down of the plastic relaxation. This

; : . ets up a competition between the time scale of internal re-
ation of p,,, occur, then we end up seeing a propagating band. . ~.. X . . ;
An analysis of the correlation time shows that it increase axation and the time scale determined by the applied strain

ith th lied strai e C itantiv... d ate (essentially Deborah numbenWe note that while the
with the applied strain rate. L.oncomitan le_ ECTeAses  ime scale for internal relaxation is increasing, that due to the
with €, which implies that the spatial correlation increases

. . . ‘applied strain rate is decreasing. Third, our analysis shows
(Indeed, the value opyy is quite small for largee as we 4t the power-law regime of stress drops occurring at high

reach the power-law regime of stress dropsnder these  gyrain rates belongs to a different universality class compared
conditions, only partial plastic relaxation is possible in thistg SOC systems, as it is characterized by a dense set of null
regime. This discussion clarifies the dynamic interplay ofexponents. This must be contrasted with the lack of any char-
time and length scales. Moreover, as the spatial couplingcteristic feature of the Lyapunov spectrum in the few mod-
term allows the spreading of dislocations only into regions ofg|s of SOC studied so f460—57. Note that most SOC mod-
low piy, or low back stress, the propensity for continuouse|s have noisy drive and hence are not suitable for
propagation of the band is enhanced whgpis small. In calculation of Lyapunov spectrum. Of the few where the
addition, we find higher values qf,, at the wake of the spectrum can be calculated, no zero and positive exponents,
band, which favor propagation into regions of smaller immo—sing|e positive exponent, zero exponent in the laxgémit,
t_)ile density, thus also determining the direction of propagaetc., have been reportg80-53. (Often, the nature of the
tion. largest Lyapunov exponent is inferred based on the similarity
of other dynamical invariantg0].)
VIIl. SUMMARY AND CONCLUSIONS O_n the other hand, _the PLC f-:-f_fe(;t is sirr_1i|ar to hydrody_—
namic turbulence. For instance, it is interesting to note that in
To summarize, detailed numerical and analytical studiegxperiments in both cases, the energy input is at a macro-
on the extended Ananthakrishna’s model show that it reproscopic scale cascading down to small length scales. Further,
duces all the important features of the PLC effect, includingthe sequence of dynamical states seen as a function increas-
the crossover from a chaotic to a power-law regime observeihg drive in our PLC model is similar to that seen in turbu-
in experiments. A systematic study of the system size effectience experiments on heliuf26]. In both cases, one sees
of the Lyapunov spectrum demonstrates that the limitingperiodic states— chaos— power-law state. In more con-
Lyapunov distribution evolves from a set of positive andcrete terms, the dense set of null exponents in our model is
negative exponents with a few null exponents in the chaoti@actually similar to that obtained in shell models of turbulence
regime, to a dense set of null exponents as we approach thehere the power law is seen at high drive val{@g]. How-
scaling regime of stress drops. The analysis provides insiglgver, there are significant differences. First, we note that the
into the dynamical causes leading to this crossover. Thishell model[28] cannot explain the crossover, as it is only
study is complemented through the slow manifold analysisdesigned to explain the power-law regime. Second, the maxi-
which is particularly useful in giving a geometrical picture of mum Lyapunov exponent is large for small viscosity param-
the spatial configurations. The study shows tihtle dislo-  eter 7, i.e., \; 772 in shell models[28], in contrast to a
cations are largely in the pinned state in low and mediumnear zero value in our model.
strain rates (chaotic domain), most are pushed to the thresh- It is also interesting to note that in our model, propagating
old of unpinning as we approach power-law regime of stressolutions arise in the power-law regime of stress, which
drops The study also establishes that the model has considcomes as a surprise. As far as we are aware, this is the first
erable similarities with the shell model of turbuleni@8].  situation, both from an experimental and theoretical angle,
The model also reproduces the major features of the threwhere propagating solutions are seen in a marginally stable
bands, namely, the randomly nucleated band, the hoppingijtuation.
and propagating types found as the strain rate is increased. It Regarding the band types seen in the model, we stress that
also predicts a linear dependence of the velocity of the banthese features emerge purely due to dynamical reasons with-
and inverse dependence on the mobile density at high straibut any recourse to using the negative strain rate sensitivity
rates. feature as an input, as is the case in most mod&$H3-55.
Several observations may be in order on the dynamics dEven the recently introduced polycrystalline plasticity
the crossover. We first note that the crossover itself is smootmodel, which reproduces the crossover behavior, also uses
as the changes in the Lyapunov spectrum are gradual, thoughe negative strain rate sensitivity as an infé]. Further,
occurring in a narrow interval of strain ratéa20-250. Sec-  the dynamical approach followed here clearly exposes how
ond, the power law here is of a purely dynamical origgee  the slowing down of the plastic relaxation occuise to a
below). This is a direct result of the existence of a reversefeedback mechanism of dislocation multiplication and ap-
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plied strain rateas we reach the power-law regime of stresswe comment on the similarity of the model for a possible
drops. While the three different types of bands have featureadoption to the observed voltage fluctuations in charge-
of the uncorrelated typ€, hopping typeB, and the propa- density wave compoundd?2]. Under the action of applied
gating typeA bands found in polycrystalline materials, there electric field, anomalously large voltage fluctuations are re-
is no element of polycrystallinity in the model in its present ported when the electric field is above the threshold value.
form. In polycrystals, other types of coupling terms do arise,This ohmic-to-nonohmic transition in JMoO; and
which are also modeled by diffusive-type terfii$. One way Rb, j;M0oOs, for instance[58], has not been adequately ex-
of including the effect of grain boundaries within the natural plained, although the similarity with the PLC effect has been
setting of the model is to recognize that cross slip will benoted [12]. Lee and Rice[59] have suggested that phase
hindered near the grain boundaries. This also leads to a terdislocations of the charge-density waves carry current at
similar to the diffusive term, which can account for the backfields too low for the charge-density waves to move as a
stress arising from the incompatibility of grains. As the formwhole. Indeed, both fall in the category of the pinning-
of these terms are similar, the basic results are unlikely télepinning phenomenon. In the case of charge-density waves,
change, although one should expect a competition betwedpinned at impurity/defect sites is unpinned due to the applied

boundaries. viewed as the onset of plastic flow of the charged phase

From a purely dynamical point of view, this model should dislocations[12]. These authors identify stress with voltage

be of interest to the area of dynamical systems, as it appea d strain with current, and suggest that the total current is

to be fully dynamical model that exhibits a crossover from a een;tjmwg{/(;gecgr?gcoﬁg% artwgl ttr:]:teggilggar]::jomlaCsTiEclr%?s--
chaotic to a power-law regime, in the sense that our model i y P 9 P

continuous space-time modeithout any recourse to artii- lacements in the PLC instability. We believe that this par-

ial threshold is d . led latii Wi allel can be taken further along the lines of our PLC model,
clal tnresholdsas 1S done in couplied map & ICEST]. & where one can identify the phase dislocations with mobile
note also that while the slow manifold subspace gives

. . ; ; ) : Yislocations, the neutral defects of the charge-density wave
method of visualizing the dislocations configurations, parith dislocation dipoles, i.e., the immobile and phase dislo-

ticularly in the scaling regime, the complementary subspacgations pinned at defects with the Cottrell tyf&9]. Work
of the fast variable has helped us to obtain the band velocit)gdong these lines is in progress.

in the same regime of strain rates. From the point of view of

plastic instabilities, the present dynamical approach should The results in this paper, as well as those in our recent

be a promising direction for explaining many other patterngpapers, would not have been possible if not for the fruitful

mentioned in the Introductiofi]. collaboration with Dr. D. Sahoo that resulted in the model in
Finally, as stated earlier, the PLC effect bears consideri981. The senior authdfG.A) is grateful for the collabora-

able similarity with many stick-slip systems and hence pre-ive effort. This work is supported by Department of Science

sents a way of understanding some of these systems. Herand Technology, New Delhi, India.
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